Techniques for Executing and Reasoning About
Specification Diagrams

Prasanna Thati!, Carolyn Talcott?, and Gul Agha!

! University of Illinois at Urbana Champaign
thati@cs.uiuc.edu
agha@cs.uiuc.edu
% SRI International
clt@csl.sri.com

Abstract. Specification Diagrams (SD) [19] are a graphical notation for
specifying the message passing behavior of open distributed object sys-
tems. SDs facilitate specification of system behaviors at various levels of
abstraction, ranging from high-level specifications to concrete diagrams
with low-level implementation details. We investigate the theory of may
testing equivalence [15] on SDs, which is a notion of process equivalence
that is useful for relating diagrams at different levels of abstraction. We
present a semantic characterization of the may equivalence on SDs which
provides a powerful technique to relate abstract specifications and refined
implementations. We also describe our prototypical implementation of
SDs and of a procedure that exploits the characterization of may testing
to establish equivalences between finitary diagrams (without recursion).

Key Words: Graphical specification languages, w-calculus, may testing,
trace equivalence, rewriting logic.

1 Introduction

Smith and Talcott introduced Specification Diagrams (SD) [19] as a graphical
notation for specifying message passing behaviors of open distributed object
systems. SDs not only have an intuitive appeal as other graphical specification
languages such as UML [18] and MSC [17], but also have a formal underpinning
which makes them amenable to rigorous analysis. SDs draw upon concepts from
various formalisms for concurrency; they allow dynamic name generation and
name passing as in the m-calculus [14], they have asynchronous communication
and enforce the locality discipline on use of names as in concurrent object-
based models such as the Actor model [1], they are equipped with imperative
notions such as variables, environments, and assignments, and they also incor-
porate logical features such as assertions and constrains which are appropriate
for specification languages.

The language of SDs is designed to be useful at various stages of the soft-
ware cycle. In the initial stages, one can abstractly express the desired system
behavior and its properties without having to switch to another logic, and then

2 Prasanna Thati et al.

progressively refine the abstract specifications into concrete diagrams with im-
plementation details. An important task to be accomplished in this process is to
be able to formally prove that a refined diagram is indeed a correct implemen-
tation of an abstract specification. The framework of may testing [15] is useful
for formalizing such a semantic correspondence between diagrams. It is known
that may testing is useful for reasoning about safety properties of implementa-
tions; specifically, it formalizes the criteria for a refined diagram to be a safe
implementation of an abstract specification.

Relating diagrams according to may testing is in general a difficult task. In
this paper, we present a characterization of may testing on SDs that provides a
powerful technique for relating diagrams. We also present an executable imple-
mentation of SDs by modeling the language as a theory in rewriting logic [12].
The Maude tool [5] which supports specifications in rewriting logic can then be
used to execute diagrams. Finally, we describe the implementation in Maude of
a procedure that exploits the characterization of may testing to relate finitary
diagrams that do not involve recursion.

SDs are more of a specification language rather than a programming lan-
guage in that not every SD is executable. For instance SDs are equipped with
the constraint construct that is analogous to Dijkstra’s assume predicate [7].
A constrain specifies a predicate that should hold during a computation; failure
of the predicate indicates that such a computation never happens, i.e the entire
computation “is cancelled in between the computation” as though it never hap-
pened. It is clear that the constrain construct is not implementable in general.
SDs are also equipped with certain fairness notions that are not implementable
[20] (see the end of Section 3). In this paper, we will consider only the executable
fragment of SDs; in particular we discard the constrain construct and the fair-
ness conditions. Although the language we consider is only a fragment of Smith
and Talcott’s language, from now on we will refer to it as the language of SDs.

A central theme of our work is that we present SDs as an extension of asyn-
chronous w-calculus [3,9] with certain imperative and logical constructs. We will
exploit this connection both to obtain a characterization of may testing and an
executable implementation of SDs. Specifically, we will adapt our characteriza-
tion of may testing for asynchronous mw-calculus with locality [24] to obtain a
characterization of may testing on SDs. Similarly, we will extend our implemen-
tation of asynchronous m-calculus described in [22] to obtain an implementation
of SDs. In summary, this paper has three main contributions. It presents SDs as
an extension of asynchronous m-calculus and exploits this connection to obtain
both a characterization of may testing and an implementation of SDs.

Following is the layout of the rest of this paper. In Sections 2 and 3, we present
SDs as an extension of asynchronous 7-calculus. In Section 4, we instantiate the
framework of may testing on SDs and present an alternate characterization of
it. In Section 5, we describe our implementation of SDs in the Maude tool. We
conclude the paper in Section 6 with comments on possible directions of future
work.

Techniques for Executing and Reasoning About Specification Diagrams 3
2 Specification Diagram Syntax

We assume a set of values Val, which is not specified completely, but is assumed
to include booleans and an infinite set of names A. We assume an infinite set
of variables Var, which can take on values from Val. The sets Var and Val are
assumed to be disjoint. We let u,v,w range over Val, a,b,c over N, p, & over
sets of names, and z,y, z over Var. An environment is a partial function from
Var to Val that is defined for only finitely many variables. We let v range over
environments. We denote an environment as a subset of Var x Valin the usual
way. We assume a set of operations on Val that is not specified completely,
but is assumed to contain the equality operator =, and the boolean operators
-,V and A. We also assume a function n(-) on values such that n(v) is the
set of all names that are used in constructing the (possibly composite) value v;
we assume that this set is always finite. We lift the function n(-) from Val to
environments in the expected way. We let e, f, g range over expressions and ¢ over
boolean expressions. Expressions can contain free variables, and are evaluated in
an environment that assigns values to these variables. We assume an evaluation
function eval(e,7y) that evaluates an expression e in an environment ~y that assigns
values to all free variables in e. From now on, we use the words diagrams and
processes interchangeably.

SDs are defined by the following context-free grammar. We assume a set of
process variables PrVar that is disjoint from Var and Val, and let X,Y, Z,...
range over it.

D:=0]ae|a(z).D | Dy|Dy | (va)D | recX.D | X (asynch 7)
| Dy;Dy | Dy @ D5 | fork(D) (control)
| {|v:D}|z:=e (imperative)
| pick(z).D | wait(¢) (logical)

Following is an informal description of each of these constructs - (i) 0 (nil):
Trivial behavior that does nothing. (ii) @e (output): Send an asynchronous mes-
sage to a with the result of evaluating e as the content. The name a is said to
be the subject of the output. (iii) a(z).D (input): Receive an input u at a and
continue as D{u/z} (substitution). All occurrences of z in D are bound by the
input argument. The name q is said to be the subject of the input. (iv) Dq|Ds
(parallel composition): Execute D1 and Ds parallely (possibly involving inter-
actions between the two). (v) (va)D (restriction): Privatize the name a to D.
All occurrences of a in D are bound by the restriction. (vi) recX.D (recursion):
Behave as D{recX.D/X}. All occurrences of X in D are bound by the recursion
operator. (vii) Dy; Dy (sequential composition): Execute Dy, and then execute
D,. (viii) Dy & Dy (choice): Execute exactly one of Dy and D,. (ix) fork(D)
(fork): Make a copy of the current environment and execute D with this copy
as its environment. D is to be executed concurrently with the (parent) diagram

4 Prasanna Thati et al.

performing this fork. Specifically, note that the forked diagram and the parent
diagram do not share their environments. (x) {|v : D|} (scope): Execute D in the
environment v. (xi) z := e (assignment): Assign to z the result of evaluating e.
(xii) pick(z).D (pick): Pick any value v such that n(v) contains only the names
that are currently in use, and execute D{v/z}. In particular, this construct does
not generate fresh names. All occurrences of z in D are bound by the pick. (xiii)
wait(p) (wait): Wait until the environment is such that ¢ evaluates to true.

The reader is referred to [20] for a graphical representation of these constructs
and a description of how many other constructs such as conditionals and loops
can be encoded using the these constructs.

SDs impose the discipline of locality in the use of names, where the recipient
of a name communicated in a message is only allowed to use the name for
sending messages; in particular, the recipient does not have the capability to
listen to messages targeted to the received name. Locality is a common feature
of concurrent object-based systems and it was first formally investigated in the
setting of 7-calculus by Merro and Sangiorgi [11]. The SD syntax automatically
enforces the locality discipline since an input subject is always a name (constant)
and names can only be bound by a restriction. In particular, an input subject
cannot be bound by the argument of another (enclosing) input, and hence the
recepient cannot listen to messages targeted to the names it receives.

In addition to locality, SDs also enforce uniqueness of names. Specifically, let
rep(D) be the set of all free names in D that occur as an input subject. This set
contains all the free names at which D can currently receive a message. For a top-
level diagram D, the uniqueness property states that no other process besides D
can receive messages at a name in r¢p(D). Therefore, in particular, if Dy, Do are
two top-level diagrams, then rcp(D;)Nrep(Dsy) = (. Note that locality guarantees
that the uniqueness property is an invariant during execution; the set rep(D) may
expand during the computation as private names of D are exported in outputs,
and locality ensures the uniqueness property for these exported names.

We end this section with a few definitions and notational conventions. As
usual, we do not distinguish between a-equivalent processes, i.e. processes that
differ only in the use of bound names, bound variables, or bound process vari-
ables. The functions fn(-) and bn(-) which return the set of all free names and
bound names that occur in a process (respectively), are defined as expected. Fur-
ther, we define n(D) = fn(D) U bn(D). A value substitution is a partial function
from Var to Val that is defined only for finitely many variables. We write {0/%}
to denote the (value) substitution that maps z; to v; and is undefined for all
other variables, where z; and v; are the it" components of the tuples # and ©. We
write D{0/%} to denote the result of simultaneously substituting all occurrences
of z; in D with v;. As usual, substitution is defined only modulo a-equivalence
with the usual renaming of bound names to avoid captures. Similarly, a process
substitution is a partial function from PrVar to processes, that is defined only
for finitely many process variables. The notations {D/X} and D'{D/X} have
the expected meaning.

Techniques for Executing and Reasoning About Specification Diagrams 5

3 Operational Semantics

We define the SD semantics using a labeled transition system in the SOS style
introduced by Plotkin [16]. The transition labels are of five kinds.

i. 7: An internal action.

ii. (§)av: An input of value v at name a. £ is the set of names in n(v) that are
fresh with respect to the diagram D performing the input.

iii. (§)av: An output of value v to name a. £ is the set of names in n(v) that are
private to the diagram performing the output. These names will no longer
be private to the diagram after the output.

iv. (§)pick(v): Execution of a pick construct that picks a value v. ¢ is the set of
all names in n(v) that are private to the diagram performing this action.

v. (&)fork(D,~): Execution of a fork construct that forks a diagram D with
environment 7. £ is the set of all names in n(D) U n(vy) that are private to
the diagram performing this action.

The functions fn(-) and bn(-) over actions are defined as expected; in par-
ticular £ is the set of bound names for the actions above . We let a range ove
the set of all actions, and define n(a) = fn(a) U bn(a). For environments 7,2,
we define v = y1;7v as v(x) = v (z) if y1(z) is defined, and 2 (z) otherwise.
We write v[# — 4], where & = z;..... Z, and @ = Un, as a shorthand
for {(zn,un)};...;{(x1,u1)};y. We say that D is trivial if its syntax does not
contain the input, output, fork, assign, pick, or wait constructs; such a process

has the same behavior as 0. For £ = {ay,...,a,}, we write (¥€)D as an abbre-
viation for (va,) ... (va,)D; note that this notational convention is defined only
modulo the ordering of the names ay,...,a, which in any case is irrelevant.

The transition system is defined at two levels - an inner level, and an outer

level. The inner level transitions ~ are between pairs consisting of a diagram
and an environment in which the diagram is executed (see Table 1). The outer
level transitions — are defined between closed diagrams (see Table 2), i.e.
diagrams in which every variable occurrence is bound by an input, scope or
pick construct. The main reason for defining transitions at two levels, besides
accounting for environments, is that the execution of pick and fork constructs
is context sensitive. For instance, executing a pick can only return a value v
such that every name in n(v) is currently in use, and the set of names in use
is determined by the entire top-level diagram that contains the pick construct.
Similarly, in case of the fork construct, the forked diagram is to be instantiated
in parallel with entire top-level diagram. Using two types of transitions facilitates
the definition of a transition system in the SOS style despite the context sensitive
nature of pick and fork constructs.

The transitions in Tables 1 and 2 are all defined modulo a-equivalence on
diagrams, i.e. if D; and Dy are a-equivalent then D; and Ds have the same
transitions, and so do the pairs (D;,~) and (Da2,). The rules INP, OUT, REC,
BINP, PAR, RES, OPEN and COM are all analogous to the corresponding
transition rules for asynchronous m-calculus [2]. The rules PAR, COM and SUM

6 Prasanna Thati et al.

(D{recX.D/X},~) = (D', ~)
(recX.D, ~) &3 (D', ~4")

INP (a(=).D,v) =% (D{v/=},7) REC
OUT (Ge,~) = (0,v) eval(e,v) = v
(0.1) ‘98 (', 4"

BINP
(D, EULDeY (pr 1y

b€ n(v) \ (f(D) Un(y))

(D1,7) = (D}, 4"

PAR = y —— bn(a) N fa(Dg) =0
(D1|Dg,v) — (Dj|Dg2,7")
@ 1o
RES (D.7) = (D ”YI) — b ¢ n(y)Un(a)
{(vb)D, ~v) — ((vb)D", ")

(§)av (&)av
com AP1,v) = (Di,¥") (Da,vy) = (D5,y")

(D11Da,v) = {(»€)(D} DY), v

(§)av

(D) = (D'.4") b#a,ben(v),
OPEN
G{th)a beeben(y)
(woyp, vy VI (b Ly 7
(&)fork(D1,71)
OPEN-FORK (D7) ~ 1 by : E ”(Dé) LJ(n)('71)
(€U{b1)for(D1.71) bgE,bgn(y
(wb)D, 7) ZETET (b 41y
a Y o T
SEO1 (D1,7) — (D31,77) spoz —P2:7) HGEDZ’“’) Dy is trivial
(D1;Dg,v) — (D}; Da,v") (D1; Dg,v) — (Db, +")
ASSGN (z :=e,v) = (0,y[z — v]) eval(e,~) = v
SUM (D3 @DZ’“ﬂflkfﬁl’;) PICK (pick(2).D,) ") (D{v/},)
FORK (fork(D),~) ' 5" (0,) WAIT (wait($),v) — (0, v) eval(¢,~) = true
SCOPE (D, v1572) = (D', 118 = 515 v4)
({lv1 : Db, v2) = ({ly1[8 — 31 : D'}, v4)
(&)pick(v)
RES-PICK (D’zéu{b;’pick(éfl’“”) b e n(v)
((vb)D, ¥) = (wb)D! 4y

Table 1. Rules for inner level transitions.

have symmetric versions that are not shown. We now elaborate on the rules
concerned with pick and fork constructs; the others are self-explanatory.

The transition label of the PICK rule includes the value v that is being
picked. All the names in n(v) are progressively accounted for by the RES-PICK
and TOP-PICK rules; these names should either be private or already occur
free in the top-level diagram. This ensures that every name in n(v) is currently
in use. The transition label of the FORK rule contains both the diagram that is
being forked, and the environment in which the forked diagram will be executed.
The TOP-FORK rule instantiates this diagram along with the environment, in
parallel with the top-level diagram. This ensures that the newly forked diagram
executes concurrently with the current diagram, and that the two diagrams do
not share their environments. Finally, a note on the TOP-OUT rule. This rule
accounts for asynchrony in message exchanges. A message emitted by the OUT

Techniques for Executing and Reasoning About Specification Diagrams 7

Ty . ©fork(pa.y) | _,
rop {20~ (DL0)]13;::, TOP-FORK {D1,0) BP0 b gy
D—D D1 = (w€)(Dyl{lv : D2l})
(€3} , (e)pick) ,
rop-our (P18 = (D1,0) TOP-PICK {D,0) "— "(D',0) n(y)C ¢ U fn(D)

D; =5 (v€)(D] |av) D o D’

Table 2. Rules for outer level transitions.

rule can either be immediately exported by the TOP rule, or it can be buffered
by the TOP-OUT rule. Note that the arguments of a buffered message have
already been evaluated by the OUT rule that created the message.

Let £ denote the set of all input and output actions; these are the visible
actions. Note that every top-level transition is labeled with a 7 or an action
in £. We let s,r,t range over the set of traces £*. The functions fn(.), bn(.)
and n(.) are extended to £* the obvious way. We define a complementation
function on £ as (§)zy = (§)Ty, (§)Ty = (§)zy, and extend this to L* the obvi-
ous way. The a-equivalence over traces is defined as expected, and a-equivalent
traces are not distinguished. For example, the traces (b)ab.ba and (c)ac.Ca are
a-equivalent; we do not distinguish between the bound names b and c. Since
we work modulo a-equivalence on traces, for convenience we assume the fol-
lowing normality condition on any trace s we consider — if s = sy.a.s5 then
(n(s1) U fa(a)) N bn(a.sy) = 0.

We define the relation => as the reflexive transitive closure of —, and

L oas —=2— For s = l.s', we write D SN @ compactly as D == Q.

We write the assertion D == D' for some D', as D ==>. We define [D] =
{s | D ==}. Not every trace produced by the transition system corresponds to a

valid computation. For example, we have (va)(a(z).D|av|ba) (@) a(z).D]av =
But the message av is not observable due to the locality property of SDs (see
Section 2); the locality property prevents the recipient of the private name a from
listening to messages targeted to a. Further, due to the uniqueness property the
message av in the top-level diagram a(z).D|av is not observable, although we

have the transition a(z).D|av —. To account for this, we define for a set of
names p, the notion of a p-well-formed trace such that only p-well-formed traces
can be exhibited by a diagram D with rep(D) = p.

Definition 1. We define rcp(p, s) inductively as rep(p, €) = p, rep(p, s.(§)av) =
rep(p, s), and rep(p, s.(§)av) = rep(p, s) U E. We say s is p-well-formed if s =
s1.(§)av.sy tmplies a & rep(p, s1). We say s is well-formed if it is Q-well-formed.

For convenience we adopt the following hygiene condition on traces (in ad-
dition to the normality condition). Whenever we consider a p-well-formed trace
s, we have p N bn(s) = 0. The following lemma captures the intuition behind
Definition 1.

8 Prasanna Thati et al.

Lemma 1. Let rep(D2) N p = 0. Then the computation D1|Dy => can be un-
zipped into Dy == and Dy == such that s is p-well-formed. O

The original definition of SDs by Smith and Talcott [19] also accounts for
certain fairness conditions. For instance, it is required that every message that
is sent during the course of a computation is eventually received. Such fairness
conditions are in general not implementable, making SDs more of a specifica-
tion language rather than a programming language. For instance, it is in general
impossible to decide if a diagram can eventually evolve to a state where it can re-
ceive a certain message. Since our intention is to focus on an executable fragment
(or variant) of SDs, we drop these fairness conditions.

4 May Testing on Specification Diagrams

The may testing equivalence [15] is a notion of process equivalence which is useful
to relate specifications at different levels of abstraction. It is an instance of the
general notion of behavioral equivalence where, roughly, two processes are said
to be equivalent if they are indistinguishable in all contexts of use. Specifically,
the context consists of an observing process that runs in parallel and interacts
with the process being tested. The observer can in addition signal a success
by emitting a special event. The process being tested is said to pass the test
proposed by the observer if there exists a run in which the observer signals a
success; note that due to possible non-determinism the observer and the process
can take one of many possible computation paths. Two process are said to be
may equivalent if they pass exactly the same set of tests.

We consider a generalized version of the usual may equivalence, where the
equivalence is parameterized with a set of names that determines the set of ob-
servers that can be used to decide the equivalence. We originally introduced this
generalized notion in the context of asynchronous 7-calculus with locality [24].

Definition 2 (may testing). Observers are diagrams that can emit a special
message ap. We let O range over the set of observers. We say D may O if

D|O LA We say D1 C, D, if for every O with rcp(O) N p = B, we have
Dy may O implies Dy may O. We say Dy ~, Dy if Dy T, Dy and Dy C, D;.

Thus, only observers that do not listen at names in p are used to decide the
preorder C,; the larger the parameter p the smaller the observer set that is used
to decide C,,.

May testing is known to be useful for reasoning about safety properties of
concurrent systems. Specifically, by viewing the observer’s success as something
bad happening, D; C, D, can be interpreted as D; is a safe implementation of
the specification D,, because if the specification Dy is guaranteed to not cause
anything bad to happen in a given context (that does not listen to names in p),
then the implementation D; would also not cause anything bad to happen in
the same context.

Techniques for Executing and Reasoning About Specification Diagrams 9

(drop) s1.(€)s2 X s1.(€)av.s2 if (€)s2 # L
(delay) s1.(&)(a.av.s2) X s1.(&)av.a.s2 if (¢)(a.av.s2) # L
(annihilate) s1.(&)s2 X s1.(&)av.av.s2 if (&)s2 #L

Table 3. A preorder relation on traces.

The universal quantification over contexts in the definition of may testing
makes it very hard to prove equalities. Specifically, to prove an equivalence,
one has to consider all possible interactions between the given processes and all
possible observers. The typical approach to circumvent this problem is to find
an alternate characterization of the equivalence that involves only the process
being tested [2,4, 8]. For SDs, a variant of the trace semantics characterizes the
parameterized may preorder. In fact, it turns out that the characterization is
similar to the one for asynchronous 7-calculus with locality that we presented
in [24]; the only difference arising due to the fact that unlike SDs the calculus in
[24] is not equipped with the mismatch operator on names. The characterization
in [24] is in turn an adaptation of the characterization for asynchronous -
calculus [2]. We skip the proofs of all the propositions in this section as they
are relatively simple extensions of the proofs in [2] and [24]. The main difference
arises due to the mismatch capability on names in SDs (this capability is absent
in the formalisms in [2] and [24]), which can be handled using the techniques we
presented in [23].

The trace based characterization of C, over SDs follows. We define a preorder
=< on traces as the reflexive transitive closure of the laws shown in Table 3, where
(€)- is defined as

s ifE=0oréNnfn(s) =0
(©)s = E\{b})s1.(& U {bYav.sy ifbe &b e n(v) and there are s1, 82,0,
§)s = s.t. s = 51.(")av.s2 and b & fn(s1) U {a}
L otherwise

The expression (£)s returns L, if there is b € £ such that b is used in s before
it is received for the first time, i.e. the first free occurrence of b in s is not
in the argument of an input. Otherwise, the expression binds the first such
occurrence (in an input in s) of every b € &, and returns the resulting trace.
The intuition behind the preorder < is that if a process leads an observer to a
success by exhibiting a trace s, then it can also lead the observer to a success
by exhibiting any trace r < s. Specifically, inputs are not observable since they
are asynchronous, and hence they can be dropped, delayed, or annihilated with
complementary output actions.

Lemma 2. If O E':ﬁg, then r < s implies O TEY. O

Definition 3. We say [Ds] =, [D1] if for every p-well-formed trace s, Dy ==
implies there is r < s such that D2 =,

10 Prasanna Thati et al.

Theorem 1. D; C, D; if and only if [D2] <, [D1]. O

So far, we have allowed a given pair of diagrams D; and Ds to be com-
pared with C, for arbitrary p. But if D; and D, are top-level diagrams, due
to the uniqueness property of names (see Section 2) it makes sense to compare
D; and D, with C, only if fn(D1),fn(D2) C p. In this case, we can in fact
strengthen Theorem 1 by dropping the annihilation law. Specifically, for p such
that fn(D1), fn(D2) C p, we have Dy C, D, if and only if for every p-well-formed
trace s, D; == implies Dy = for some r < s using only the laws delay and
drop. The reason behind this is that since s is p-well-formed and rep(D) C p, s
cannot contain complimentary input and output actions.

5 Executable Specification in Rewriting Logic

We now specify the language of SDs as a theory in rewriting logic [12]. The
Maude tool [5] which supports specifications in rewriting logic can then be used
to execute SDs. We also present a procedure implemented in Maude, that ex-
ploits Theorem 1 to decide the may preorder relation between finitary diagrams
(without recursion). To simplify matters we assume that the set of values Val
only contains names. Extending this to arbitrary value sets will need sophisti-
cated symbolic techniques [10,25], which is out of the scope of this paper.

Since we have represented specification diagrams as an extension of asyn-
chronous w-calculus we can smoothly extend the specification of asynchronous
m-calculus in rewriting logic that we introduced in [22] to obtain an executable
specification of SDs. The main idea behind specifying SDs in rewriting logic is
to represent an (inner or outer) transition rule of form

Pl—)Ql Pn_)Qn
Py — Qo

as a conditional rewrite rule of the form Py — Q¢ if P — Q1 A...A
P, — @, where the condition includes rewrites. This was first introduced by
Verdejo et al. [26] for implementing CCS [13]. Such conditional rules with rewrite
conditions are executable in version 2.0 of the Maude language and system [5];
the rewrite conditions are solved by means of an implicit search process. The
reader is referred to [5,26] for further details.

In the Maude specification of the SD syntax that follows, the sorts Chan,
Var, and PrVar are used to represent names, variables and process variables,
and the sort Env is used to represent environments. Following are operator dec-
larations for a few of the SD constructs.

sorts Chan Var PrVar Env Diag .
op _()._ : Chan Qid Diag -> Diag . op {l_:_I} : Env Diag -> Diag .
op _|_ : Diag Diag -> Diag . ops new[_]_ rec[_]J_ : Qid Diag -> Diag .

The sort Qid represents quoted identifiers. To manage name and variable
bindings in specification diagrams, we use CINNI as a calculus for explicit sub-
stitutions [21] which has been implemented in Maude. CINNI gives a first-order

Techniques for Executing and Reasoning About Specification Diagrams 11

[a := x] [shiftup al | [shiftdown al [1ift a S]
a{0} — x a{0} — a{1} | a{0} — a{0} |a{0} — [shiftup al (S a{0})
a{1} — a{0} | a{1} — a{2} | a{1} — a{0} |a{1} — [shiftup al (S a{1})

a{n+1} — a{n}|a{n} — a{n+1}|a{n+1} — a{n}|a{n} — [shiftup al (S a{n})
b{m} — b{m} | b{m} — b{m} | b{m} — b{m} [b{m} — [shiftup a] (S b{m})

Table 4. The CINNI operations.

representation of terms with bindings and capture-free substitutions, instead of
going to the metalevel to handle identifiers and bindings. The main idea in such
a representation is to keep the bound identifier inside the binders as it is, but
to replace its use by the identifier followed by an index which is a count of the
number of binders with the same identifier it jumps before it reaches the place
of use. This combines the best of the approaches based on standard variables
and de Bruijn indices [6]. Following this idea, we define terms of sorts Chan,
Var and PrVar as indexed identifiers as follows.

op _{_} : Qid Nat -> Chan . op _{_} : Qid Nat -> Var .
op _{_} : Qid Nat -> PrVar .

Note that the operator _{_}_ is (adhoc) overloaded. Following are the con-
structors for environments.

op emptyEnv : -> Env . op (__) : Var Chan -> Env .
op _;— : Env Env -> Env . eq {| emptyEnv : D |} =D .
eq {IXCXE : DI} ={IE: {I(XCX):D I} I} .

As a result of the equations above, from now on we can assume that the
environment v in {|y : D|} is of form (z a). For name substitutions we introduce
the sort ChanSubst along with the following operations. The intuitive meaning
of these operations is described in Table 4 (see [21] for more details).

op [_:=_] : Qid Chan -> ChanSubst . op [shiftdown_] : Qid -> ChanSubst .
op [shiftup_] : Qid -> ChanSubst .
op [1ift__] : Qid ChanSubst -> ChanSubst .

We introduce the sort PrSubst for process substitutions, along with similar
operations as above. Using these, explicit substitutions for SDs can be defined
equationally. Following are some interesting equations. Note how the substitution
is lifted as it moves across a binder.

Var NS : ChanSubst . Var PS : PrSubst .

eq NS (CX(Y) . D) = (NS CX)(Y) . ([1lift Y NS] D)

eq NS (D1 | D2) = (NS D1) | (NS D2)

eq NS ({|(X CX) : D[} =4{I(X (NS CX)) : [1ift X NS] D [} .

We now describe the specification of the transition system. As mentioned
earlier, the transition rules are represented as conditional rewrite rules with the

12 Prasanna Thati et al.

premises as conditions of the rule. Since rewrites do not have labels unlike the
labeled transitions, we make the label a part of the resulting term; thus these
rewrites are of the form P = {a}Q.

A problem to overcome in giving an executable specification of the transition
system is that the transitions of a term can be infinitely branching because of
the INP and OPEN rules. In case of the INP rule, there is one branch for every
possible name that can be received in the input (recall that we have assumed
names to be the only values). In case of the OPEN rule, there is one branch for
every name that is chosen to denote the private channel that is being emitted
(recall that the transition rules are defined only modulo a-equivalence).

To overcome this problem, we define transitions relative to an execution
environment'. The environment is represented abstractly as a set of free names
CS that it may use while interacting with the process, and both the inner and
outer level transitions are modeled as rewrite rules over terms of the form [CS]
P. The set CS expands during bound input and output interactions when private
names are exchanged between the process and its environment. The infinite
branching due to the INP rule is avoided by allowing only the names in CS to
be received in free inputs. Since CS is assumed to contain all the free names in
the environment, an input argument that is not in CS would be a private name
of the environment. Now, since the identifier chosen to denote the fresh name is
irrelevant, all bound input transitions can be identified to a single input. With
these simplifications, the number of input transitions of a term becomes finite.
Similarly, in the OPEN rule, since the identifier chosen to denote the private
name emitted is irrelevant, instances of the rule that differ only in the chosen
name are not distinguished.

Following is the specification of a few of the inner level transitions (see Table

1).

sorts Action VisAction VisActionType EnvProc TraceProc .
subsort VisAction < Action . subsort EnvProc < TraceProc .
ops i o : —> VisActionType .

op f : VisActionType Chan Chan -> VisAction .

op b : VisActionType Chan Qid -> VisAction .

op [_]<_,_> : ChanSet Diag Env -> EnvProc .

op {_}_ : Action TraceProc -> TraceProc [frozen]

rl [INP] : [CY CS] < CX(X) . D, E> =>
{f(i,CX,CY)} [CY CS] < [X :=CY] D, E > .
crl [BINP] : [CS] < D, E > =>
{[shiftdown °U] b(i,CX,’U)} ['U{0} [shiftup °U] CS] < D1 , E1 >
if (not flag in CS) /\ CS1 := flag °U{0} [shiftup ’U] CS /\
[CS1] < [shiftup ’U] D , [shiftup ’U] E > =>
{f(i,CX,’U{0})} [CS1] < D1 , E1 > .

! We have overloaded the word environment. So far we have used it to denote variable
bindings. We now also use it to refer to the external process with which the process
under consideration is interacting. It should be clear from the context as to which
of these we mean.

Techniques for Executing and Reasoning About Specification Diagrams 13

crl [OPEN] : [CS] <new [X] D , E> =>
{[shiftdown X] b(o0,CY,X)} [X{O} CS1] <D1 , E1>
if CS1 := [shiftup X] CS /\ E2 := [shiftup X] E /\
[CS1] <D,E2> => {f(o0,CY,X{0})} [CS1] <D1,E1> /\ X{0} =/= CY .

We have shown the constructors for only the sort VisAction that represents
visible actions, i.e input and output actions. Since names are assumed to be the
only values, these actions are of form (b)ab or (b)ab, where the metavariable b
ranges over {(, {b}}. The operators f and b are used to construct free and bound
actions respectively. Name substitutions on actions are defined equationally as
expected. The implementation of the INP, BINP and OPEN rules is similar to that
of the corresponding rules for asynchronous w-calculus [22]. We explain only the
BINP rule in detail, and refer the reader to [22] for further details.

In the BINP rule, since the identifier chosen to denote the bound argument is
irrelevant, we use the constant ’U for all bound inputs, and thus >U{0} denotes
the fresh name received. Note that in contrast to the BINP rule of Table 1, we
do not check if *U{0} is in the free names of the process performing the input or
its variable bindings, and instead we shift up the channel indices appropriately
in CS, D, and E in the righthand side and condition of the rule. This is justified
because the transition target is within the scope of the bound name in the input
action. Note also that the channel CX in the action is shifted down because it is
now out of the scope of the bound argument. The set CS is expanded by adding
the received channel *U{0} to it. Finally, we use a special constant flag of sort
Chan, to ensure termination. The constant flag is used to prevent the BINP
rule from being fired again while evaluating the condition. Without this check,
we will have a non-terminating execution in which the BINP rule is repeatedly
fired.

Following is the implementation of one of the outer level transitions (see
Table 2).

sorts EnvDiag TraceDiag . subsort EnvDiag < TraceDiag .
ops tau bpick : -> Action . op fpick : Chan -> Action .
op [_]_ : ChanSet Diag -> EnvDiag .

op {_}_ : Action TraceDiag -> TraceDiag [frozen]

crl [TOP-PICK] : [CS] D => {tau} [CS1] D1
if [CS] < D , emptyEnv > => {A} [CS1] < D1 , emptyEnv > /\
(A == bpick \/ (A == pick(CX) /\ CX in freenames(D)))

The constant bpick is used to represent a pick action that picks a bound
name, while fpick is used to denote an action that picks a free name. Note that
the operator {_}- above is declared frozen. This forbids rewriting of its argu-
ments; otherwise rewrites can be applied to any subterm. We use the frozen
attribute because otherwise for a recursive process D the term [CS] D may
have a non-terminating rewrite sequence [CSID => {A1} [CSID1 => {A1}{A2}
[CSID2 =>But since {_}is declared frozen a term [CS] D can be rewrit-
ten only once. To compute all possible successors of a term, we explicitly generate
the transitive closure of one step transitions as follows (the dummy operator [_]
declared below is used to prevent infinite loops).

14 Prasanna Thati et al.

sort TEnvDiag .

op [_] : EnvDiag -> TEnvDiag [frozen]

crl [reflx] : [P] => {A} Q if P => {A} Q .

crl [trans] : [P] => {A}R if P=>{A} Q/\N[Q]=R.

Now, the set of all traces exhibited by [CS] D can be computed by finding all
the one step successors of [[CS] D]. The traces appear (with tau actions) as the
prefix of these one step successors. Of course, there can be infinitely many one
step successors if D is recursive, but using the meta-level facilities of Maude we
can compute only as many of them as needed. To represent traces, we introduce
the sort Trace as follows.

subsort VisAction < Trace .
op epsilon : -> Trace . op [.] : Trace -> TTrace .
op _._ : Trace Trace -> Trace [assoc id: epsilon]
ceq [TR1 . b(IO0,CX,Y) . TR2] =
[TR1 . b(I0,CX,’U) . [Y := *U{0}] [shiftup ’U] TR2]
if Y =/= U .

The equation above defines a-equivalence on traces the expected way. The
function rwf which checks if a trace is p-well-formed can be defined along the
lines of Definition 1.

We encode the relation < of Table 3 as rewrite rules on terms of sort TTrace.
Specifically r < s if cond is encoded as s => r if cond.

rl [Delay] : [(TR1 . £(i,CX,CY) . b(I0,CU,V) . TR2)] =>
[(TR1 . b(I0,CU,V) . ([shiftup V] £(i, CX , CY)) . TR2)]
crl [Delay] : [(TR1 . b(i,CX,Y) . £(I0,CU,CV) . TR2)] =>
[(TRl . bind(Y , £(I0,CU,CV) . £(i,CX,Y{0}) . TR2))]
if bind(Y , £(I0,CU,CV) . £(i,CX,Y{0}) . TR2) =/= bot .

The operator bind implements the function (§)- on traces. Note that in the
first Delay rule, the channel indices of the free input action are shifted up when
it is delayed across a bound action, since it gets into the scope of the bound
argument. Similarly, in the second Delay rule, when the bound input action is
delayed across a free input/output action, the channel indices of the free action
will be shifted down by the bind operation. The other two subcases of the Delay
rule, namely, where a free input is to be delayed across a free input or output,
and where a bound input is to be delayed across a bound input or output, are
not shown as they are similar.

To decide Dy C, D, for finitary diagrams D, D, without recursion, we
exploit the alternate characterization of C, given by Theorem 1. But a problem
with this approach is that finiteness of D only implies that the length of traces in
|D] is bounded, but the number of traces in [D] can be infinite (even modulo a-
equivalence) because the INP rule is infinitely branching. To avoid the problem
of having to compare infinite sets, we observe that

[D2] 25 [D1] if and only if [Da]fn(py,02) Zp [D1lgn(Ds,D2)s

Techniques for Executing and Reasoning About Specification Diagrams 15

where for a set of traces S we define S¢ = {s € S | fn(s) C £}. Now, since the
traces in [D] and [D-] are finite in length, it follows that the sets of traces
[D1l#n(p,,0s) and [D2]¢n(p,,p,) are finite modulo a-equivalence. In fact, the
set of traces generated for [[fn(D1,D2)] D1] by our implementation, contains
exactly one representative from each a-equivalence class of [D1]¢n(p,,Ds)-

Given processes D; and D, we generate the set of all traces (modulo a-
equivalence) of [[fn(D1,D2)] D1] and [[fn(D1,D2)] D2] using the metalevel
facilities of Maude. Then for each p-well-formed trace T in [Di]zn(p,,p,), We
compute the reflexive transitive closure of T with respect to the rewrite rules for
the laws in Table 3. We then use the fact that [D2]tn(p,,0,) Zp [D1lfn(ps,ps) if
and only if for every p-well-formed trace T in [D1]t,(p,,p,) the closure of T and
[D2]#n(D,,D,) have a common element. We skip the details of the implementation
using metalevel facilities of Maude, as they are the same as that for asynchronous
m-calculus [22].

6 Conclusion

We have presented the executable fragment of SDs as an extension of asyn-
chronous m-calculus. We have exploited this relation to both obtain an imple-
mentation of SDs, and to develop a theory of may testing for SDs. An interesting
direction for future work is to investigate the theory of may testing for the entire
SD language. Features such as fairness conditions and the constraint predicate,
which we have not considered here, change the characterization of may testing in
a non-trivial way. Another problem of interest is to extend the implementation
of may testing for the case where there are other infinite value domains besides
names, such as integers and lists. This would involve the use of sophisticated
symbolic techniques to handle these infinite value domains [10,25]. The result-
ing implementation of may testing over the full fledged SD language with a rich
value set can be used for reasoning about practical examples; such case studies
are also a topic of interest.

References

1. G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, 1986.

2. M. Boreale, R. De Nicola, and R. Pugliese. Trace and testing equivalence on
asynchronous processes. Information and Computation, 172(2):139-164, 2002.

3. G. Boudol. Asynchrony and the w-Calculus. Technical Report 1702, INRIA Tech-
nical Report, May 1992.

4. I. Castellani and M. Hennessy. Testing theories for asynchronous languages. In
FSTTCS ’98, volume 1530 of Lecture Notes in Computer Science, pages 90-101,
1998.

5. M. Clavel, F. Durdn, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and J. F.
Quesada. Towards Maude 2.0. In International Workshop on Rewriting Logic and
its Applications, volume 36 of Electronic Notes in Theoretical Computer Science,
pages 297-318, 2000.

16

10.

11.

12.

13.
14.
15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Prasanna Thati et al.

N. G. de Bruijn. Lambda calculus with nameless dummies, a tool for automatic for-
mula manipulation, with application to the Church-Rosser theorem. Proc. Kninkl.
Nederl. Akademie van Wetenschappen, 75:381-392, 1972.

E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Semantics.
Springer Verlag, 1990.

M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

K. Honda and M. Tokoro. An Object Calculus for Asynchronous Communication.
In Fifth European Conference on Object-Oriented Programming, July 1991. LNCS
512, 1991.

A. Ingolfsdottir and H. Lin. A symbolic approach to value passing processes. In
Handbook of Process Algebra, pages 427-478. Elsevier Publishing, 2001.

M. Merro and D. Sangiorgi. On Asynchrony in Name-Passing Calculi. In Inter-
national Colloguium on Automata Languages and Programming. Springer-Verlag,
1998. LNCS 1443.

José Meseguer. Rewriting as a unified model of concurrency. In J. C. M. Baeten
and J. W. Klop, editors, CONCUR’90, volume 458 of Lecture Notes in Computer
Science, pages 384-400, 1990.

R. Milner. Communication and Concurrency. Prentice Hall, 1989.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (Parts I and
IT). Information and Computation, 100:1-77, 1992.

R. De Nicola and M. Hennessy. Testing equivalence for processes. Theoretical
Computer Science, 34:83-133, 1984.

G. D. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Computer Science Dept., Aarhus University, September 1981.
ITU-T Recommendation Z.120. Message sequence charts, 1996.

J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language Reference
Manual. Addison-Wesely, 1998.

S. Smith and C. Talcott. Modular reasoning for actor specification diagrams. In
Formal Methods in Object-Oriented Distributed Systems. Kluwer Academic Pub-
lishers, 1999.

S. Smith and C. Talcott. Specification diagrams for actor systems. Higher-Order
and Symbolic Computation, 2002. To appear.

M. O. Stehr. CINNI — A generic calculus of explicit substitutions and its appli-
cation to A-, ¢- and w-calculi. In International Workshop on Rewriting Logic and
its Applications, volume 36 of Electronic Notes in Theoretical Computer Science,
pages 71-92, 2000.

P. Thati, K. Sen, and N. Marti-Oliet. An executable specification of asynchronous
m-calculus and may testing in Maude 2.0. In International Workshop on Rewriting
Logic and its Applications, 2002. Electronic Notes in Theoretical Computer Science,
vol. 71.

P. Thati, R. Ziaei, and G. Agha. A theory of may testing for actors. In Formal
Methods for Open Object-based Distributed Systems, March 2002.

P. Thati, R. Ziaei, and G. Agha. A theory of may testing for asynchronous calculi
with locality and no name matching. In AMAST ’02, volume 2422 of Lecture Notes
in Computer Science, pages 222-238. Springer Verlag, 2002.

A. Verdejo. Building tools for lotos symbolic semantics in maude. In International
Conference on Formal Techniques for Networked and Distributed Systems, volume
2529 of Lecture Notes in Computer Science, pages 292-307. Springer Verlag, 2002.
A. Verdejo and N. Marti-Oliet. Implementing CCS in Maude 2. In International
Conference on Rewriting Logic and its Applications, 2002. Electronic Notes in
Theoretical Computer Science, vol. 71.

