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ABSTRACT
Traditionally, adaptabilityin communicationframeworkshasbeen
restrictedto predefinedchoiceswithout taking into consideration
tradeoffs betweenthemandtheapplicationrequirements.Further-
more, different applicationswith an entire spectrumof require-
mentswill have to adaptto thesepredefinedchoicesinsteadof
tailoring the communicationframework to fit their needs.In this
paperweextendanexecutablespecificationof astate-of-the-artse-
curegroupcommunicationsubsystemto exploretwo dimensionsof
adaptability, namelysecurityandsynchrony. In particular, we re-
lax thetraditionalrequirementof virtual synchrony (a well-known
bottleneck)andproposevariousgenericoptimizations,while pre-
servingessentialsecurityguarantees.

1. INTRODUCTION
Dynamicpeergroupsarecommonin collaborative applications

of all kind suchas server replication,clustering,distributed log-
ging,grid computing,factorycontrol,videoconferencing,distributed
interactive simulations,on-line games,air traffic control, and fi-
nancialmarkets. Theseapplicationsideally run on top of a group
communicationsystem(GCS),whichprovidesreliableandordered
messagedelivery andprotectssensitive informationagainstunau-
thorizedentities.Dueto thedynamicmembershipof peergroups,
the expensive cryptographicprotocols,andthepotentialreal-time
requirementsof applications,securinggroupcommunicationin dy-
namicenvironmentsis achallengingtask.

In recentyearssomesecureGCShave beendeveloped[18, 12,
13,7, 10] andseveralusefultechniqueshavebeenproposedto deal
with scalability, performanceandsecurityin peergroupswith dy-
namicmembershipanddecentralizedcontrol[1,24,11]. However,
GCSweredesignedto behighly efficient in local(wired)networks,
assumea relatively small groupsize(up to few hundred),anddo
notconsidermobility, temporarydisconnectionsandrealtimecon-
straints. In particular, scalability andhigh performanceare both
currentlyachievedvia thelight-weight/heavy-weightmodel[2,15],
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wherepowerful servers (daemons)residing in eachhost execute
relatively expensive distributed protocolsand several clients can
connectto a server to sharetheGCSserviceson eachhost.

The next generationof adaptableGCS is driven by constantly
changingapplicationrequirements,real-timedatadelivery, inter-
mittentmembershipchangesdueto temporarydisconnectionsand
mobility patterns,performancerequirementsandnon-uniformse-
curity andfault tolerancelevels. For example,in currenttroopde-
ploymentsimulations(TDS),a computerat theheadquartersgath-
ersall theinformationfrom thebattlefieldanddisplaysthecurrent
locationsof troops,vehiclesandobstacles(suchas mine fields).
Theheadquarterscomputeris networked via a securelink to a set
of commanderPDAs which areconnecteddirectly to oneanother
forming a dynamicpeergroupsystem. In a dynamicpeergroup
system,membersmay join or leave the groupdynamicallyeither
intentionallyor dueto communicationinterferenceor failures.

Due to thehigh computationaloverheadof public key cryptog-
raphy, symmetrickeys arecommonlyusedto encryptthedata.To
fully exploit the multicastingnature,a sharedgroup key is typi-
cally consideredto bethemostefficientsolution.Consequently, the
main problemnow becomesthe efficient establishmentandman-
agementof keys. ThecurrentSecureSpreadsystem[22] useskey
establishmentprotocolsthat stall all communication(at theappli-
cationlevel), while thekey is generatedandrely onstrongsynchro-
nizationguaranteesto assurethatno membercanreceive andde-
cryptmessagesafterheleft thegroup(forward secrecy) andnonew
membercanreceiveanddecryptmessagessentbeforehejoinedthe
group(backward secrecy).

However, in many applications,suchasthe TDS example,dis-
connectionsarecommonandexpectedanddatain transitmustnot
only beprotectedagainstunauthorizedusers,but alsomustbede-
livered in a timely manner, so that decisionscan be madefrom
accurateand freshdata. Triggering a blocking rekey after every
join or leave (to preserve forwardandbackwardsecrecy) maypre-
cludetimely deliveryof sensitive informationandevenmayleadto
potentialdenialof serviceattacksif a trustedmemberis compro-
misedandjoins andleavesthegroupintermittently. In this case,it
would bedesirableto employ a lessconstrainedGCSthatdoesnot
requirethe generationof a new key after every join or leave, but
still maintainsa certaindegreeof security.

In fact, we believe that an applicationshouldbe able to tailor
thesecureGCSaccordingto its needsnotonly in termsof security
but alsosynchrony, timelinessandreliability, becausethereis no
one-size-fits-allsolution.

In thispaperwestudytwo dimensionsof adaptability, namelyse-



curity andsynchrony. Ourstartingpoint isaformalprototypeof the
SecureSpreadGCS.Theformalprototypehasbeendevelopedear-
lier in theDARPA Fault-TolerantNetwork (FTN) Program,andwe
have now generalizedthis specificationalongvariouslinesto sup-
port securecommunicationwith fewer synchronizationconstraints
andadaptabilityalongseveral new dimensions.In particular, our
approachopensa spectrumof new securityguarantees,which are
weaker thanin thesynchronizedcase,but still sufficient for many
applications.Thanksto the useof abstractAPIs, our generaliza-
tions areto a large degreeindependentof the groupcommunica-
tion systemand the key establishmentalgorithm, and hencecan
be combinedwith improvementsalongotherdimensions,suchas
thechoiceof specificgroupcommunicationprotocolsandkey es-
tablishmentprotocols. The useof formal prototypingtechniques
basedon theexecutablespecificationlanguageMaudeenabledus
to exploreandvalidatedesigndecisionswithout theneedto carry
outanactualimplementation.

2. STATE OF THE ART IN GCS
After a brief explanationof the relevant groupcommunication

systemsemantics,this sectiongivesanoverview of a state-of-the-
artgroupcommunicationsystem(Spread)andaframework for key
establishmentprotocols(Cliques),anddiscusseshow thesecompo-
nentsareassembledto provide a securegroupcommunicationar-
chitecture(SecureSpread).In thispaperweuseSpreadandSecure
Spreadwithoutfurtherqualificationto referto thepublicly released
versionsthatcanbefoundathttp://www.spread.org/.

2.1 Semanticsof Group Communication
Themostwell-known groupcommunicationmodelis thevirtual

synchrony semantics(VS semantics)[2] which wasoriginally de-
velopedfor Isis/Horus[14], a primary componentGCS,but later
extendedto partitionableGCS.Oneof theseextensionsis the ex-
tendedvirtual synchrony semantics(EVS semantics)[8], a model
that extendsthe virtual synchrony model of Isis to supportcon-
tinuedoperationin all componentsof a partitionednetwork. The
centralconceptof group communicationis that of a view, i.e. a
snapshotof membershipin a group. In eachexecutionof a parti-
tionableGCS,views andtransitionsbetweenthemform a partial
order. Both, theVS andtheEVS semantics,sharethekey property
of virtual synchrony, namelythatevery two processesthatpartic-
ipatein thesametwo consecutive view changes,deliver thesame
setof messagesbetweenthetwo changes.

Virtual synchrony, however, is only onepropertyof the VS se-
mantics.TheVS semanticsfurthermoreensuresthatmessagesare
delivered in the sameview they were sent in (sendingview de-
livery). To accomplishthis, an extra round of acknowledgment
messagesis neededevery time beforea view change,preventing
applicationsto sendothermessagesuntil thenext view is installed.
Furthermore,theVS semanticsis a closedgroupsemantics,allow-
ing only currentmembersof the group to sendmessagesto the
group.

TheEVS semantics,on theotherhand,allows messagedelivery
in a differentview than it wassentin, as long as the messageis
deliveredin the sameview to all members(sameview delivery).
Consequently, the synchronizationphasewhich allows the appli-
cationto be awareof the sendingview is not neededin the EVS
semantics. The EVS semanticsalso allows opengroups,where
non-membersof thegroupcansendmessagesto agroup.

2.2 Spread
TheSpreadgroupcommunicationsystem[17] emergedfrom the

work onTransis[19]andTotem[21]andhasbeendesignedto cope

with nodefailureandnetwork partitions.SpreadsupportstheEVS
semanticsandprovidesdifferentlevelsof servicewith differentre-
liability andorderingguarantees:Messagescanbe reliable,fifo,
causallyordered,totally ordered(alsocalledagreed),or safe,where
thelatermeansthatmessagesareonly deliveredif it is known that
everybodyin thegrouphasactuallyreceivedit.

TheSpreadarchitectureconsistsof two layers,which arecorre-
spondinglyreflectedin our formal specification:theheavy-weight
group layer and the light-weight group layer. The heavy-weight
grouplayer providesextendedvirtual synchrony semanticsat the
level of thephysicalgroup, i.e. thegroupof hosts(servers).Dueto
changingnetwork connectivity, wearereallyconcernedwith snap-
shotsof groupmembership,which arecalledconfigurations. This
layerprovidesservicesto multicastdatamessageswhichshouldbe
sentideally to every hostandto retrieve messagesthat have been
deliveredto the application,which canbe eitherapplicationdata
messagesor messagesthatrepresentconfigurationchangeevents.

Theprimarymodeof operationis to delivermessagesto all hosts
which arepart of the mostrecentlyestablishedregular configura-
tion. Accordingto theEVS semanticsall messagesshouldbede-
liveredat eachof thesehostsin the sameregular configurationor
the following transitionalconfiguration(seebelow). This delivery
is furthermoresubjectto orderingconstraintsthat dependon the
servicelevel thatwasrequestedwhenthemessagewassent.In the
caseof safemessages,it is alsosubjectthe constraintthat every
hostin theconfigurationhasreceivedthis message,andhencecan
deliver it unlessit crashes.

If achangein theconnectivity is detected,two differentconfigu-
rationchangeeventsaregenerated:First, thereis aneventto intro-
ducea transitionalconfiguration,which is a reducedconfiguration
in which certainmessagescanbe deliveredthat could not be de-
liveredin thepreviousregularconfiguration.After this transitional
phase,a new regularconfigurationis introducedwhich reflectsthe
new connectivity of thenetwork.

Thelight-weightgrouplayerprovidesEVSsemanticsatthelevel
of logical groups,i.e. groupsof agents(clients), simply called
groupsin the following. Groupsare identifiedby namesandthe
different snapshotsof group membershipare called views. The
API is similar to thatat theheavy-weight grouplayer, exceptthat
messagesandchangesreferto groupsinsteadof configurations,but
in additionthe API offers two new servicesat this level: A client
canrequestto join or leave a group,andin responseSpreadgener-
atescorrespondinggroupchangeeventswhentheactualtransition
to thenew view hasoccurred.

It is worth to emphasizethat in theEVS semanticstheapplica-
tion cannotdetermineor evenknow theview in which themessage
is sentby the GCS.The applicationpassesmessagesto the GCS
wherethey canbebuffered. Hence,the mostrecentlyestablished
view at thetimewhentheapplicationsendsthemessageis notnec-
essarilytheview in which themessageis sentout by theGCS,let
alonetheview whenthemessageis deliveredto the receiving ap-
plication.

2.3 Secure Spread
SecureSpread[22] provides securegroup communicationfor

closedgroupsandcanoperatewith differentprotocolsthatestab-
lish a singlekey sharedby all membersof thecurrentview. Secure
Spreadis built on top of FlushSpread[20] andtheCliquestoolkit
[11]. FlushSpreadhasa similar functionality asSpreadbut pro-
videsthestrongervirtual synchrony semantics,which requiresac-
knowledgmentsby all membersfor eachview change.In [20] it is
explainedhow VS semanticscanbeimplementedusingtheweaker
EVS semantics.TheFlushSpreadimplementationis essentiallya



refinementof theseideas.
The Cliquestoolkit [3] providesa genericAPI andimplemen-

tationsof variousgroupkey agreementprotocols,amongthemthe
Group-Diffie-Hellmanprotocol(GDH) [11] anda tree-basedvari-
ant (TGDH). Authenticationis not providedby thekey agreement
protocol, but insteadall messagesareauthenticatedusingdigital
signatures.An interestingfeatureof GDH andits variantsis that
they arecontributory, which meansthatevery membercontributes
akey share,but theentirekey is never transmittedover thechannel
(not even in encryptedform). However, this leadsto theessential
requirementthatall membersactively participatein thekey agree-
ment.

SecureSpreadsimply usesthe underlyingFlushSpreadto ex-
changethemessagesrequiredandproducedby theCliquestoolkit,
whenever a groupchangeoccurs.If thekey agreementis itself in-
terruptedby a new groupchangetheCliquesprotocolis restarted.
Furthermore,SecureSpreadimplementssomeoptimizationsallow-
ing severalsubsequentjoins andleavesto bebatchedinto a single
call of thedelete/mergesubprotocol.

3. FORMAL METHODOLOGY
Thegeneralmethodologyweemploy for systemdesignandanal-

ysisis basedonanexecutablespecificationlanguagecalledMaude
[9]. Its theoreticalfoundationis rewriting logic [5], a logic with
anoperationalaswell asa model-theoreticsemantics.Formalpro-
totyping is a key ingredientof our methodology, which allows us
to experimentwith a abstractmathematicalbut executablespeci-
fication of the systemearly in the designphase. Our experience
indicatesthat the combinationof mathematicalrigor with execu-
tion andanalysistoolssuchasMaudeleadsto betterunderstanding
of thesystemandoftenpinpointspotentialproblems.

To employ this methodologyin the explorationof adaptive se-
curegroupcommunication,webuild uponabstractexecutablespec-
ifications of all relevant componentsof SecureSpread. This in-
cludesthe physicaland logical group layers,providing the func-
tionality of Spread[17] with its EVS semantics.The morecon-
strainedVSsemanticsisprovidedbyaspecificationof FlushSpread
[6] on top of this. Independently, a specificationof the Cliques
toolkit [3] instantiatedto the GDH protocol [11] hasbeendevel-
oped. On top of all thesecomponentsanexecutablespecification
of SecureSpreadhasbeenbuilt, morepreciselythebasicalgorithm
describedin [22]. This effort, whichhasbeenmainly conductedin
thecontext of theDARPA FTN Program,wasbasedon [16, 6, 22],
the sourcecodeanddiscussionswith the developers,in particular
Y. Amir, J.Schultz,andG. Tsudik. We will not discusstheformal
detailsof thespecificationsin this paper, but the interestedreader
canfind all thecomponentson theweb[4].

4. HIGH-LEVEL ADAPTABILITY
Although securityon top of the VS semanticsenablesperfect

forwardandbackwardsecrecy in astraightforwardmannerby forc-
ing to rekey after every groupmembershipchange,it possessesa
high overheadwhenview changesarevery frequentor real-time
constraintshave to bemet. In fact, if a groupmembershipchange
occurswhile thekey establishmentis in progress,thekey establish-
mentprotocolis restarted,furtherexacerbatingthetimerequiredto
generatea new key.

As we briefly explainedin Section1, the applicationshouldbe
ableto tailor thesecureGCSaccordingto its needsin termsof syn-
chrony andsecurity. In orderto provide this level of adaptability,
we needto identify whatassumptionsneedto berelaxed,whatare
the tradeoffs betweenthesedifferent levels and what parameters

canbeadjustedto tunetheperformance.

4.1 Adaptable Synchrony
SecureSpreadimplementssecurityon top of Flush Spread,a

layerproviding theVS semantics,which guaranteesthatmessages
are sent and delivered in the sameview. This synchronization
makes it easierto implementthe key establishmentprotocol be-
causeeverymessageis encryptedwith thesamekey asthereceiver
believesis currentwhenthemessageis delivered.

In order to provide securityon top of EVS semantics,the se-
cureGCScannot longerassumethatthereceivedmessagewasen-
cryptedwith thecurrentkey. Thepaper[18] proposesa solutionto
thisproblembasedon two levelsof keysusedby theheavy-weight
andthelight-weightlayer, respectively. In thepresentpaperweuse
theideaof [18] to maintaina historyof keys indexedby key iden-
tifiers (keyids), but we stick to theuseof light-weightgroupkeys
without assumingunderlyingheavy-weight keys. This enablesus
to studytheinteractionbetweensecurityandEVS semanticsin its
pureform andmakesthesolutionindependentof the implementa-
tion of Spread.Furthermore,given that we alreadyhave a speci-
fication of SecureSpread,it makesit easyto obtainan integrated
solutionwhich canbe adaptedto both, the original VS-basedse-
curity, exactly as implementedin SecureSpread,and to the new
EVS-basedsecurity.

Hence,we have modifiedtheformal prototypeof SecureSpread
as follows: First, for EVS groups(we addedVS andEVS group
synchrony modesasadaptationparameters)we removed the syn-
chronizationconstraintsimposedby the FlushSpreadlayer. Sec-
ond,everykey generatedis associatedwith akeyid, i.e. akey iden-
tifier, every messageis taggedwith thecorrespondingkeyid of the
key usedto encryptthe messageandevery memberof the group
keepsalist of (possiblyold) keysandtheirassociatedkeyids. Thus,
every time a messageis received its keyid is checked andthecor-
respondingkey is fetchedfrom the list so it can be properlyde-
crypted. Thusmemberscanmove from oneview to anotherone
andrekey asynchronously. Every rekey phaseaddsthecurrentkey
to thelist of olderkeys andthenewly generatedkey is usedasthe
currentkey.

Obviously, thedynamicsof this approachis far lessconstrained
thanin theVS case.Specifically, we observed thefollowing diffi-
culties: Although keyids allow to decryptmessagessentin previ-
ousviews, they do not guaranteethatevery messagereceived can
bedecryptedanddeliveredto theapplication.In particular, it may
be possiblethat a new memberreceivesan old messagesentin a
previous view. If he joined the groupvery recently, he doesnot
have thekey requiredto decrypt.Onepossibilitywould beto drop
themessage,but thiswould violatetheEVSsemantics(only anet-
work changecanjustify droppinga message).We have addressed
this issueby introducingtheconceptof anondecryptablemessage,
i.e. a messagewith contentthatis not accessible,to inform theap-
plicationof thissituation.However, thereis alsothepossibilitythat
thenew membercanfind a key in his list associatedwith thekeyid
of themessage,but it is not thekeyid associatedwith thenew view.
In this case,we saythat the messagewasencryptedunderan old
keyid, andwe tagthemessageasdelayedto inform theapplication
of this situation.

Securityon top of EVS allows us to increaseconcurrency and
henceperformanceby providing non-blocking(applicationlevel)
communicationthatusesthemostrecentlyestablishedkey to send
messages,while thekey establishmentfor thenew view is in progress.
However, this new addedflexibility relaxes the degreeof consis-
tency in the systemandeliminatessomesecurityguarantees,i.e.
messagesmaynotbeencryptedwith akey for thecurrentview and



two new messagetagsneedto be addedto preserve the property
that all received messagesare delivered to the application(non-
decryptablemessage)andto warn the applicationthat a possibly
(very) old messagehasbeenreceivedandits contentsmaybesus-
picious(delayedmessage).

4.2 Adaptable Security
Thechoiceof thekey establishmentprotocolis anaturaldimen-

sionof adaptabilityin securegroupcommunication.However, even
with the mostefficient key establishmentprotocols,network con-
nectivity changesandmembershipchangescancascadewhile the
key establishmentis in progress,causingarestartthekey establish-
mentprotocolfrom scratch.Thus,delayingtheexecutionof thekey
establishmentprotocolandcarefullyavoiding its executionin cer-
tain situationscanimprove systemperformancewhile preserving
forwardandbackwardsecrecy.

We have exploredtwo approachesto reducethe numberof key
establishmentphases.Thefirst approachis basedon key caching
andthesecondoneis basedon lazy key establishment,that is de-
laying key establishmentuntil the key is really needed.Both ap-
proachesaregeneric, that is independentof the underlyingproto-
col, andcanbecomposedto further improve systemperformance
withoutsacrifyingsecurityguarantees.As animportantby-product,
key cachingallowsusto dealefficiently with temporarydisconnec-
tions (asopposedto voluntaryjoin/leave events),which arequite
commonin groupswith mobileparticipantsandtheirconsequences
aresimilar to a network connectivity changes.

Interestingly, the decisionto (partially) relax virtual synchrony
hasopeneda varietyof new possibilities,which includesnot only
thepossibility to performlazy key establishmentbut alsonew se-
curedeliverymodes.

4.2.1 Key EstablishmentProtocols
Oneof themostimportantsecurityguaranteesis dataconfiden-

tiality, which protectsdatafrom beingeavesdropped.Theway the
secretsharedgroup key is computed,how often, and when it is
computedarecritical for thesecurityof theGCS.

Therearetwo basicapproachesto generateasecretsharedkey in
GCS.In thecentralizedapproach,onemember(typically a group
leader)choosesthegroupkey anddistributesit to all groupmem-
bers(group key distribution); while in the contributory approach
every membercontributesto the creationof the secretsharedkey
(group key agreement). Although the centralizedapproachworks
reasonablywell for static(possiblylarge)groups,it turnsout that
thecontributoryapproachis morerobustfor non-hierarchical(mid-
size)groupswith dynamicallychangingmemberships[24].

The relevant propertiesfor key establishmentalgorithmsareof
purely computationalnature[23]: Cryptographic forward secrecy
guaranteesthatapassiveadversarywhoknowsacontiguoussubset
of old groupkeys cannotdiscover subsequentgroupkeys. Crypto-
graphicbackward secrecyguaranteesthatapassive adversarywho
knowsacontiguoussubsetof groupkeyscannotdiscoverpreceding
groupkeys.

In a GCS like SecureSpreadthat supportsthe VS semantics,
tightly synchronizingview changeswith key agreementphases,
backwardandforwardsecrecy areimmediateconsequencesof cryp-
tographicforwardandcryptographicbackwardsecrecy, respectively
[22]: Forward secrecy guaranteesthat nobodyshouldbe able to
readmessagessentto a groupafter he left this group (assuming
he will not becomea future memberof the group). Backward se-
crecyguaranteesthatnobodyshouldbeableto readmessagessent
to a groupbeforehejoinedthis group(assuminghewasnot a past
memberof thegroup).

However, to beprecise,weneedto definewhatarethejoin/leave
eventsreferencedin thesedefinitions.It obviouslywouldnotmake
senseto take them to be the eventsof requestinga join/leave at
the GCS.Theseeventswould be of no usefor the client applica-
tions. They arenot (immediately)observablefor theapplications,
becausetheprocessingof suchrequestscanbedelayed.This sug-
geststo defineleave/join eventsto be the eventswherethe GCS
delivers leave/join (with the new view) to the applicationwhich
sendsthemessage.Similarly, wehave to bepreciseaboutwhatthe
sendevent in thesedefinitionsrefersto. Sincea messagecarries
sensitive data,we shouldadoptthe most conservative definition,
namelytheeventwhentheapplicationrequeststheGCSto senda
message.

Forward secrecy underthe EVS semanticsis fairly straightfor-
ward: Assumea member� leavesthegroup � , theGCSdelivers
a new view to � , and � sendsa message� to � . Thenew view
canhave only beendeliveredaftersuccessfulcompletionof a key
agreementphasebetweenthemembersof thenew view. Since �
is encryptedwith theresultingkey that � doesnot know, forward
secrecy is guaranteed.

Backward secrecy underthe EVS sematics,however, doesnot
hold, asthefollowing counterexampleshows: Assume� requests
the GCSto senda message� to a group � , but the processing
of this requestis delayed. In the meantime� joins � , and the
GCSdeliversthenew view

� �����	� to � . Now theGCSprocesses
thesendrequestin thenew view, which meansthatthemessageis
encryptedusingusingthekey associatedwith this view. Hence,�
candecryptthemessage,which is aviolationof backwardsecrecy.

To solve this problemwe have adoptedthe following solution:
We addtheview in which we would like to sendthemessage(re-
questedsendingview) asanargumentto themulticastservice.This
view determinesthekey to beusedfor encryption.Evenif themes-
sageis sentout in thenew view, thekey of the requestedsending
view shouldbe used. Note that thereare two possibilitiesfor a
memberof the new view. If it wasa memberof the earliersend-
ing view it candecryptthemessage.If it wasnot a memberof the
earliersendingview it just joinedthegroupandwill not beableto
decryptin accordancewith backwardsecrecy. In thiscase,themes-
sageis deliveredbut asnondecryptable. Thepossibility to specify
a requestedsendingview is optional,sothatif backwardsecrecy is
nota concerntheoriginal implementationcanbeused.

The high-level rationalefor this solution is the following: The
EVSsemanticsleadsto a lossof sendingview awarenessat theap-
plication,but thebenefitsof sendingview awarenesscanberecov-
eredby alwayssendingmessageswith a requestedsendingview,
whichpreventsmembersjoining unexpectedlyto decryptmessages
not intendedfor them. Thedrawbackis thatwe have to internally
keep track of former keys, and somemessagesreceived will be
nondecryptable. Bothof thesemechanisms,however, werealready
addedwhen we moved from the VS to the EVS semantics(see
Section4.1) so that this extensiondoesnot causeany additional
overhead.

4.2.2 Key Caching
Frequentnetwork connectivity changesmay trigger patternsof

membershipchanges,wherenew viewstendto havethesamemem-
bersasearlierviews. Currentimplementationsof secureGCSgen-
eratea new key for eachview. Thus, if a subsetof membersof
a group becomestemporaryisolateddue to a network partition,
the key establishmentprotocolwill be invoked for eachnew par-
tition, andagainwhenthe partitionsmerge together. No member
hasleft/joined the group,but several new keys have beengener-
ated. Obviously, this is unnecessary, becausethe groupmember-



ship hasnot changedin the end. Ideally, the key establishment
protocolshouldbeexecutedonly if thecurrentsetof membershas
notsharedasecretkey before;otherwise,apreviouslyagreedupon
key canbeusedinstead.Sincethereuseof keys increasesthevul-
nerability to crypto-analysisattacks,key cachinglike all formsof
key reuseneedto be carefully constrained.To this end,keys can
beequippedwith anexpirationor someotherattributelimiting key
reuse,andthey areremovedfrom thelist whenthis limit is reached.

In detailwehavemadethefollowing modificationsto our formal
prototypeto accommodatefor key caching:

1. Every memberkeepsa list of keys andtheassociatedsetof
membersthatsharethatkey. Thelist is updatedwhenever a
new key is generated.

2. If amembershipchangeor network connectivity changehap-
pens,every memberreceives a messagewith the updated
membership.

3. Everymemberchecksits list of keysandif theupdatedmem-
bershipshareda key before,thekey is retrievedandusedas
thecurrentkey; otherwisethekey establishmentis triggered
anda new key is generated.

Forward andbackward secrecy arestill satisfied,but key fresh-
ness, i.e. the propertythat eachview usesa freshkey to encrypt
messages,is givenup. Therefore,anew groupsecuritymode(fresh
secure) is addedto enforcefreshnessif theapplicationrequeststhis
level of security. If thegroupsecuritymodeis freshsecure,a nor-
mal key establishmentis triggeredeven if the membersshareda
secretkey before. It is importantto point out that a keyid associ-
atedwith anonfreshkey shouldnotbeconfusedwith anold keyid,
i.e. a keyid associatedwith a previousview, andhenceit doesnot
imply thatthemessageis deliveredasdelayed(seeSection4.2.4).

4.2.3 LazyKey Establishment
CurrentGCShave beendesignedundertheassumptionthatnet-

work connectivity changesoccurrarelyandthatmembersexchange
a considerableamountof messagesbetweenmembershipchanges.
However, membershipchanges(dueto unpredictablenetwork con-
nectivity changesor join/leave operations)may occur quite fre-
quentlyin certainenvironments(wireless,mobile),andwith many
view changestaking placeit is highly unlikely that messagesare
sentin every intermediateview. Underthesecircumstances,delay-
ing theexecutionof thekey establishmentprotocoluntil amessage
needsto besendwill avoid unnecessarykey establishmentphases.
We say that a key establishmentphaseis unnecessaryif a key is
generatedbut not usedbecauseno messageis sentbeforea new
key is generated.

As a possiblesolutionwe exploreddelayedkey establishment.
Insteadof a synchronizedinitiation of thekey establishmentalgo-
rithm by a view changeevent, the memberwho wantsto senda
messagetriggersthe key establishmentasymmetrically. Our for-
mal prototypeis modifiedasfollows:

1. Any membershipchangeor network connectivity changeis
treatednormallyandthemembershipis updated,but thekey
establishmentprotocolis notexecuted.

2. Whena memberneedsto senda message,it checksif a cur-
rentkey existsandif it is up to date,i.e. belongsto themost
recentlyestablishedview.

3. If the key is up to date,thenthe messageis encryptedand
sentnormally.

4. If thekey doesnotexist or is notup to date:

(a) Thememberstartsthekey establishmentprotocol,no-
tifies the othergroupmembersandstalls the message
till thenew key is generated.

(b) Membersarenotified andeachoneof themstartsthe
key establishmentprotocol,whichproceedsnormally.

(c) If anothermemberwantsto sentamessage,thekey es-
tablishmenthasbeentriggeredby someothermember
andno view changehasbeentriggered,themessageis
stalleduntil thenew key is generatedandthemember
continueswith thenormalkey establishmentexecution
(i.e. thekey algorithmis not restarted).

(d) If a view changeevent is triggeredat any time, the
membershipis updatedandthekey establishmentpro-
tocol is restarted.

(e) Oncethekey hasbeengenerated,thecurrentkey is up-
dated,the up-to-dateflag is setandmembersproceed
to encryptandsendthemessagenormally.

4.2.4 SecureDeliveryModes
Traditionally, securedelivery in GCShasbeenrestrictedto the

delivery of an encryptedmessage,assumingthat all membersof
thegroupareableto decryptthemessageusingtheuniqueshared
groupkey. Whenwe relax the virtual synchrony semantics,mes-
sagesencryptedwith differentgroupkeys may bereceived at any
time andwe cannot longerassumethat thereceiver is ableto de-
crypt every messageusingthemostrecentkey or even to decrypt
the message.As a result, EVS semanticsleadsto a new variety
of securedelivery modesbasedon key freshnessandanextended
conceptof safemessagesasfollows:


 Non-secure:Messageis sentandreceivedin clear-text


 Secure: Messageis encryptedand can be decryptedwith
any (possiblyold) known key; otherwisedeliveredasnon-
decryptable.


 Stronglysecure:Messageisencryptedandmustbedecrypted
with themostrecentknown key; otherwisedeliveredasnon-
decryptable.


 safe-secure:Messageis encryptedandcanbedecryptedwith
any (possiblyold) known key, but canonly bedeliveredif ev-
erybodyelsereceivedanddecryptedthemessageusingany
(possiblyold) known key.


 Stronglysafe-secure:Messageis encryptedandmustbede-
cryptedwith themostrecentknown key, but canonly bede-
liveredif everybodyelsereceivedanddecryptedthemessage
usingthemostrecentknown key.

5. CONCLUDING REMARKS
In this paperwe have focussedon two dimensionsof high-level

adaptabilityin groupcommunication,namelysynchrony andsecu-
rity, asopposedto low-level adaptabilityof the underlyingcom-
municationprotocols,which we leave as future work. We have
exploredseveral solutionsandbuilt a formal prototypeto validate
our ideasandexplore the propertiesof the new design. We have
emphasizedadaptability, becausethere is no one-size-fits-allso-
lution given the diversity of applicationrequirementsthat we are
concernedwith.



We developedadaptationparametersthatallow us to tailor (dy-
namically) the communicationframework to specificapplication
requirements.In the synchrony dimension,groupswith different
degreesof synchrony can coexist given that every group speci-
fies its synchrony (VS or EVS), memberscanparticipatein sev-
eralgroupswith differentsynchrony modessimultaneously. In the
securitydimension,eachgroupspecifiesthedegreeof lazinessof
the key establishmentprotocol,which is not entirely independent
of thedegreeof synchrony selected:(i) eagerkeying will triggera
rekey after every membershipchange;(ii) key cachingwill reuse
previouscachedkeys accordingly;and(iii) lazy keying will delay
rekeying until a messageneedsto be send. It is noteworthy that
our approachis entirelygenericin thesensethat it is independent
of the key establishmentprotocol and the implementationof the
groupcommunicationsystem.

Possibledirectionsfor futurework includefurthergenericopti-
mizationsfor key managementandsecuremulticasting,dynamic
accesscontrol for a high-level enforcementof security require-
ments,adaptabilityto supportgroupcommunicationin mobileen-
vironments,andadaptabilityto QoSrequirementssuchastimeli-
nessconstraints.
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