
WRLA 2006

A Rewriting Logic Framework for Soft
Constraints

Martin Wirsing 1,2

Ludwig-Maximilians-Universität München, Institut für Informatik, 80538 München

Grit Denker, Carolyn Talcott, Andy Poggio, Linda Briesemeister 3

SRI International, 333 Ravenswood Ave, Menlo Park, California 94025

Abstract
Soft constraints extend classical constraints to deal with non-functional requirements, over-
constrained problems and preferences. Bistarelli, Montanari and Rossi have developed a
very elegant and abstract semiring based theory of soft constraints where many different
kinds of soft constraints can be represented and combined in a uniform way over so-called
constraint semirings. In this paper we present a framework for prototyping of soft con-
straints à la Bistarelli, Montanari and Rossi in Rewriting Logic. As a case study we present
an application of soft constraints to the new area of software-defined radio networks. We
model the problem of “optimal” parameter assignments for software-defined radios as a
soft constraint solving problem, prove the correctness of the constraint solving algorithm,
implement the solution in our prototypical Rewriting Logic framework for soft constraints,
and embed our soft constraint solver in SRI’s Policy-Aware, Goal-Oriented Distributed
Architecture (PAGODA) for modelling radio networks.

Key words: Rewriting logic, soft constraint, software-defined radio.

1 Introduction

Soft constraints are an extension of classical constraints to deal with non-functional
requirements, over-constrained problems and preferences. Instead of determining
just a subset of admissible domain elements, a soft constraint assigns a grade - to be
chosen from a set of finite or infinitely many “preference” values - to each element
of the application domain. Bistarelli, Montanari and Rossi [4][1] have developed
a very elegant and abstract semiring based theory of soft constraints where many

1 This work has been partially sponsored by the project SENSORIA, IST-2005-016004.
2 wirsing@lmu.de
3 firstname.lastname@sri.com

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Wirsing et al.

different kinds of soft constraints can be represented and combined in a uniform
way over so-called constraint semirings.

In this paper, we present a framework for prototyping of soft constraints à la
Bistarelli, Montanari and Rossi in Rewriting Logic [7]. To our knowledge this is
the first rewriting realisation of soft constraints.

Other implementations are based on constraint logic programming and concur-
rent constraint programming: clp(FD , S) [13] and softclp(FD) [17] are extensions
of clp(FD) by constraint semirings. The former is based a new abstract machine
resulting in a good efficiency; the latter is an extension of the clp(FD) library and
can in this way reuse a broad class of constraint propagation algorithms and search
methods from any parent clp(FD) solver. The approach of [3] uses Frühwirth’s
Constraint Handling Rules for soft constraint propagation, whereas [9] extend the
concurrent constraint language Mozart by soft constraints.

Our rewriting logic framework consists of a package of Maude theories and pa-
rameterized functional modules which can be integrated easily in any other Maude
application by instantiating the parameter theories with the particular settings of the
application. The axiomatic theory of constraint semi-rings is modelled as Maude
functional theory; special constraint semi-rings such as weighted sum and fuzzy
natural numbers are modelled as functional Maude modules; all other modules of
the framework (such as cartesian products of constraint semirings, implicit and ex-
plicit soft constraints as well as the constraint solving algorithms) are parameterized
by the choice of the constraint domain and semiring. In order to improve the effi-
ciency of constraint solving, all recursive specifications are written in tail-recursive
form and domain elements of individual constraints are ordered according to their
grade in the constraint semiring. We also prove the correctness of our search algo-
rithm.

As a case study, we present an application of soft constraints to the new area of
software-defined radio networks (see e.g. http://www.sdrforum.org). A
software-defined radio is a radio, in which most or all frequency control, modula-
tion/demodulation formats, bandwidth, and other parameters are realized by soft-
ware and thus can be changed during radio operation. This offers a tremendous new
flexibility to commercial and amateur radios but controlling such radios in different
environments requires subtle fine-tuning and adaptation of their parameter settings.
We model the problem of “optimal” parameter assignments for software-defined
radios as a soft constraint solving problem using a cartesian product of constraint
semirings, implement the solution in our prototypical Rewriting Logic framework
for soft constraints, and embed our soft constraint solver in SRI’s Policy-Aware,
Goal-Oriented Distributed Architecture (PAGODA) for modelling radio networks.
Note that although other implementations such as [3] and [9] can also cope with
cartesian products of semirings, none of the other published case studies has ex-
ploited this feature. Test runs show that most optimal parameter assignments for
software-defined radio can be computed in a few seconds; only the most difficult
constraint sets need more than one minute for the construction of the solutions.

2

http://www.sdrforum.org

Wirsing et al.

2 Example Application

As the driving application for developing constraint solving mechanisms in Maude,
we focus on communicating wireless devices or radios that optimize resource usage
such as bandwidth and power with respect to given goals. This application is set
in the broader context of policy and goal-based applications, in which devices co-
operatively strive to achieve goals while satisfying policies that constrain possible
solutions.

PAGODA (see http://pagoda.csl.sri.com) is a modular architecture
for design of (partially) autonomous systems. A PAGODA node interacts with its
environment by sensing and affecting, driven by goals to achieve and constrained
by policies. A PAGODA system is a collection of PAGODA nodes cooperating to
achieve some mutual goal. The PAGODA architecture was inspired by the study of
architectures developed for autonomous space systems, especially the MDS archi-
tecture [12] and its precursors [15].

Knowledge
Base

Reasoner

Monitor
Hardware
Abstraction
Layer

Headquarters

Coordinator

Distributed
Coordinator

Fig. 1. PAGODA node architecture

Figure 1 shows the principal components of a PAGODA node: a knowledge
base, a coordinator, a reasoner, a monitor, and a hardware abstraction layer. There
is also a component for communication with a system operator (headquarters), and
a component responsible for distributed coordination with other PAGODA nodes
(distributed coordinator).

The knowledge base contains knowledge that is shared and updated by the re-
maining components. This knowledge covers a wide range of information includ-
ing (1) goals a node or system is trying to achieve, (2) policies that constrain the
actions or interactions a node or system is allowed to do, thus reducing the number
of choices for setting parameters, and (3) a device model that specifies the param-
eters that can be set (knobs) and read (sensors) and their relationships.

The effects of knob settings can be observed in terms of improved connectiv-
ity, higher bandwidth and other observable results that are related to goals. For
example, increasing the transmission power or choosing lower frequencies results
in better connectivity between the radios. These relationships are defined in tables
such as the one given in Figure 2 (left). Note that a certain knob setting, such as
high frequencies for transmission, can have contradicting effects (decreased con-

3

http://pagoda.csl.sri.com

Wirsing et al.

Effect Category: improved connectivity high bandwidth ...
Knob :
TransPwr (high) +
" (low) -
TransFreq (high) - +
" (low) + -
Compression (high) +
" (low) -
ECC (high) -
" (low) +
...

S e n s o r : SignalStr ConnLoss Throughput ...

Knob :
TransPwr (high) 50 50 50
" (low)
TransFreq (high) 30
" (low) 50 15
Compression (high) 20
" (low)
ECC (high) 10 25
" (low)
...

Fig. 2. Partial knob-effect (left) and partial knob-sensor (right) tables

nectivity but higher bandwidth). Similarly, the dependencies between knob settings
and measurable sensor reading are also defined. Figure 2 (right) shows an excerpt
defining the impact of choosing of a certain knob setting on a sensor reading. By
definition, if the sum of weights within a column is greater than 50 (which is the
case in the full table), then the combination of knob settings means that the corre-
sponding sensor in the column reads “good.” Thus, high transmission power and
low transmission frequency promotes an increased signal strength reading as well
as good sensor readings for connectivity loss, whereas high transmission power and
high transmission frequency promotes better readings for throughput.

The reasoner component determines proper knob settings so that goals are
achieved or desired effects take place. The reasoner uses information from the
knowledge base as a basis for its deductions: the device model—that is the rela-
tionships between knobs, effects, and sensor readings; the goals; the policies; and
the current state. When new parameter settings are determined, the reasoner also
provides justifications such as what sensor values and/or what relationships from
the device model were used to infer the new settings. This can be used for diagnos-
tics if things do not go as expected. The reasoner also specifies sensors that should
be monitored and conditions of sensor readings that do not fulfill goals, so that the
reasoner can take corrective action.

We developed a formal executable specification of the PAGODA architecture in
the Maude language [7] and instantiated it with an abstract device model of a radio
to test the ideas.

Goals are treated as soft constraints on subsets of sensor readings. The relation-
ships between affectors (knobs) and sensor readings and between sensor readings
and goals are formalized as constraint semi-rings, which provides a clean mathe-
matical basis for solving soft constraints [4,10]. In particular, the sensor tables (see
Figure 2 right) assign weights to knob settings. The sum of these weights indicates
the benefit of a specific knob setting for a given sensor: the higher the sum of its
weights, the better. The goal is to compute for a list of interesting sensors the valu-
ations of the knobs that optimize the sums of these weights. We model this by the
constraint semiring of fuzzy natural numbers for grading the weights. The effect
constraints indicate the impact of a specific knob setting against a given effect (see
Figure 2 left). The goal is to find knob settings that satisfy a maximum of required
effects or equivalently violate a minimum of required effects. The best situation oc-
curs if there are no violations of the effects [2]. We model this using the constraint

4

Wirsing et al.

semiring of weighted sums.
We instantiated the PAGODA abstract device specification with a specification

of a concrete radio, MadRad, that simulates actual radio hardware/software includ-
ing random, unusual and faulty behavior. Test scenarios allow us then to explore
some possible system behaviors.

3 C-Semirings and Soft Constraints in Maude

3.1 Brief Overview of Maude

Maude [7] is a multiparadigm executable specification language based on rewrit-
ing logic [14]. Maude sources, executables for several platforms, the manual, a
primer, cases studies, and papers are available from the Maude Web site at http:
//maude.cs.uiuc.edu.

We use functional theories, functional modules and parameterized modules in
our framework. Functional modules are equational theories used to specify al-
gebraic data types such as particular constraint semirings; they are declared with
the syntax fmod ... endfm. Functional modules can have sorts, subsort rela-
tionships, operators, variables, membership axioms, and equations, and can im-
port other theories or modules. Functional theories (syntax fth ... endfth)
are similar to functional modules, they are used to declare module interfaces such
as the axiomatic theory of constraint semirings; but opposed to functional mod-
ules they have a loose interpretation (as opposed to an initial algebra semantics
of functional modules) and do not need to be executable (expressed by the at-
tribute nonexec). Parameterized modules (available in Maude 2.2) are used to
represent our generic approach to soft constraints. Such a module P has the syn-
tax fmod P{X1 :: T1, ..., Xn :: Tn} ... endfm where Xi are formal
parameters and Ti functional theories representing the type of the parameters (i =
1, ..., n). A view V (written view V from T to M is ... endv) specifies how
a particular target module M is claimed to satisfy a source theory T. An instantiation
P(V1,..., Vn)of P requires a view Vifrom the type Ti of each formal parameter
Xi to a corresponding actual parameter Mi such that each Mi satisfies the axioms
of Ti modulo the renaming specified by Vi (i.e. each Vi is a theory morphism).

3.2 Constraint Semirings

A semiring S is an algebra 〈G; +; ∗; 0; 1〉 with carrier set G, two constants 0, 1 ∈ G
and two binary operations +, ∗ having the following properties: + is commutative
and associative and 0 is its neutral element; ∗ is associative and distributes over +,
1 is its neutral element and 0 is its absorbing element. A constraint semiring S (c-
semiring for short) is a semiring 〈G; +; ∗; 0; 1〉 with the following two additional
properties: ∗ is commutative, and 1 is the absorbing element of +. Then - as
one of the anonymous referees observed – + is also idempotent. The addition
induces a partial ordering relation ≤ between the elements of G defined by a ≤ b
iff a + b = b. This partial ordering will be used to compare solutions of constraints

5

http://maude.cs.uiuc.edu
http://maude.cs.uiuc.edu

Wirsing et al.

and to determine the best solution. If a ≤ b we say also that b is better than a. +
and ∗ are monotonic w.r.t. ≤, 0 is the least element and 1 is the greatest element of
G; 〈G;≤〉 forms a complete lattice with + as least upper bound.

Constraint semirings have important closure properties: they are closed under
cartesian products and the formation of power sets. An ic-semiring is a constraint
semiring where ∗ is also idempotent. Then + distributes over ∗ and 〈G;≤〉 is a
complete distributive lattice with ∗ as its greatest lower bound.

We formalize semirings, constraint semirings, and ic-semirings as Maude the-
ories in a straight-forward way. The sort is called Grade since its elements will
be used to grade soft constraints. Note that the last axiom induces transitivity and
symmetry of the equivalence relation.
fth SEMIRING is
pr BOOL .
sort Grade .
op zero : -> Grade . op one : -> Grade .
op _+_ : Grade Grade -> Grade [assoc comm id: zero prec 33] .
op _*_ : Grade Grade -> Grade [assoc id: one prec 31] .
op _<=_ : Grade Grade -> Bool [prec 37] .
op _equiv_ : Grade Grade -> Bool [prec 37] .
vars X Y Z : Grade .
eq X * (Y + Z) = (X * Y) + (X * Z) [nonexec] .
eq X * zero = zero [nonexec] .
eq X <= Y = (X + Y) == Y [nonexec] .
eq X equiv X = true [nonexec] .
ceq X equiv Z = true

if X equiv Y = true /\ Z equiv Y = true [nonexec] .
endfth

fth C-SEMIRING is
inc SEMIRING .
vars X : Grade .
eq X + one = one [nonexec] .

endfth

The cartesian product of two c-semirings forms a c-semiring whose operations
are defined in the obvious componentwise way. The induced ordering relation <=×
is a partial ordering. We also introduce the lexicographic ordering <= for appli-
cations with a preferred component. The lexicographic ordering is a total ordering
which extends <=×; it is also well-suited for the radio application where the opti-
mization of the effects is preferred to the optimization of the minimal sensor value.
The cartesian product is modelled as a parameterized module with two constraint
semirings as parameters.
fmod PAIR{X :: C-SEMIRING, Y :: C-SEMIRING} is
protecting BOOL .
sort Pair{X, Y} .
op pair : X$Grade Y$Grade -> Pair{X, Y} [ctor] .

op zero : -> Pair{X, Y} . eq zero = pair(X$zero, Y$zero) .
op one : -> Pair{X, Y} . eq one = pair(Xone, Yone) .

6

Wirsing et al.

var A A1 A2 : X$Grade . var B B1 B2 : Y$Grade .
op _+_ : Pair{X, Y} Pair{X, Y} -> Pair{X, Y} [prec 33] .
eq pair(A1, B1) + pair(A2, B2) = pair(A1 + A2, B1 + B2) .

op _*_ : Pair{X, Y} Pair{X, Y} -> Pair{X, Y} [prec 31] .
op _<=*_ : Pair{X, Y} Pair{X, Y} -> Bool [prec 37] .
op _<=_ : Pair{X, Y} Pair{X, Y} -> Bool [prec 37] .
op _equiv_ : Pair{X, Y} Pair{X, Y} -> Bool [prec 37] .
op fst : Pair{X, Y} -> X$Grade . op snd : Pair{X, Y} -> Y$Grade .
. . .

endfm

3.3 Boolean, Fuzzy, and Weighted Sum Semirings

Examples of constraint semirings are boolean algebras, and in particular, Bool =
〈{false; true} ;∨;∧; false; true〉, “fuzzy algebras” such as “fuzzy natural num-
bers” FN = 〈N ∪ {∞} ; max; min; 0;∞〉, and weighted sum algebras, e.g. over
natural numbers WN = 〈N ∪ {∞} ; min; +;∞; 0〉. Except for weighted sums, all
of these algebras are ic-semirings. In Boolean algebras, true is better than false;
for fuzzy natural numbers, 0 is the least and ∞ the greatest element, whereas the
ordering for weighted sum is the converse to the usual ordering: ∞ is the least
element and 0 the greatest element.

In Maude, fuzzy natural numbers are specified as functional module in the fol-
lowing way. We introduce the sort NatFN of fuzzy natural numbers with infinity
and two subsorts IftyFN and NiNatFN for representing the ∞ element and the
“non-infinity” natural numbers, which are constructed by an embedding of natural
numbers.

fmod FUZZYNAT is
pr NAT .
sorts NiNatFN IftyFN NatFN .
subsort NiNatFN IftyFN < NatFN .
op fn : Nat -> NiNatFN [ctor] .
op iftyFN : -> IftyFN [ctor] .

op _+_ : NiNatFN NiNatFN
-> NiNatFN [prec 33].

op _+_ : NatFN NatFN
-> NatFN [prec 33] .

eq fn(M) + fn(N)
= fn(max(M, N)) .

eq fn(M) + iftyFN = iftyFN .
eq iftyFN + U = iftyFN .

op _<=_ : NatFN NatFN -> Bool .
op _equiv_ : NatFN NatFN -> Bool .

op zero : -> NiNatFN .
eq zero = fn(0) .
op one : -> IftyFN .
eq one = iftyFN .
vars N M : Nat .
var U : NatFN .

op _*_ : NiNatFN NatFN
-> NiNatFN [prec 31] .

op _*_ : NatFN NatFN
-> NatFN [prec 31] .

eq fn(M) * fn(N) =
fn(min(M, N)) .

eq fn(N) * iftyFN = fn(N) .
eq iftyFN * fn(N) = fn(N) .
eq iftyFN * iftyFN = iftyFN .
. . .

endfm

Then, we define a view from C-SEMIRING to FUZZYNAT and can easily prove
by structural induction that all axioms are satisfied, i.e., the view forms a theory
morphism.
view FuzzyNat from C-SEMIRING to FUZZYNAT is
sort Grade to NatFN .

endv

7

Wirsing et al.

The constraint semiring of weighted sums WSUM over natural numbers with infin-
ity and the theory morphism WSum from C-SEMIRING to the weighted sum algebra are
specified in an analogous way.

In our application to software-defined radios we use the cartesian product of the above
constraint semirings on natural numbers with infinity. It is defined by instantiating the
parameterized module PAIR using the views WSum and FuzzyNat. The cartesian product
forms also a c-semiring which is expressed by the view WSumFuzzyPair.

fmod WSUMFUZZYPAIR is
pr PAIR{WSum, FuzzyNat} .

endfm

view WSumFuzzyPair from C-SEMIRING to WSUMFUZZYPAIR is
sort Grade to Pair{WSum, FuzzyNat} .

endv

3.4 Soft Constraints

A soft constraint assigns grades to different valuations of a set of problem variables. Let S
be a constraint semiring with carrier set G, D a finite problem domain, and V ar the set of
all problem variables. A valuation υ : V ar −→ D is a partial map from V ar to D which
has a finite support. Given an ordered list al ∈ V ar of variables, a soft constraint assigns
a grade in G to each possible valuation of variables in al; more formally, a soft constraint
is a pair 〈al; cst〉 where cst ∈ (V ar −→ D) −→ G is a mapping from valuations to
elements of G such that every valuation of the domain of cst has finite support al. As
the set of all such valuations is finite, any soft constraint has a finite domain of definition
and can therefore be represented either in an explicit way by a finite set of pairs (υ 7→ g)
with υ ∈ (al −→ D) and g ∈ G or in a more implicit way by particular constructors or
function declarations as in a programming language. In our framework we support both
possibilities; here we present only the explicit form and a particular implicit form we need
for our application to software-defined radios.

For representing valuations in Maude, we define a total ordering on the set V ar of all
variables. The module VALUATION is parameterized by theories for an ordered set X of
variables and an ordered domain D (using the theory TAO-SET provided in the Maude
prelude); each valuation υ = (a1 7→ d1, ..., ak 7→ dk) is represented by a pair [al 7→ dl]
consisting of the ordered list al = a1, ..., ak of variables and the list dl = d1, ..., dk of
corresponding elements of D. For fixed al, (al −→ D) −→ G is isomorphic to Dk −→ G
and thus any constraint definition cst can be represented as a map from Dk to G. In
Maude we specify such maps by a parameterized module LC-MAP similar to the MAP
module of the Maude prelude, except that the range is a constraint semiring S and, for
efficiency reasons, the domain of any map consists of a list of elements of D. As in MAP,
we introduce a parameterized sort LC-Map for maps and a subsort for simple entries of
the form (dl 7→ g); for reasons of space efficiency, we omit entries (dl 7→ 0) from the
LC-Map terms. Moreover, the specification contains efficient operations for sorting maps
according to the values of different lexicographic orderings of the domain and according
to the values of the codomain. SORTABLE-LIST1 is an extension of SORTABLE-LIST
(see the Maude 2.2 prelude) by an operation noDupmerge for merging two ordered lists
without duplicating elements.

8

Wirsing et al.

fmod VALUATION{X :: TAO-SET, D :: TAO-SET} is
pr EXT-BOOL . pr SORTABLE-LIST1{X} . pr SORTABLE-LIST1{D} .
sort Valuation{X, D} .
op [_ |-> _] : List{X} List{D} -> Valuation{X, D} [ctor] .
op variabs : Valuation{X, D} -> List{X} .
op values : Valuation{X, D} -> List{D} .
op consistent : Valuation{X, D} Valuation{X, D} -> Bool .

*** checks the equality of the values of the common variables

*** of both valuations.
op mergeEntry : Valuation{X, D} Valuation{X, D} -> List{D} .

*** merges the values of two consistent valuations.
...

endfm

fmod LC-MAP{D :: TAO-SET, S :: C-SEMIRING} is
protecting SORTABLE-LIST{D} .
sorts LC-Entry{D,S} LC-Map{D, S} .
subsort LC-Entry{D,S} < LC-Map{D, S} .
op empty : -> LC-Map{D,S} [ctor] .
op (_|->_) : List{D} S$Grade -> LC-Entry{D,S} [ctor] .
op __ : LC-Map{D, S} LC-Map{D, S} -> LC-Map{D, S}

[ctor assoc id: empty] .
...
op sortCoDomain : LC-Map{X, Y} -> LC-Map{X, Y} .
. . .

endfm

The specification CONSTRAINT is parameterized by theories X for Variables, D for
the problem domain, and S for the c-semiring. It has parameterized sorts for constraints
and list of constraints, and subsorts EConstraint and IConstraint for explicit and im-
plicit constraints as well as the sort ZeroConstraint for the constraint with constant grade
0 and the sort NoConstraint for the situation with no constraint at all. The explicit repre-
sentation of a soft constraint has the form

[al | (val1 7−→ g1), ..., (valm 7−→ gm)]

where all grades g1, ..., gm are different from 0 (as in LC-MAP). The operations of c-
semirings and the operations of LC-MAP are lifted to constraints as follows. The ap-
plication of a constraint c = [al | cst] to a valuation υ is defined as map application:
c [υ] = cst [υ]; zeroConstraint and noConstraint define the constraints with con-
stant values zero and one; constraint multiplication is defined to satisfy the equation
c1 ∗ c2 [υ] = c1 [υ] ∗ c2 [υ], and constraint addition is defined analogously. Then it is
easy to prove that the set of constraints forms again a c-semiring [5].

Moreover, we define a projection operator project and (for constraint propagation)
a partial evaluation operator peval . For any constraint c = [al | cst] and any valuation
υ = [bl 7→ dl] with bl ⊆ al , peval(c, υ) restricts c to the valuations consistent with υ; in
particular, for bl = al we have peval(c, υ) = [al | (dl 7→ cst [υ])]. For a constraint c and
an ordered list of variables xl , project(c, al) computes the sum

∑
dl∈Dk peval(c, [al 7→

dl]) of all possible partial evaluations of al . For efficiency, all operations on constraints are
specified in a tail recursive way. As an example, we show the specification of constraint
multiplication.
fmod CONSTRAINT{X :: TAO-SET, D :: TAO-SET, S :: C-SEMIRING} is

9

Wirsing et al.

protecting EXT-BOOL . protecting NAT . protecting SORTABLE-LIST1{X} .
protecting VALUATION{X, D} . protecting LC-MAP{D, S} .
sorts NoConstraint{X, D, S} ZeroConstraint{X, D, S}

SimpleConstraint{X, D, S} EConstraint{X, D, S}
Constraint{X, D, S} ListConstraint{X, D, S} .

subsort NoConstraint{X, D, S} ZeroConstraint{X, D, S}
< SimpleConstraint{X, D, S} < EConstraint{X, D, S}
< Constraint{X, D, S} < ListConstraint{X, D, S} .

op noConstraint : -> NoConstraint{X, D, S} [ctor] .
op zeroConstraint : -> ZeroConstraint{X, D, S} [ctor] .
op [_|_] : List{X} LC-Entry{D, S} -> SimpleConstraint{X, D, S} [ctor] .
op [_|_] : List{X} LC-Map{D, S} -> EConstraint{X, D, S} [ctor] .
op _+_ : Constraint{X, D, S} Constraint{X, D, S} -> Constraint{X, D,S} .
op _*_ : Constraint{X, D, S} Constraint{X, D, S} -> Constraint{X, D,S} .
op _[_] : Constraint{X, D, S} Valuation{X, D} -> S$Grade .
op peval : EConstraint{X, D, S} Valuation{X, D} -> EConstraint{X, D,S} .
op project : EConstraint{X, D, S} List{X} -> EConstraint{X, D, S} .

...
vars AL BL : List{X} . vars VL WL L : List{D} .
vars EN1 EN2 : LC-Entry{D, S} . vars M M1 M2 Result : LC-Map{D, S} .
vars P Q : S$Grade . var C : Constraint{X, D, S} .

eq noConstraint * C = C . eq [AL | M] * noConstraint = [AL | M] .
eq zeroConstraint * C = zeroConstraint .
eq [AL | M] * zeroConstraint = zeroConstraint .
eq [AL | empty] * [BL | M] = [noDupMerge(AL, BL) | empty] .
eq [AL | (VL |-> P) M1] * [BL | M2] =
if P =/= zero

then [noDupMerge(AL, BL) | [AL | (VL |-> P) M1] *Map [BL | M2]]
else [noDupMerge(AL, BL) | [AL | M1] *Map [BL | M2]] fi .

op _*Map_ : SimpleConstraint{X, D, S}
SimpleConstraint{X, D, S} -> LC-Map{D, S} .

eq [AL|(VL |-> P)] *Map [BL|(WL |-> Q)] =
if (P * Q =/= zero) and-then consistent([AL |-> VL], [BL |-> WL])

then (mergeEntry([AL |-> VL], [BL |-> WL]) |-> P * Q)
else empty

fi .

op _*Map_ : EConstraint{X, D, S} EConstraint{X, D, S} -> LC-Map{D, S} .
op _$*Map_with_is_ : EConstraint{X, D, S} EConstraint{X, D, S}

LC-Map{D, S} LC-Map{D, S} -> LC-Map{D, S} .
eq [AL | M1] *Map [BL | M2] =

[AL | M1] $*Map [BL | M2] with M2 is empty .
eq [AL | EN1 M1] $*Map [BL | EN2 M2] with M is Result =

[AL | EN1 M1] $*Map [BL | M2] with M
is (Result ([AL| EN1]*Map [BL| EN2])) .

eq [AL | EN1 M1] $*Map [BL | empty] with M is Result =
[AL | M1] $*Map [BL | M] with M is Result .

eq [AL | empty] $*Map [BL | M2] with M is Result = Result .
...

endfm

3.5 Hard Constraints and Implicit Constraints

Hard constraints can be considered as a special class of soft constraints: those over the
two-valued boolean semiring Bool = 〈{false; true} ;∨;∧; false; true〉 where true indi-
cates the satisfaction of a hard constraint and false its violation [4]. Often hard and soft
constraints occur together in the same problem. Let S be the c-semiring of the soft con-

10

Wirsing et al.

straints. Then there are several possibilities for encoding hard constraints:

• Choose S as c-semiring and represent satisfaction of a hard constraint by 1S and its
violation by 0S . This yields non-zero grades for consistent combinations of soft and
hard constraints that satisfy all hard constraints; if one of the hard constraints is violated
the resulting weight is 0S .

• Build the cartesian product Bool × S with the lexicographic ordering. Then satisfaction
of a hard constraint is expressed by 〈1Bool, g〉 and violation by 〈0Bool, g〉 for some g ∈
S. This gives us a finer grained analysis of hard constraints violation: one can not
only distinguish the grades of those combinations of constraints that satisfy all hard
constraints, but also the grades of those soft constraints that violate one of the hard
constraints.

For our radio application, we choose a refinement of the latter solution: The c-semiring
is the lexicographically ordered cartesian product WSUMFUZZYPAIR of weighted sum and
fuzzy naturals (see Section 3.3). Hard constraints of the form n ≥ constant occur for
the sensor constraints, which have values in the c-semiring of “fuzzy natural number con-
straints”. We represent satisfaction of such a hard constraint by 〈1WSum, n〉 and violation
by 〈0WSum, n〉, thus giving also information about the grades of the sensor constraint.

In general, implicit constraints are defined by structural recursive expressions and by
particular application-dependent constructors. As operations, we provide partial evaluation
and transformation into explicit constraints.

For the radio application, we use the sensor tables as a space-efficient representation of
the sensor constraints. The naive representation of the sensor values by summation leads to
constraints with many variables and therefore a potentially exponential number of entries;
e.g., the explicit constraint for the “signal strength” has the form (with TP for transmission
power, TF for transmission frequency, and Cp for compression):

[TP TF Cp ... | (Hi Hi Hi... 7→ 50)(Lo Hi Hi... 7→ 0)...]
Instead we use an implicit constraint (with constructor sm for ”sensor map”) for a list
representation which requires only linear space:

sm([TP | (Hi 7→ 50)(Lo 7→ 0)] [TF | (Hi 7→ 0) (Lo 7→ 50)] ...)
During the process of constraint solving we always try to apply partial evaluation as

much as possible in order to reduce the size of implicit constraints before transforming
them into explicit constraints.

4 Solving Soft Constraints

The solution space of a list of soft constraints cl = cl1...cln is given by the multiplication
cl1∗...∗cln of all constraints; the result is again a soft constraint c which can be represented
as a sum sc1 + ... + scm of simple constraints (where m ≤ |D||variabs(cl)|). Each such
simple constraint is called a possible solution of C. Not all of these possible solutions are
of interest for applications. In the following we write

∏
cl as a shorthand for cl1 ∗ ... ∗ cln

and
∑

cl for cl1 + ... + cln
In many cases we search for the set maxSol(cl) of all best solutions, i.e., all elements

of D|variabs(C)| with maximal grades in the solution space, or for the solutions with a grade
better than a certain threshold. One can also be more general and compute the projection

11

Wirsing et al.

project(cl1∗...∗cln, xl) to a subset xl of the variables, if only these variables are of interest
and then consider the same classes of solutions.

For the radio application, we need algorithms for both: for finding one admissible
solution in a short time and, in cases where enough computing power and time are available,
for finding all best solutions or all admissible solutions. But we could simplify the job
in that all variables (knobs) were of interest and the involved semirings were all totally
ordered. Following, we make therefore these simplifying assumptions and present a Maude
realisation for searching all best solutions and give a sketch of the implementation of the
other search algorithms.

The implementation consists of the following three parameterized modules: a module
SOLVECONSTRAINT for the two search algorithms and two modules SOLUTION and
CONTINUATION for representing the data type of solutions and storing the necessary
backtracking information. The module SOLUTION provides explicit informations about
all solutions, their grade and their number; in particular, solution(scl, g, n) is a construc-
tor term consisting of a list scl of simple constraints denoting solutions, the grade g of all
elements of scl, and the number n = |scl| of solutions. Continuations are defined by the
module CONTINUATION; a continuation ct(cl0, sc) consists of a partial solution sc and a
list cl0 of unsolved constraints with the intended property that the combination sc∗

∏
cl0 of

sc with all constraints in cl0 forms again a set of possible solutions of the original constraint
problem cl.

The module SOLVECONSTRAINT defines depth-first search algorithms for finding all
best solutions, for finding a first solution better than a certain threshold, and for finding
all such solutions (see [3] for a similar approach). For any list cl , search(cl) computes
the set maxSol(cl) of all best solutions. For efficiency, it assumes for all constraints
[al | (val1 7−→ g1), ..., (valm 7−→ gm)] in cl that all grades g1, ..., gm are in descending
order. search uses an auxiliary tail-recursive operation $search(cl , sc, cont , csol) where
cl denotes the list of constraints to be solved, sc the actual partial solution, cont the con-
tinuation, and csol = solution(scl , b, n) the constraint solution obtained so far.

The most interesting case of the recursive definition is cl = [al | (vl 7→ p)erest] rest
and sc = [bl | (wl 7→ q)] where vl has grade p, erest denotes the map consisting of the
remaining assignments of the first constraint of cl , and rest denotes the tail of the list
of constraints cl . (All other cases are simpler with erest , rest or cl being empty, or sc
corresponding to noConstraint .)

If the grade p ∗ q of the new solution is not smaller than b and different from zero
and if the first subconstraint c0 = [al | (vl 7→ p)] of cl is consistent with sc then $search
computes a new partial solution [al | (vl 7→ p)] ∗ sc and saves the rest of the constraint
in the continuation for later backtracking. Otherwise, if p ∗ q is large enough but c0 not
consistent with sc, the search continues with erest; finally, if p ∗ q < b, we can use the
fact that every constraint is sorted in a descending order of grades which implies that for
all grades g of the entries of erest we have also g ∗ q < b; therefore the partial solution sc
cannot be completed to a best solution and the algorithm backtracks with the continuation.
fmod SOLVECONSTRAINT{X :: TAO-SET, D :: TAO-SET, S :: C-SEMIRING} is
pr CONSTRAINT{X, D, S} . pr CONTINUATION{X, D, S} .
pr SOLUTION{X, D, S} .

var N : Nat . vars AL BL : List{X} . vars VL WL : List{D} .
var ERest : LC-Map{D, S} . vars P Q B : S$Grade .
var SC : SimpleConstraint{X, D, S} .

12

Wirsing et al.

var EC : EConstraint{X, D, S} . var C : Constraint{X, D, S} .
vars L Rest : ListConstraint{X, D, S} .
var Cont : ListContinuation{X, D, S} . var Result : Solution{X, D, S} .

op search : ListConstraint{X, D, S} -> Solution{X, D, S} .
eq search(L) = $search(sortElements(L), noConstraint, nil,

solution(nil, zero, 0)) .
op $search : ListConstraint{X, D, S} Constraint{X, D, S}

ListContinuation{X, D, S} Solution{X, D, S} -> Solution{X, D, S} .
...
eq $search([AL | (VL |-> P) ERest] Rest, [BL | (WL |-> Q)], Cont,

solution(L, B, N)) =
if (B <= P * Q) and (zero < P * Q) then

if consistent([AL |-> VL], [BL |-> WL]) then
$search(Rest, [AL | (VL |-> P)] * [BL | (WL |-> Q)],
ct([AL | ERest] Rest, [BL | (WL |-> Q)]) Cont,
solution(L, B, N))

else $search([AL | ERest] Rest, [BL | (WL |-> Q)], Cont,
solution(L, B, N))

fi
else $backtrack(Cont, solution(L, B, N))
fi .

eq $search(C, SC, Cont, Result) = $backtrack(Cont, Result) [owise] .

op $backtrack : Continuation{X, D, S}
Solution{X, D, S} -> Solution{X, D, S} .

eq $backtrack(nil, Result) = Result .
eq $backtrack(ct(L, C) Cont, Result) = $search(L, C, Cont, Result) .
...

endfm

It is easy to see that the search algorithm is terminating. The following lemma is the
basis for the correctness proof of the search algorithm.

Lemma (search invariant).
For all lists of explicit constraints cl, all partial constraints sc, all lists of continuations

cont of the form ct(contl1, scont1), . . . , ct(contlk, scontk), and all solutions csol of the
form solution(scl, b, n) where scl is a list of n of possible solutions with grade b, i.e., scl
is a list of simple constraints of the form scli = [xl | (wli 7→ b)], the following holds:

(i) $backtrack(cont, csol) = maxSol(
∑k

j=1(scontj ∗
∏

contlj) +
∑

scl);

(ii) $search(cl, sc, cont, csol) = maxSol(sc ∗
∏

cl +
∑k

j=1(scontj ∗
∏

contlj) +∑
scl).

Proof. By simultaneneous computational induction on both operations.
The correctness of the search operation follows directly from termination and the in-

variant lemma:

Theorem (total correctness of search)
For all lists of explicit constraints cl , the following holds:

search(cl) = maxSol(cl).

13

Wirsing et al.

Proof.
search(cl) =

$search(sortElements(cl),noConstraint ,nil , solution(nil , zero, 0)) =
maxSol(noConstraint ∗

∏
cl + zeroConstraint + zeroConstraint) =

maxSol(
∏

cl), where the second equality uses the lemma.

5 Experimentation Results

One objective of the radio application is to determine radio parameters for a networked
radio team such that the mission goals are satisfied. We formalize this problem as a soft
constraint problem, implement it in our Maude soft constraint framework and integrate it
with the PAGODA system for experiments.

The sensor tables (see Figure 2 right) assign weights to knob settings. The goal is
to compute for a list of interesting sensors the valuations of the knobs that optimize the
sums of these weights (see Section 2). Thus, we choose the c-semiring of fuzzy natural
numbers for grading the weights. Given a sensor s, a list of knobs knl = kn1, ..., knm,
a valuation υ = (kn1 7→ d1, ..., knm 7→ dm) into a domain KnobVal of knob val-
ues and associated weights gs,1, ..., gs,m, a sensor constraint cs has the form (knl ; csts :
KnobValm −→ NatFN) where csts(d1, ..., dm) =

∑m
i=1 gs,i. For a list sl of sensors we

maximize the minimal value of these sums, i.e., we compute max {d|mins∈slcsts(d)} for
all d ∈ KnobValm.

The effect constraints indicate the impact of a specific knob setting against a given
effect (see Figure 2 left). The more ”+”s are in the column of an effect, the more likely
it is that the knob setting will achieve the effect. The goal is to find knob settings that
violate a minimum of required effects (see Section 2). We model this using the c-semiring
of weighted sums by assigning grade one to ”+” and grade zero to ”-”. For a given effect
e, any knob kni, value di and associated grade ge,i, we define a soft constraint (kni; cste,i :
KnobVal −→ NatWS) where cste,i(di) = ge,i. For a list el of effects we minimize the

sums of these values, i.e., we compute min
{

d|
∑

e∈el

∑
i∈{1,...,m} cste,i(di))

}
.

For the radio application, we perform a multicriteria optimization by minimizing the
violations of the effect goals and maximizing the benefits of the knob settings where we
give preference to the optimization of the effect goals. Formally, this means to build the
lexicographically ordered cartesian product of the semirings of weighted sums and of fuzzy
natural numbers (modelled by WSUMFUZZYPAIR). Note that by exchanging the order of
the two semirings we could give also priority to the benefits of the knob settings.

To model this application in Maude, we instantiate the constraint framework with the
data types of the radio application and integrate it with PAGODA.

For representing knobs, we use the existing sorts Knob and KnobVal of the PAGODA
system. Knob defines a list of 14 constants such as TP, TF, Cp, ECC representing trans-
mission power, transmission frequency, compression, and error correction code. KnobVal
has in the current implementation only two values Hi and Lo. Effect constraints are defined
as combinations of simple one-variable constraints with values in the left pair component;
e.g., the effect constraint ImprovedConnectivityCstr for the goal ”Improved Con-
nectivity” which requires sensor values TP = Hi, TF = Lo,... is represented by
the product of one-variable constraints:

[TP | (Hi |-> 0) (Lo |-> 1)] * [TF | (Hi |-> 1) (Lo |-> 0)] * ...

14

Wirsing et al.

no. constraints duration search(...) durations searchOne(..., α)

4 0,22 sec. 0,02 sec

6 0,26 sec. 0,03 sec

8 0,58 sec. 0,03 sec

12 3,31 sec. 0,14 sec

17 82,61 sec. 1,49 sec

Table 1
experimentation results

Sensor constraints are represented by implicit constraints as described in section 3.5.
As a hard constraint, we require that sensor weights have a value n greater than a certain
threshold α. It is represented by 〈1WSum, n〉 for n ≥ α and by 〈0WSum, n〉 for n < α.

For integrating this instantiation of the soft constraint framework with PAGODA it
suffices to call one of the search functions within the reasoner component. E.g., a call

search(ImprovedConnectivityCstr HighBWCstr ...) .

returns two best solutions each of which has four effect inconsistencies and a value 60
for the minimal sum of the weights of the sensors:
rewrites: 652800 in 4640438906ms cpu (2142ms real) (0 rewrites/second)
result Solution{Knob,KnobVal,WSumFuzzyPair}: solution(
[TP TF PktSize Cp TW ECC RU QR Encr Cach SS DT CS
| Lo Lo Hi Hi Hi Lo Lo Lo Lo Hi Lo Lo Lo |-> pair(ws(4), fn(60))]
[TP TF PktSize Cp TW ECC RU QR Encr Cach SS DT CS
| Lo Hi Hi Hi Hi Lo Lo Lo Lo Hi Lo Lo Lo |-> pair(ws(4), fn(60))],
pair(ws(4), fn(60)), 2)

Searching just one solution with the same threshold (using searchOne) is typically
at least 10 times faster. The following table gives an overview on the experimentation
results which were performed using an Intel Pentium M 713 CPU 1.1 GHz, 512 MB RAM
notebook running Core Maude Version 86a over Windows XP. The first column lists the
number of sensors and effects under consideration, the second and third column indicate
the CPU time consumption for finding all best solutions and the first best solution.

The table shows that most optimal parameter assignments for software-defined radio
can be computed in a few seconds; only the most difficult constraint sets need more than
one minute for the construction of the solutions.

6 Future Directions and Concluding Remarks

In this paper, we presented a Maude framework for prototyping of soft constraints à la
Bistarelli, Montanari and Rossi. The framework is written in a modular and parameterized
way and easily instantiable to different applications. As a case study, we integrated our
framework with SRI’s PAGODA architecture for autonomous systems and instantiated it
by an application to software-defined radios. Experimentation shows that the constraint
solver is well-suited for prototyping and has acceptable performance for (rather simple)
constraint problems.

15

Wirsing et al.

For more complex (and realistic) models, we need to extend our framework in several
directions. In order to increase performance, we plan to use precomputed solutions for
standard scenarios and to do heavy computation of optimal solutions only in non-standard
situations. In order to get more flexibility for selecting and evaluating constraints, it would
be useful to develop a strategy language similar to [6] for designing specialized constraint
solvers. Moreover, simple soft constraints as in this paper will not be enough. More com-
plex policies for tasks such as resource allocation and providing quality of service have to
be respected and solutions have to be compared using preferences. Based on the successful
c-semiring-based approaches to preferences [11], quality of service [10] and soft concur-
rent constrained programming [5], we are currently developing an expressive modelling
language for policies involving preferences and hard/soft constraints which will also be
based on the c-semiring approach.

Acknowledgment
Thanks to the anonymous referees for their helpful suggestions and remarks.

References

[1] S. Bistarelli. Semirings for Soft Constraint Solving and Programming. volume 2962
of Lecture Notes in Computer Science 2004. Springer-Verlag.

[2] S. Bistarelli, E. C. Freuder, B. O’Sullivan. Encoding Partial Constraint Satisfaction
in the Semiring-Based Framework for Soft Constraints. In 16th IEEE Internat. Conf.
on Tools with Artificial Intelligence (ICTAI 2004). IEEE Computer Society 2004, 240–
245.

[3] S. Bistarelli, T. Frühwirth, M. Marte, F. Rossi: Soft Constraint Propagation and
Solving in Constraint Handling Rules. Computational Intelligence, Special Issue on
Preferences in AI and CP, Blackwell Publishing (to appear).

[4] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based Constraint Solving and
Optimization. Journal of ACM 44:201–236, 1997.

[5] S. Bistarelli, U. Montanari and F. Rossi. Soft Concurrent Constraint Programming.
To appear in ACM Transactions on Computational Logic (TOCL).

[6] Carlos Castro and Eric Monfroy. A Strategy Language for Solving CSPs. In K. Apt,
P. Codognet, and E. Monfroy (eds.): Proc. of Third ERCIM Workshop of the Working
Group on Constraints, ERCIM’98, 1998.

[7] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Marti-Oliet,J. Meseguer,and C. Talcott.
The Maude 2.0 System. Rewriting Techniques and Applications (RTA’03). Lecture
Notes in Computer Science, 2003. Springer-Verlag.

[8] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and C. Talcott.
Maude 2.0 Manual. Computer Science Laboratory, SRI International, 2003, http:
//maude.csl.sri.com/maude2-manual.

16

http://maude.csl.sri.com/maude2-manual
http://maude.csl.sri.com/maude2-manual

Wirsing et al.

[9] A. Delgado, C. Olarte, J. Perez, and C. Rueda. Implementing Semiring-Based
Constraints using Mozart. Proc. of Second International Mozart/Oz Conference.
Springer-Verlag LNCS 3389, 2004.

[10] R. De Nicola, G. Ferrari, U. Montanari, R. Pugliese, and E. Tuosto. A Basic Calculus
for Modelling Service Level Agreements. Coordination 2005. Springer-Verlag LNCS
3454, 2005.

[11] C. Domshlak, S. Prestwich, F. Rossi, K. B. Venable, and T. Walsh. Hard and
soft constraints for reasoning about qualitative conditional preferences. To appear in
Journal of Heuristics, special issue on preferences, 2005.

[12] D. Dvorak, R. Rasmussen, G. Reeves, and A. Sacks. Software Architecture Themes
in JPL’s Mission Data System. IEEE Aerospace Conference, USA, 2000, http:
//techreports.jpl.nasa.gov/1999/99-1886.pdf

[13] Y. Georget and P. Codognet. Compiling Semiring-based Constraints with clp(FD,S).
In Maher, M., and Puget, J.-F., eds., CP98, Principles and Practice of Constraint
Programming, 205219. Springer-Verlag LNCS 1520, 1998.

[14] J. Meseguer. Conditional Rewriting Logic as a Unified Model of Concurrency.
Theoretical Computer Science 96:73–155, 1992.

[15] N. Muscetolla, P. Pandurang, B. Pell, and B. Williams. Remote Agent: To Boldly Go
Where No AI System Has Gone Before, Artif. Intelligence 103:5–48, 1998.

[16] S. Prestwich, F. Rossi, K. B. Venable, T. Walsh. Constrained CP-nets. Preprint n.
13-2004, Dept. of Pure and Applied Mathematics, University of Padova, Italy.

[17] Hana Rudova. Soft CLP(FD). In Susan Haller and Ingrid Russell, editors,
FLAIRS ’03, Recent Advances in Artificial Intelligence: Proceedings of the Sixteenth
International FLAIRS Conference. AAAI Press, pages 202–206, 2003.

17

http://techreports.jpl.nasa.gov/1999/99-1886.pdf
http://techreports.jpl.nasa.gov/1999/99-1886.pdf

	Introduction
	Example Application
	C-Semirings and Soft Constraints in Maude
	Brief Overview of Maude
	Constraint Semirings
	Boolean, Fuzzy, and Weighted Sum Semirings
	Soft Constraints
	Hard Constraints and Implicit Constraints

	Solving Soft Constraints
	Experimentation Results
	Future Directions and Concluding Remarks
	References

