
CoRaL - Policy Language and Reasoning
Techniques for Spectrum Policies

Daniel Elenius, Grit Denker, Mark-Oliver Stehr, Rukman Senanayake, Carolyn Talcott, David Wilkins
SRI International

Menlo Park, CA 94025
Email: {firstname.lastname}@sri.com

Abstract— We present the Cognitive Radio (Policy) Lan-
guage (CoRaL), a new language for expressing policies
that govern the behavior of cognitive radios that oppor-
tunistically share spectrum. A Policy Reasoner validates
radio transmissions to ensure that they are compliant
with the spectrum policies. The Policy Reasoner also
discovers spectrum sharing opportunities by deriving what
requirements must be fulfilled for transmissions to be valid,
i.e., in compliance with policies. A novel mix of reasoning
techniques is required to implement such a reasoner.

I. I NTRODUCTION

Because of the centralized, static nature of current
spectrum allotment policy, wireless communication is
confronting two significant problems: spectrum scarcity
and deployment delays.

With increasing demands on wireless communica-
tions, spectrum is becoming a hot commodity, with
national spectrum regulators auctioning out frequencies
for incredible prices.

Deploying radios to different regions or countries
means encountering a new spectrum environment, with
new policies to obey. Delays occur because policies
are currently hard-coded into the radios’ software or
firmware, and time-consuming upgrades are required.

The solution to these problems offered by DARPA’s
NeXt Generation (XG) Communications Program is
based on two key observations: a) in a typical situation,
most of the spectrum, although allocated, is not in use;
and b) radios could be more flexible by using declarative
spectrum policies to control behavior, offering the usual
advantages of a policy-based approach, such as easier
deployment, verification, and management.

Under the new approach to spectrum management,
highly capable sensors are used at runtime to scan
allocated frequency bands in order to detect parts of
the spectrum that are not currently in use. Policies are
used to describe the constraints on using the spectrum.
For example, how long must a band be empty before

it can be used, what level of detected spectral density
is considered background noise, and at what power
level are you allowed to transmit? These policies vary
depending on geographic region and time, and thus
radios must be able to load new policies at runtime.

Each XG radio is equipped with a Policy Reasoner
(PR). The radio provides the PR with facts about itself
and the (sensed) environment, and the reasoner tells the
radio whether or not it can transmit.

SRI is developing a policy language and reasoning
techniques for the XG program.

II. REQUIREMENTS

The policy language and reasoner had several require-
ments.

Accreditability. It should be possible to accredit the
policy reasoner, individual policies, and radio software,
all independently of each other. This reduces the combi-
natorial nightmare of having to accredit each combina-
tion of radio and policies, as is done today. Furthermore,
it removes the need to re-accredit the radio and its
software every time a new policy is introduced, which
currently makes the goal of rapid deployment impossible.

Extensibility. It should be possible to easily add new
domain knowledge and policies, as well as to extend the
expressiveness of the language if needed for new do-
mains. To achieve the latter goal, we based the language
on a solid and well-understood logical foundation.

Expressiveness. We examined current spectrum poli-
cies, as well as imagined future ones, in order to de-
termine what kind of constraints we need to be able
to express in the language. In particular, we need the
following features:

• Functions, such as the powermask in Figure 1 from
the DFS policy [1].

• Computations, such as temporal and geospatial rea-
soning.

• Orderings(e.g., frequency less than 5000 MHz).



Fig. 1. Powermask from Dynamic Frequency Selection (DFS) policy.

Opportunity Discovery. We need the PR to not only
say yes or no to transmission requests from the radio,
but to also, where applicable, provide an answer of the
form “yes, if C”, where some additional constraints C
need to be satisfied for the transmission to be approved.
This is required because the radio cannot simply give the
PR “all the facts” up front. For example, a policy may
require the radio to sense in a certain band with a certain
resolution, or to detect its location using GPS. The radio
is decoupled from the policies, so it does not “know”
what they require. The radio also cannot constantly sense
all bands or perform other costly operations (in terms of,
e.g., time or battery power). The ability to get constraints
back from the PR means, in effect, that the reasoner tells
the radio what it needs to do in order to satisfy current
policies.

III. A PPROACH

We approached the problem asconstraint simpli-
fication. As in most policy approaches, policies are
constraints (in this case on radio behavior). The radio
sends a request consisting of a set offacts to the PR.
The PR tries to simplify (or reduce) the policies, using
the provided facts, to the fact that the transmission
is permitted. Sometimes the PR stops halfway there,
because the provided facts are not sufficient to reduce all
its constraints. In such cases, the remaining constraints
are sent back to the radio, as explained above.

The other important aspect of our approach is that it
is mostly functional (as opposed to therelational ap-
proaches of, e.g., OWL (seehttp://www.w3.org/
TR/owl-features/ ) and Prolog). There are several
reasons for this:

• The requirement is to reason about functions, such
as powermasks.

• Constraint simplification works better with a func-
tional approach than with a relational one, because
with a functional approach we can use efficient
term rewriting techniques as opposed to general
reasoning.

• Having functions, defined by equations, allows us
to express computations (such as temporal and
geospatial)inside the language. In a relational ap-
proach, we would be forced to rely on procedural
attachments, or some other ad hoc solution, which
would make policies very difficult to accredit and
reason about.

Our language is not a domain specific. We have
developed a general logic, based on a typed First-Order
Logic, which is sufficient for the XG problem. However,
the domain-specific parts are expressed inontologies. By
adding more ontologies, our language can be used for
other types of policies. Ontologies will be discussed in
Section IV-B.

CoRaL is set apart from other policy languages, such
as KaOS, Rei, or Ponder [2], by being (mostly) func-
tional, based on constraint simplification, as required
to express and reason about the kinds of policies we
deal with in the spectrum domain. In comparing event-
condition-action rule policy languages with CoRaL, one
could interpret the radio’s request as the event that trig-
gers policy evaluation. Policies describe the conditions
under which a transmission is allowed or not allowed.
The PR answers with either granting or denying the use
of spectrum to the requesting radio or telling the radio
what it has to do to gain access. Possible actions are
therefore transmitting or performing further actions to
satisfy constraints or making a new request.

IV. T HE CORAL L ANGUAGE

Because of limitations, we can give only a brief,
informal presentation of the CoRaL [3] language in this
paper. For full details see [4].

A. Syntax

The building blocks of CoRaL are types, terms, and
formulas.

Types can be either user defined or one of the built-in
typesInt, Float, Bool . User-defined types can be either
atomic or constructed using the built-in type constructors
for list ([] ), tuple (() ), set ({} ), function (-> ), and
predicate (Pred ) types. Types are declared using the
type keyword. One can also declare subtypes (using the
subtype keyword) and equivalent types (using thedeftype

keyword).
Terms belong to types. Terms can be constants (which

includes functions), or primitive values, such as integers
or booleans. The primitive values, arithmetic operations
(=,-,*,/,mod ), and predicate symbols for equality, in-
equality, and orderings (=, =/=, <, =<, >, >= ) are built



in. Other constants must either be declared using the
const keyword, or constructed using one of the built-
in term constructors for lists, sets and tuples, or using a
user-defined constructor function. A term can be declared
to be equivalent to another term using thedefconst

construct. Constant and type declarations can have an
optionalpublic attribute, making them visible and usable
in other policies.

Formulas are built from atomic formulas, i.e. a predi-
cate constant applied to zero or more terms. These can be
combined using propositional connectives (and, or, im-

plies, not, if ) and quantifiers (forall, exists ).
CoRaL has three kinds of statements: declarations

(covered above), rules, anduse . Rules are universally
quantified formulas of certain forms. There are Horn-
clause-like rules, e.g.,
(forall x,y:Int) p(x,y) if q(x,y) or r(y,x);

and equational rules, e.g.,
(forall x,y:Int) f(x) = g(y) if x+y = 10;

In both cases, the conditionalif part is optional. The
use keyword is used when a policy needs to use another
policy or ontology.

A policy contains any number of statements as shown
in Figure 2. Specifically, a policy has rules for two
special predicates,allow and disallow . If allow can
be proved, this policy allows the transmission, and if
disallow can be proved, the transmission is prohibited.
Note that we donot have the axiomallow iff not dis-

allow . In fact, it is quite common for the same transmis-
sion to be both allowed by some policy and disallowed
by another. To find out whether or not the transmission
is permitted, we have a meta-rule “permit iff allowed
by some policy and not disallowed by any policy”. This
means that disallowing policies override allowing ones.
We could easily change the meta-rule to allow prioritized
policies, but there is no need for this.

An ontology is a special case of a policy with no rules.

include …Policy Imports

Policy End

Rule Declarations

const …
defconst …

Constant Declarations

type …
deftype …

Type Declarations

policy POLICYNAME isPolicy Start

allow if …
disallow if …
end

Fig. 2. Components of a Policy

B. Ontologies

Rather than creating ontologies of the traditional kind,
we use the more flexible approach of algebraic spec-
ifications and algebraic data types (ADTs) [5]. This
allows us to not only state static facts about the domain,
but to also express more dynamic, or computational,
aspects. Examples are given below. However, in order
to support standard ontology development and tools for
OWL, we are currently extending our language with an
OWL interface. This is possible since CoRaL is more
expressive than OWL.

For example, for periods of time we introduce the
ADT TimePeriod,

public type TimePeriod;
public const tp :

TimeInstant, TimeInstant -> TimePeriod [ctor];

A TimePeriod is characterized by two TimeInstants
(its start and end times). The functiontp is a constructor,
which means that any time period with the same start and
end times are in fact the same time period. To be able
to retrieve the start and end times of a time period, we
need some operations:

public const startTime : TimePeriod -> TimeInstant;
public const endTime : TimePeriod -> TimeInstant;

(forall ?ps,?pe:TimeInstant)
startTime(tp(?ps,?pe)) = ?ps;

(forall ?ps,?pe:TimeInstant)
endTime(tp(?ps,?pe)) = ?pe;

First, the operations are declared (as functions on
TimePeriods), and then they are defined using equations.
We can also define more complex operations. For exam-
ple, we need the ability to check whether a TimeInstant
is within a TimePeriod,

public const inTimePeriod :
TimeInstant, TimePeriod -> Bool;

(forall ?ti : TimeInstant, ?tp : TimePeriod)
inTimePeriod(?ti,?tp) = true if

timeAfterOrSame(?ti,startTime(?tp)) = true and
timeBeforeOrSame(?ti,endTime(?tp)) = true;

The inTimePeriod function is defined by an equation
that depends on the previously definedstartTime and
endTime operations, as well as other operations defined
elsewhere.

Since ADTs can be subtypes of other ADTs, we can
define a type hierarchy, much like a traditional class
hierarchy of ontology languages. Using this approach,
we have developed a basic set of ontologies for the
spectrum domain, as shown in Figure 3.



ontologyName

Type
Subtype

signal

Signal
RadarSignal
TVSignal

NTSCSignal
PALSignal
SECAMSignal

BeaconSignal

radio

Radio
Detector

SignalDetector
ContinuousSignalDet
PeriodicSignalDetector

LocationDetector
TimeDetector
MessageDetector

RadioCapability
ProcessCapability

transmission

Transmission

geo basic_types timemessage

powermask

request_params

req_radio
req_transmission
req_evidence

evidence

Evidence
SignalEvidence
LocationEvidence
TimeEvidence

MaskShape
Powermask

Legend:

Fig. 3. Example Ontologies. Each box represents an ontology. The name on the top of the box is the name of the ontology. An arrow
between two ontologies indicates that the ontology at the tail of the arrow uses the ontology at the head. For brevity, we only list types (in
arial font) and constants (in italic font) in some of the ontologies. Functions, predicates, and axioms are not shown. Type hierarchies are
represented using indentation.

C. Policy Examples

The CoRaL language can best be understood by
looking at some examples.

Allow to transmit in the band 5180 MHz to 5250 MHz,
if the radio is at most 10 km away from the geographic
coordinates 39 10’ 30” N, 75 01’ 42”, and only between
06:00 and 13:00 local time,

policy p1 is
use request_params;
allow if

centerFrequency(req_transmission)
in {5180.0 .. 5250.0} and

(exists ?le:LocationEvidence)
req_evidence(?le) and
distance(location(?le),loc1) =< 10000 and

(exists ?te:TimeEvidence)
req_evidence(?te) and
hour(timeStamp(?te)) in {6 .. 12};

end

The use statement imports therequest_params ontol-
ogy, which defines the request parameters used here
(see Figure 3).req_transmission is the requested trans-
mission, which in this case must be within the given
range.{ .. } is the term constructor for sets (ranges).
For sensed data about the environment, such as time,
location, and spectrum status, we have the notion of
evidence, which must be presented to the reasoner.

We can combine the policy above with a restrictive
policy Prohibit transmission if peak sensed received
power is more than -80 dBm:

policy p2 is
use request_params;
disallow if
(exists ?se:SignalEvidence)

req_evidence(?se) and

peakRxPower(?se) > -80.0;
end

It should be clear that the conditions for both policies
can be true at the same time. In such cases, the meta-rule
would make the second policy take precedence, and the
transmission would not be allowed.

D. Semantics

CoRaL has a model-theoretic semantics very similar
to that of classical first-order logic [6], i.e., based on set
theory. Types denote sets and terms denote elements, in
the usual way. Some special cases, like the built-in lists,
sets, and tuples, denote finite sequences, sets, and tuples,
respectively. As usual, there is also a notion of validity
of formulas.

CoRaL also has an operational semantics, i.e., a set
of proof rules. This includes rules for statically type-
checking policies. The operational semantics is still
under development, but the goal is to prove it sound
with regard to the model-theoretic semantics.

V. REASONING IN CORAL

Our first prototype policy reasoner, described in detail
in [7], was implemented in Prolog. This implementation
had a major limitation: It gives only yes/no answers to
transmission requests, rather than returning unsatisfied
constraints, as we have described above.

Some basic technological requirements exist for a
reasoner that can return constraints. While similar to
a classical theorem-proving problem, several features
distinguish the XG problem.



Interactivity. Permission to transmit, when not im-
mediately provable, can be obtained by a series of
modified requests that result from interactions between
the radio and the policy reasoner. For example, there
may be a requirement to perform a sensing action that
the radio has not yet performed. The radio can perform
the action and submit a new request with additional
sensing evidence. The evidence provided by the radio
would increase monotonically until the interactive proof
attempt succeeds or fails.

Anytime solutions. If the policy reasoner times out,
the intermediate result, representing the proof state of the
reasoner when it was interrupted, should be interpretable
so that appropriate additional facts can be provided by
the radio.

Predictability. Policy authors must be able to predict
the behavior of the policy reasoner when given one of
their policies, which is not usually a requirement for
automated theorem provers. Thus, a clear operational
semantics is needed and ad hoc automated reasoning
techniques that are sensitive to minor modifications
should be avoided. Predictability refers not only to the
final result but also to the time required. Thus, equational
rewriting and certain logic-programming techniques are
preferable to exhaustive search, because their dynamics
can be better controlled.

Underspecified requests. A cognitive radio sometimes
cannot or does not wish to form a fully specified
transmission request. The radio may not be aware of
all the applicable policies or may employ a strategy of
not initiating costly sensing operations unless required.
The policy reasoner tells the radio that the underspec-
ified request would be valid if certain constraints were
met. Thus, the policy reasoner should combine efficient
evaluation of fully instantiated requests with reasoning
about the more complicated constraints of underspecified
requests.

Traditional, e.g., resolution-based theorem proving is
too expensive as a solution and will not result in a fully
automated policy reasoner of reasonable performance.
More efficient techniques, such as pure equational or
logic programming are not expressive enough to cap-
ture the reasoning steps required for CoRaL, since our
language is rather expressive. Therefore, we explored the
middle ground between these two extremes.

Using Maude [8], a language based on rewriting logic
[9], we have specified theproof systemof the policy
reasoner. This prototype implementation uses a novel
combination of functional, equational, and (constraint)
logic-programming languages and of automated theorem

proving [10], [11]. The proof system has four kinds
of proof rules: Forward chaining, backward chaining,
partial evaluation based on conditional rewriting, and
constraint propagation and simplification.

The result is aformal executable specificationthat
allows us to experiment with, and operationally under-
stand, the unique combination of proof rules in the
context of small policy examples. Efficiency is not a
concern for the specification, which instead expresses
proof rules in a way that is close to a mathematical
presentation and also facilitates the proof of logical
soundness. The specification is sufficiently high level to
serve as a reference for future implementations.

ACKNOWLEDGMENT

This research was supported by DARPA’s neXt Gen-
eration (XG) Communications Program under Contract
Numbers FA8750-05-C-0230 and FA8750-05-C-0150.

REFERENCES

[1] “ETSI Standard EN 301 893 V1.2.2 (2003-06),” 2003,
Reference DEN/BRAN-002000-2. [Online]. Available: http:
//www.etsi.org

[2] G. Tonti, J. Bradshaw, R. Jeffers, R. Montanari, N. Suri, and
A. Uszok, “Semantic Web Languages for Policy Representation
and Reasoning: A Comparison of KAoS, Rei, and Ponder,”
in 2nd International Semantic Web Conference (ISWC2003).
Springer-Verlag, 2003.

[3] D. Wilkins, G. Denker, M.-O. Stehr, D. Elenius, R. Senanayake,
and C. Talcott, “Policy-based cognitive radios,”IEEE Wireless
Communications Special Issue on Cognitive Wireless Networks,
2007, to appear.

[4] G. Denker, D. Elenius, R. Senanayake, M.-O. Stehr, C. Talcott,
and D. Wilkins, “CoRaL - An XG Policy Language. Request
for comments.” SRI International, Tech. Rep., 2007.

[5] H. Ehrig and B. Mahr,Fundamentals of Algebraic Specification
1. Springer-Verlag, 1985.

[6] M.-O. Stehr, “Towards a universal policy logic,” SRI Interna-
tional, Tech. Rep., 2007.

[7] G. Denker, D. Elenius, R. Senanayake, M.-O. Stehr, and
D. Wilkins, “A policy engine for spectrum sharing,” inIEEE
Symposium on New Frontiers In Dynamic Spectrum Access
Networks (DySPAN 2007), Dublin, Ireland, 17-20 April 2007.
IEEE, 2007.

[8] M. Clavel, F. Duŕan, S. Eker, J. Meseguer, and M.-O. Stehr,
“Maude as a formal meta-tool,” inFM’99 – Formal Methods,
J. Wing and J. Woodcock, Eds. Springer-Verlag, 1999, pp.
1684–1703, LNCS 1709.

[9] J. Meseguer, “Conditional Rewriting Logic as a unified model
of concurrency,”Theoretical Computer Science, vol. 96, no. 1,
pp. 73–155, 1992.

[10] A. Bundy, “A survey of automated deduction,”
in Artificial Intelligence Today: Recent Trends and
Developments, M. Woolridge and M. Veloso, Eds.,
1999, pp. 153–174, LNCS 1600. [Online]. Available:
citeseer.ist.psu.edu/bundy99survey.html

[11] J. A. Robinson and A. Voronkov, Eds.,Handbook of Automated
Reasoning. Elsevier and MIT Press, 2001.


