
FInCo 2007

A formal framework for Interactive Agents

Carolyn L. Talcott1,2

Computer Science Laboratory
SRI International

Menlo Park, CA 94025, USA

Abstract

This paper proposes a formal framework and architecture for specification and analysis of interactive agents. The framework
can be used to explore the design space, study features of different points in the design space, and to develop executable
specifications of specific agents and study their interactions with the environment. A long term goal is development of
reasoning principles specialized to different regions of the design space.

Keywords: interaction, coordination, distributed object reflection, policy, autonomy

1 Introduction

The question of interaction versus algorithms as models of computation was raised by
Wegner in [19]. Since then there has been much discussion of both philosophical and
mathematical distinctions (c.f. [20,10,11]).

We are interested in what new issues arise, and how to take advantage of the fact that
interaction goes beyond turing computability in designing interactive agents. For example,
interactive agents can be concerned with issues such as survivability and situation aware-
ness that are not relevant to an algorithm. An interactive agent may not only be aware of
its surroundings, it may also affect its environment. It may need to negotiate, cooperate, or
compete. We propose the following features to consider in the design of interactive agents.

• An agent has a boundary consisting of points of interaction with the environment. From
the outside only what crosses the boundary is visible. Interaction points could be sensors,
such as light detectors or thermometers, effectors such as switches or dials, or message
queues for exchange of messages with other agents.

• An agent has actions that it can execute. It may also have goals, knowledge (about its
environment and itself), policies constraining actions, or strategies for achieving goals.

1 The work was partially supported by NSF grant CCR-023446.
2 Email: clt@cs.stanford.edu

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:clt@cs.stanford.edu

Talcott

• Internally an agent may have multiple concurrent activities; observing and processing
sensory information; refining goals to subgoals, choosing actions, executing actions;
evaluating and analyzing results: did actions have expected effect? updating knowledge
by learning and inference;

• Interactivity means internal processes must be interruptible.

This richness of concerns and features leads to the questions of principles for design-
ing interactive agents. In this paper we present initial ideas for an architecture and formal
framework for design, specification, and analysis of interactive agents. The framework is
based on rewriting logic and a reflective model of coordination for managing an agents ac-
tivities. New forms of interaction are introduced to model both message and channel/signal
based interactions, and to pave the way for modeling continuous interactions. The compo-
sitional interaction semantics of [18,7] is extended. The aims of the framework include:

• a higher level means of specifying and understanding agent behavior
• a place to classify agents with different ‘skills’
• a formal design space to represent a variety of design decisions and to study trade-offs

resulting from decisions such as adaptability vs. predictability;

One advantage of the proposed framework are that specifications are executable, allowing
prototyping of designs at many stages. In addition, they are formally analyzable using the
Maude rewriting logic system, and connections with other formal systems.

Section 2 is a brief overview of motivations and formal foundations for the framework.
Section 3 describes the formal architecture and section 4 briefly describes the interaction
semantics. In section 5 we analyze two agent systems using the formal framework. Sec-
tion 6 summarizes and discusses future directions.

2 Background

To provide some context we give an overview of the autonomous agent systems whose
analysis formed a starting point for the current work. This is followed by a brief introduc-
tion to the underlying formalisms: rewriting logic and the Reflective Russian Dolls (RRD)
model of distributed object reflection.

2.1 Autonomous Agent Systems

The Policy And GOal based Distributed Architecture (PAGODA) (see http://pagoda.
csl.sri.com) is a framework for specifying systems of autonomous agents. The
PAGODA architecture was inspired by the study of architectures developed for autonomous
space systems, especially the Mission Data Systems (MDS) architecture [9] and its precur-
sors. Two essential features of MDS are goal-oriented operation and state variables that
hold all the system knowledge. An executable specification of a simple Robot on a Grid
(GridBot) based on the MDS architecture is described in [8].

A PAGODA system is a collection of PAGODA nodes under the control of a distributed
node coordinator (DC). A PAGODA node is a collection of components coordinated by a
node coordinator (NC). Both coordinators are policy-based. The job of the NC is to make
sure components only get the messages they need and expect, and in the order expected.
It also takes care of event notification, and logging certain events for self-evaluation and

2

http://pagoda.csl.sri.com
http://pagoda.csl.sri.com

Talcott

diagnostics. The job of a DC is to control dissemination of knowledge collected locally,
deciding what to share, when, with whom. Coordination in PAGODA is discussed in more
detail in [17]. A PAGODA reasoner based on soft constraint solving is described in [21].

2.2 Rewriting Logic

Rewriting logic [13] is a logical formalism designed for modeling and reasoning about
concurrent and distributed systems. It is based on two simple ideas: states of a system are
represented as elements of an algebraic data type; and the behavior of a system is given
by local transitions between states described by rewrite rules. A rewrite rule has the form
t ⇒ t′ if c where t and t′ are terms representing a local part of the system state, and c is
a condition on the variables of t. This rule says that when the system has a subcomponent
matching t, such that c holds, that subcomponent can evolve to t′, possibly concurrently
with changes described by rules matching other parts of the system state. The process of
application of rewrite rules generates computations (also thought of as deductions). Maude
(http://maude.cs.uiuc.edu) is a system based on rewriting logic used for devel-
oping, prototyping, and analyzing formal specifications.

2.3 Reflective Russian Dolls

Reflective Russian Dolls (RRD) [14] is a formal model of distributed object reflection based
on rewriting logic. The model combines logical reflection with a structuring of distributed
objects as nested configurations of meta-objects (a la Russian Dolls) that can reason about
and control their sub-objects. This model can be used to develop formal specifications of
interaction as well as architectural, and behavioral aspects of distributed object-based sys-
tems. In this formalism, a coordinator is an object with a distinguished attribute that holds a
nested configuration of objects and messages. The nested configuration could itself consist
of base-level objects or coordinators each with their configuration of coordinated objects.
The rewrite rules for a coordinator object control delivery of messages in its contained con-
figuration. In [16] a special form of RRD called policy based coordination (PBRD) was
introduced. Here each coordinator has three additional distinguished attributes: a policy, a
policy state, and a queue of messages pending delivery to the nested configuration. In this
case coordinator rewrite rules interpret the policy attributes, selecting a message to process
and specifying what to do with it.

3 Framework for Interactive Agents

The proposed formal representation of interactive agents uses the PBRD coordination model
as a starting point. PBRD is extended by giving interaction labels to rules specifying basic
interaction steps; refining the notion of object interface; and specifying rules for interaction
between an agent and its environment, including propagation of environment interactions
through the nested object hierarchy. A compositional interaction semantics is derived from
the executable semantics of interactive agents.

An alternating display, adapted from [1], is used as a running example to illustrate the
structure and rules for interactive agents. This agent has three interaction points, two from
which it reads sensors (say time and temperature) and one on which it writes a bitmap
for display. The coordinator ensures that the display alternates between the two sensors.

3

http://maude.cs.uiuc.edu

Talcott

This example illustrates basic object behavior and use of sensors and effectors as well as
message passing. We also use it to illustrate interaction patterns and different forms of
composition.

3.1 Structure of Interactive Agents

We work in the context of a module IA that declares language and syntax for RRD objects,
as well as sorts and operations for policies and interaction points. The following is a brief
summary. Interactive Agents are formalized as PBRD objects having the form
[a : A | {C}, policy: P, policyState: pS, pending: pQ, atts | ips]

where a is the agents object identifier and A is it class identifier, a subclass of
InteractiveAgent, and ips is the agents set of interaction points. Between the vertical
bars are the agents attributes: {C} is the set of activities coordinated by a—a configuration
(set) of interactive objects; P is the agents coordination policy; pS is its policy state; pQ is
a queue of messages pending delivery; atts is a set of additional agent specific attributes.
The nesting terminates with base-level objects, interactive objects whose configuration at-
tribute is empty. For base-level objects the policy, policyState, and pending attributes are
not used and can be omitted.

3.2 Rules of interaction

We consider four types of interaction point: i(id,mQ) (message input), o(id,mQ) (message
output), r(id,v) (read a value), and w(id,v) (write a value). Here id is the name or identi-
fier, mQ is a message queue, and v is a value. This notation is also used to denote interactions
that label transitions and form the basis of the interaction semantics.

Rules for basic agent interactions.
A basic interaction rule describes response to a message msg in an input queue. There

are two flavors—one silent, and one that writes a new value to a write interaction point. In
both cases the message is removed from the input queue. A silent rule has the form

[a : A | atts | i(id,msg mQ), ips]
=[]=>
[a : A | atts | i(id,mQ), ips1]

and a rule that writes has the form
[a : A | atts | i(id,msg mQ), w(ix,u), ips]
=[w(ix,v)]=>
[a : A | atts | i(id,mQ), w(ix,v), ips1]

where in both cases ips1 differs from ips at most by adding messages to queues of output
interaction points. Between the []s is the transition’s interaction label where [] is the silent
interaction.

Example: Reader and Writer agents.
The activities of an alternating display are instances of sensor reader and display writer

objects. A reader, or, knows the name of its sensor, sid, and to whom it should report,
od. When or receives a tick message or<-tick it sends the sensor reading, and sends itself
another tick. This is expressed by the following rule.

4

Talcott

[or : Reader | display : od, sensor: sid, atts
| i(in,or<-tick iQ), o(out,oQ), r(sid,t)]

=[]=>
[or : Reader | display : od, sensor: sid, atts

| i(in,iQ), o(out,oQ od<-sensed(sid,t) or<-tick), r(sid,t)]

where iQ and oQ are message queues. A writer simply computes a bitmap and writes it to
the display. The previously written bitmap is recorded in w(disp,obmap).
[od : DispA | | i(in,od<-sensed(sid,t) iQ), w(disp,obmap)]
=[w(disp,bmap)]=>
[od : DispA | | i(in,iQ), w(disp,bmap)]
if bmap := mkBmap(sid,t)

Coordination rules.
Coordination policies are specified by axioms for a function next that determines the

next coordination actions. The axioms are of the form
next(P,pS,pQ) = {dnQ, outQ, pS1, pQ1} if cond

where P is a policy, pS is a policy state, and pQ is a queue of interactions pending processing.
These interactions are of the form u(o,ix,msg) (up from the output o(ix,-) of object o) or
i(ix,msg) (a message received in the coordinators input queue i(ix,-)). On the right, dnQ
and outQ are lists of delivery actions of the form (o,ix,mQ). Those in dnQ are for delivery
to nested objects and those in outQ are for delivery to external objects. The rule for policy
interpretation is the following.
[a : A | {C}, policy: P, policyState: pS, pending: pQ, atts

| ips] =[]>
[a : A | {C1}, policy: P, policyState: pS1, pending: pQ1, atts

| ips1]
if {dnQ, outQ, pS1, pQ1} := next(P,pS,pQ)
/\ C1 := deliver(C,dnQ)
/\ ips1 := emit(ips,outQ)

where pS1 and pQ1 are updated policy state and pending interaction queues, respectively.
For (o,ix,mQ) in dnQ, deliver(C,dnQ) adds mQ to the input interaction point with identifier
ix of the object with identifier o, while messages in outQ are added to output interaction
points by emit(ips,outQ).

There is a coordinator rule that moves messages from output interaction points in the
nested configuration to the pending queue, and one that moves messages in its reception-
ist queues (input queues with identifier that of a nested object input queue visible to the
environment) to the pending queue.

Alternating display coordinator policy.
The policy altP for the alternating display agent has a policy state of the form (od,oQ)

where od is the name of the display object and oQ is a queue of reader object ids (thus it
will work for alternation of any number of sensor inputs). Alternation of messages to the
display is expressed by
next(altP,(od,(o1 o2 ...)), pQ0 u(o1,out,od<-sensed(s,t)) pQ1)
=
{(od,in,od<-sensed(s,t)),nil,(od,(o2 ... o1)), pQ0 pQ1}
if pQ0 contains no elements of the form u(o1,out,od<-sensed(s1,t1))

while tick messages to enable reading are delivered as soon as they reach the front of the
pending queue.
next(altP,(od,(o1 o2 ...)), u(o,out,o<-tick) pQ1)
=
{(o,in,o<-tick,nil,(od,(o2 ... o1)), pQ1}

5

Talcott

An alternating display agent does not exchange messages with any other agents. It only
reads time and temperature sensors and writes to the display. Thus it has three interaction
points: r(time,-), r(temp,-), w(disp,-) (we use - to indicate unspecified value). The initial
configuration of an alternating display agent looks like the following
[a : AltDisplay |

{ [o1 : Reader | display: od, sensor: time,
| i(in,o1<-tick), o(out,nil), r(time,t0)]

[o2 : Reader | display: od, sensor: temp,
| i(in,o2<-tick), o(out,nil), r(temp,t1)]

[od : DispA | | i(in,nil), w(disp,blank)] },
policy: altP, policyState: (od,o1 o2), pending: nil
| r(time,t0), r(temp,t1), w(disp,blank)]

According to the coordination and behavior rules, o1 and o2 will output sensed messages.
The message from o1 will be delivered to od first, then the message from o2. Tick mes-
sages will be delivered to o1 (o2) after their sensed messages are delivered, and the process
repeats.

Rules for interaction with environment.
The underlying rewriting logic semantics says that silent transitions of a nested config-

uration lift to transitions of the whole agent. Messages from external agents are placed in
the queues of input interaction points where they can be taken from the queue by the agent.
[a : A | { C }, atts | ips, i(ix,iQ)]
=[i(ix,msg)]=>
[a : A | { C }, atts | ips, i(ix,iQ msg)]

Dually messages to external agents are placed in the queues of output interaction points,
and removed by the environment (not shown). Read/write interaction points are for sensing
and effecting the agents exterior. An agent may silently read values from read interaction
points. The value is only changed by the environment. This change is seen by all nested
agents with this interaction point.
[a : A | { C }, atts | ips, r(ix,v)]
= [r(ix,u)] =>
[a : A | { pushRead(C,ix,u) }, atts | ips, r(ix,u)]

An agent may write new values into write interaction points, to affect the environment.
A write interaction is propagated to the containing agent (formalized using conditional
rewriting).
C =[w(ix,v)]=> C1

[a : A | { C }, atts | ips, w(ix,u)]
=[w(ix,v)]=>
[a : A | { C1 }, atts | ips, w(ix,v)]

4 Interaction Semantics

An interaction path is a (possibly infinite) sequence of interactions. Each computation of
an agent (allowed by the rewrite rules) gives rise to an interaction path consisting of the se-
quence of (non-silent) interactions labeling the transitions (rewrite rule applications). The
semantics of an interactive agent is thus the set of interaction paths of its possible com-
putations. This definition derives from earlier work developing interaction semantics for
actors [18,7] ideas from Timed Data Stream semantics for the Reo coordination model [2]
and signal event semantics [12]. Interaction semantics is similar in spirit to the Interactive
Stream Languages of [10]. The ideas are also related to work on interfaces of reactive and

6

Talcott

concurrent systems such as, for example, [5,6]. As an example, a possible interaction path
of the alternating display is

r(time,600)
r(time,700)
r(temp,20)
w(disp,mkBmap(time,600))
w(disp,mkBmap(temp,20))
r(temp,21)
r(time,800)
w(disp,mkBmap(time,800))
w(disp,mkBmap(temp,21))

Since reads are controlled by the environment, there may be reads that are not observed by
the Reader and thus not reflected in the display sequence, for example 700 is not displayed.

Interaction semantics is compositional both vertically and horizontally. The semantics
of the horizontal (parallel) composition of two systems is done by zipping compatible paths
one from the semantics of each system. Two paths are compatible if their subsequences of
complimentary interactions, such as out/write in one and in/read in the other match. In
the composed path, these interactions interactions become silent transitions and disappear,
and the remaining interactions are merged. (See [18] for details in the case of horizontal,
actor-actor composition, and [7] for vertical, actor-metaactor, composition.) For example,
consider the semantics of a system S1 consisting of the two readers, and another S2 consist-
ing of the display writer. A compatible pair of interaction paths for these systems is
S1: S2:

r(time,600)
r(time,700)
r(temp,20)
o(od,sensed(time,600)) i(od,sensed(time,600))
r(time,800)

w(disp,mkBmap(time,600))
o(od,sensed(time,700) i(od,time(700))

w(disp,mkBmap(time,700))
r(temp,21)
o(od,sensed(temp,20)) i(od,sensed(temp,20))
...

w(disp,mkBmap(temp,20))
...

Composing this pair results in an interaction path for the parallel composition S1 S2.
r(time,600)
r(time,700)
r(temp,20)
w(disp,mkBmap(time,600))
r(time,800)
w(disp,mkBmap(time,700))
r(temp,21)
w(disp,mkBmap(temp,20))
....

Notice that this path does not satisfy the alternation requirement. Such is life.
To treat a coordinator (meta-object) as a separate component independent of its nested

configuration, conceptually, we replace its configuration attribute by interaction points,
one for each messaging interface of a contained object. For this purpose we introduce up
and down interactions. Up interactions of a coordinator have the form u(o,ix,msg) and
synchronize with interactions o(ix,msg) of an object with identifier o. (These appear in the
pending interaction queue in the composed system.) Down interactions of a coordinator
have the form d(o,ix,msg) and synchronize with interactions i(ix,msg) of an object with
identifier o.

The requirements for an alternating display coordinator can be expressed as a relation
AltIO on the interactions of the coordinatees (similar to Abstract Behavior Type specifica-

7

Talcott

tions of sets of Timed Data Stream [1]) as follows

θ ∈ AltIO ⇔ π(θ, d(od, in,−))(2i) = π(θ, u(ot1, out,−))(i)∧
π(θ, d(od, in,−))(2i + 1) = π(θ, u(ot2, out−))(i)∧
ix(θ, u(ot1, out,−), i) < ix(θ, d(od, in,−), 2i)∧
ix(θ, u(ot2, out,−), i) < ix(θ, d(od, in,−), 2i + 1)

where π(θ, d(od, in,−)) is the subsequence of messages of interactions d(od, in, msg) oc-
curring in θ, and ix(θ, d(od, in,−), i) is the index in θ of the ith element of π(θ, d(od, in,−)).
Similarly for π(θ, u(oj , in,−)) and ix(θ, u(otj , out,−), i).

The claim is that composing a coordinator satisfying AltIO with a system such as S1
S2 will result in an alternating display. In this case composition is placing the system into
the coordinators configuration attribute.

5 Goal-based autonomous agents

As a small step towards using the interactive agent framework to analyze agent structure
we consider the kinds of activities that might make up a goal-based autonomous agent
and related design points. We use these to analyze two autonomous agent systems. The
activities we consider are: knowledge manager (KM), estimator, controller, goal achiever,
analyzer, and monitor.

A KM encapsulates knowledge: models, policies, history, situation/context It accepts
requests to modify the knowledge base and queries to retrieve information from the knowl-
edge base.

An estimator deals with reading sensors and converting what is read into higher level
data. It could just be an identity function, but provides a means for interacting with lower
level sensors, for example by converting a voltage reading to a temperature, pressure, or
liquid level. An estimator may proactively read sensor information and tell the KM its
interpretation, or it may only read upon request. A controller converts basic action requests
to effects on the environment, setting knobs or switches, turning motors on or off, etc..

A goal achiever accepts goal requests (constraints to be satisfied, something to be
achieved) and produces responses which contain basic actions to perform and assump-
tions made in choosing these actions. A goal achiever may (should) use knowledge from
the KB to decide on a course of action. It may reach decisions by some form of reasoning
(planning, constraint solving, search), or by a simple table lookup.

An analyzer derives new knowledge from information already in the knowledge base,
or corrects existing knowledge. It can request ‘experiments to be done’ to gather more
information. A learner is an example of an analyzer. The learner’s objective is typically
to fill in or correct model parameters. A trust manager is another kind of analyzer. It
observes interactions with other agents and builds trust models, (X can be trusted for Y
with confidence L) that might be used by a goal achiever, or other analyzers. Yet another
kind of analyzer, which we call a thinker, builds new models, or refines existing models by
drawing inferences from existing knowledge and observations.

A monitor’s job is checking assumptions that are expressed as constraints on observ-
ables: functions of sensor readings and messages received. It may make periodic checks,
or only upon specific request. It may always report (for logging in KB) the results of a

8

Talcott

check, or only report when a check fails. Typically the assumptions are generated by a goal
achiever, but an analyzer could also make hypotheses to be checked.

Using the above notions we can characterize the two autonomous agent systems men-
tioned in Section 2: the MDS based GridBot; and the PAGODA software defined radio
(SDR).

The GridBot has a single goal achiever (called a goal elaborator). Its remaining activ-
ities are organized by state variable. For each state variable there is a knowledge manager
(the state variable itself), a sensor, an estimator, and a controller. The simple GridBot has
just three state variables: its motion base (for moving and turning); a camera, and a battery.
Coordination is done by a scheduler. In general MDS schedulers have a policy that speci-
fies how frequently to visit each state variable, and for each visit a fixed order of executing
steps of the associated activities.

The PAPGODA SDR has a single knowledge base that stores goals, situation informa-
tion (for example, mission phase and status), environment information, a model of how
knob settings effect the radio’s performance, and a history of actions and sensor readings.
All sensor/effector interaction points are encapsulated in the HAL (Hardware Abstraction
Layer). HAL handles all requests for actions (knob settings) and sensor reading. There
is one reasoner (for which two implementations exist) that accepts goals and sends knob
settings to the HAL and monitoring tasks to the monitor. There is a learner that can be
activated to learn initial model parameters or correct existing parameters. The PAGODA
coordination policy ensures that goal requests, knob settings, sensor readings and monitor
reports are logged in the knowledge base and that the learner is notified of events of interest
to it. It also ensures that goal requests to the monitor are serialized. Otherwise activities go
on concurrently.

6 Conclusion and Future Work.

We have described an architecture and formal framework for specifying and analyzing
interactive agents. The main ideas are policy-based coordination of multiple agent activities
and the notion of interaction points. The compositional semantics of actors and reflective
objects is extended to the richer interaction mechanisms.

Broy’s characterization of components as functions that transform data streams [4,3]
is similar in spirit to interaction path semantics. The former focuses on data flow while
the latter on interaction events and supports modeling dynamic interconnections and richer
composition mechanisms. The Abstract Behavior Type semantics of Reo using Timed
Data Streams (TDS) [2,1] is much closer to our enriched interaction semantics, although
Reo is concerned with channel-based communication while our approach is concerned with
messages and signals. In [15] a mapping between interaction paths and TDS is sketched
for the special case of buffered channels in Reo.

There are several interesting directions for future work. The extension of actor interac-
tion semantics drew on ideas from Timed Data Streams [2] and work on signal semantics
and causal interfaces [12]. An in depth comparison of these and other semantic models for
interaction is needed.

There are a number of variations on the details of the interaction semantics described
here that should be understood. For example single interactions could be replaced by sets
of concurrent interactions where order is undetermined; considering continuous signals

9

Talcott

driving read/write interactions rather than discrete changes; and adding a notion of time.
Last but not least is developing logical rules and principles for inferring emerging be-

havior of interactive agents. This goes hand in hand with developing design principles.
One of the motivations for policy based coordination is to set the stage for compositional
reasoning, that is being able to use constraints enforced by coordination policies to be able
to simplify reasoning about the coordinated activities.

References
[1] F. Arbab. A behavioral model for composition of software components. L’Objet, 12:33–76, 2006.

[2] F. Arbab and J.J.M.M Rutten. A coinductive calculus of component connectors. In WADT’02, volume 2755 of LNCS,
pages 34–55, 2002.

[3] M. Broy and G. Stefanescu. The algebra of stream processing functions. Theoretical Computer Science, 258, 2001.

[4] M. Broy and K. Stolen. Specification and development of interactive systems, volume 62 of Monographs in Computer
Science. Springer-Verlag, 2001.

[5] L. de Alfaro and T. A. Henzinger. Interface automata. In Ninth Annual Symposium on Foundations of Software
Engineering (FSE), pages 109–120. ACM Press, 2001.

[6] L. de Alfaro and T. A. Henzinger. Interface theories for component-based design. In 1st Intl. Workshop on Embedded
Software, volume 2211 of LNCS. Springer-Verlag, 2001.

[7] G. Denker, J. Meseguer, and C. L. Talcott. Rewriting semantics of distributed meta objects and composable
communication services. In Third International Workshop on Rewriting Logic and Its Applications (WRLA’2000),
volume 36 of Electronic Notes in Theoretical Computer Science. Elsevier, 2000.

[8] G. Denker and C. L. Talcott. Formal checklists for remote agent dependability. In Fifth International Workshop on
Rewriting Logic and Its Applications (WRLA’2004), volume 117 of ENTCS. Elsevier, 2004.

[9] D. Dvorak, R. Rasmussen, G. Reeves, and A. Sacks. Software Architecture Themes In JPL’s Mission Data System. In
IEEE Aerospace Conference, USA, 2000.

[10] D. Goldin, S. Smolka, P. Attie, and E. Sonderegger. Turing machines, transition systems, and interaction. Information
and Computation Journal, 194(2):101–128, 2004.

[11] D. Goldin and M. Viroli, editors. Foundations of Interactive Computation (FInCo 2005), volume 141 of ENTCS.
Elsevier, 2005.

[12] E. A. Lee. Concurrent semantics without the notions of state or state transitions. In Formal Modeling and Analysis of
Timed Systems, LNCS, pages 18–31. Springer, 2006.

[13] J. Meseguer. Conditional Rewriting Logic as a unified model of concurrency. Theoretical Computer Science, 96(1):73–
155, 1992.

[14] J. Meseguer and C. L. Talcott. Semantic models for distributed object reflection. In European Conference on Object-
Oriented Programming, ECOOP’2002, volume 2374 of LNCS, pages 1–36, 2002.

[15] S. Ren, M. Sirjani, and C. Talcott. Comparing three coordination models: Reo, arc, and rrd, 2007. in preparation.

[16] C. Talcott. Coordination models based on a formal model of distributed object reflection. In 1st International Workshop
on Methods and Tools for Coordinating Concurrent, Distributed and Mobile Systems (MTCoord 2005), 2005.

[17] C. Talcott. Policy-based coordination in pagoda: A case study. In 2nd International Workshop on Methods and Tools
for Coordinating Concurrent, Distributed and Mobile Systems (MTCoord 2005), 2006.

[18] C. L. Talcott. Composable semantic models for actor theories. Higher-Order and Symbolic Computation, 11(3):281–
343, 1998.

[19] P. Wegner. Why interaction is more powerful than algorithms. CACM, May 1997.

[20] P. Wegner and D. Goldin. Computation beyond turing machines. CACM, April 2003.

[21] M. Wirsing, G. Denker, C. Talcott, A. Poggio, and L. Briesemeister. A rewriting logic framework for soft constraints.
In Sixth International Workshop on Rewriting Logic and Its Applications (WRLA’2006), ENTCS. Elsevier, 2006.

10

	Introduction
	Background
	Autonomous Agent Systems
	Rewriting Logic
	Reflective Russian Dolls

	Framework for Interactive Agents
	Structure of Interactive Agents
	Rules of interaction

	Interaction Semantics
	Goal-based autonomous agents
	Conclusion and Future Work.
	References

