Formal Specification of
Agent-Object Oriented Programs

Francesco Pagliarecci, Luca Spalazzi M.-0O. Stehr, C. Lcoral
Dipartimento di Ingegneria Informatica,
Gestionale e dell’Automazione Computer Science Laboyator
Universit Politecnica delle Marche SRI International,
Ancona, Italy Menlo Park, CA 94025-3493 USA
{pagliarecci, spalazzi@diiga.univpm.it {stehr, clt @csl.sri.com
ABSTRACT This paper presents a methodology for the formal specifi-

cation of agent-object oriented programs. Even if this pro-
This paper presents a methodology for the formal speci-gramming paradigm inherits all the work about methodolo-
fication of agent-object oriented program#gent-object gies and formal frameworks done for agent-oriented pro-
oriented programmings a programming paradigm that gramming (e.g., see [15, 2]) and object-oriented program-
integrates both agent-oriented programming and object-ming (e.g., see [12]), nothing exists specifically concegive
oriented programming (e.g, see Jack, Jadex). Even if therefor agent-object programming. Formal frameworks for
are several formal specification frameworks and method-agent-oriented programming are usually based on some sort
ologies both for agent-oriented programs and for object- of modal temporal logic, where beliefs, desires, and inten-
oriented programs, nothing exists for agent-objectpnogra tions are represented by operators. In agent-object progra
ming. In this paper, the rewriting logic language Maude ming, mental attitudes are complex structures with their
has been used as a formal framework. This opens to us thewn attributes and methods and thus they can be hardly rep-
possibility of using the wide-spectrum of formal modeling resented by simple modal operators. Formal frameworks
and reasoning supported by Maude: analyzing agent-objecfor object-oriented programming are usually based on pro-
programs by means of execution, search, model checkingcess algebras, where classes are represented by algebraic
or theorem proving to verify properties of a given program structures. These structures can be easily exploited te+ep
such as goal satisfaction and plan termination. sent mental attitudes in agent-object programming, as well
Nevertheless, in agent-object programming, we often need
KEYWORDS: Frameworks and Methodologies for Col- to represent temporal properties.
laboration, Intelligent and Autonomous Agents in Col- For all the above reasons, in this work we propose to
laboration. use the rewriting logic language Maude. Maude [4] is a
high-performance reflective language and system support-
ing both equational and rewriting logic specification and
1. INTRODUCTION programming for a wide range of applications (from the
formalization of mathematical structures to the modelifig o
Agent-object oriented programmirig an emergent pro- biological systems). lIts significance is threefold. First,
gramming paradigm that integrates both agent-oriented pro is based on a logic that can be used for the precise spec-
gramming (e.g., the so called Belief-Desire-Intention (BD ification of a program semantics. Second, it is general in
model [11]) and object-oriented programming. According the sense that various paradigms, especially the agent- and
to this paradigm, programming means defining then- object-oriented paradigms as well as concurrent behavior
tal attitudes(i.e., beliefs, desires, and plans) that programs can be integrated by using Maude as a framework. Third,
must exhibit (as in agent-oriented programming). Beliefs, Maude is notonly a language but also a system that supports
desires, and plans can be programmed in terms of abstradlight-weight symbolic analysis of specifications, an impor
tion, encapsulation, inheritance, and polymorphism (as intant feature for model validation and a first step on the path
object-oriented programming). Nowadays, this paradigm to formal verification.
has been adopted in several examples of programming lan-The paper is structured as follows. In Section 2, we provide
guages (e.g, see [6, 10, 9]) and methodologies (e.g, see brief introduction to Maude. Section 3 contains the exam-
[14, 1]). ple of agent-object program that is formalized in Section 4

using Maude. The properties to verify and the results aretems, and their behavior and properties can be studied using
reported in Section 5. Finally, in Section 6 we give some symbolic execution, symbolic state space exploration, and

conclusions. model checking techniques which are all supported by the
Maude rewriting engine [4]. This will be illustrated in Sec-
tion 5.

2. ABRIEF INTRODUCION TO MAUDE

Maude has been successfully used as a logical framework3. RUNNING EXAMPLE

[7], e.g. in the development of logics and theorem provers,)) .)
and as a semantic framework, e.g in the formalization of Agent-object oriented programming means to establish
programming language semantics [13] what are the interactions of the program with the other pro-

Maude’s logical foundation is membership equational logic grams, wha(; arle its bﬁlie;‘j,ti)tsge?irej,.and itsbpltanstemn
[3] and rewriting logic [8], and hence it supports the spec- esires, and plans should be defined in an abstract way, en-

ification of structured state transition systems over a rich tcapsulatllntg their attnbti:]es and ;neth(lnd.?, expltlnmng nnhhe
class of algebraic specifications. Local state transitaoes ance refations among them, and exploiting polymorphism.
expressed as rewrite rulés=> R over an algebraic speci- In the rest of the paper, we consider the following exam-
fication of the state space. Such rewrite rules can be conple‘ Let us suppose we have to program an agent t_hat must
ditional, written . = R i f C with C being a condi- search for a partner (another agent) capable of a given ser-

tion, andL, R andC are terms involving operations which vice. This example is partially described in Figure 3.
again can be specified algebraically in membership equa- — — -
tional logic. Since many specification, modeling, and pro- B Rrodldess [= B Acquaintances b

Service o sgent Agert @ planlist: Plan

gramming paradigms can be expressed as rewriting modulo === : b
a suitable equational theory characterizing the stateespac

B Agent “beliets

B Belief adesires
D NameAcquaintances

o description: String

desires
Desire

Maude is an excellent choice for a framework in which dif-
ferent paradigms ranging from functional programming to
Petri nets can be integrated [8].

The Maude library provides basic syntax for specification
of concurrent object-oriented programming via multi-set
rewriting that we use in the present work. In a nutshell,

desire:

oot ‘ D NameServicoProvider

B Service

o service: Service

<plans
P Plan

apleres

the state of a system is modeled as a multiset of objects and =~ P SeerchOldProvider | © 2= g e

@ precondtion(y: boolean

a acq Acquaintances lanhody()
@ planbodyi

messages. An object is of the formoid : cid | attrs >,
whereoid andcid are the object and class identifiers, re-
spectively, andittrs is a set of attributes, i.e. labelled fields
of the formaid : val, wherewal is the value associated Figure 1: The UML class diagram of the running exam-

with attributeaid. An objectobj can perform internal state ple

transitions using rewrite rules sucha@g = obj’ i f C,

whereobj’ has the same identity as; but with some of Notice that, we describe the program using UML class di-
the attributes modified. Alternatively, an objedtj can agram (with appropriate stereotypes). We do not choose a
participate in communication using rewrite rules such as specific programming language (as Jack, Jadex, or Alan)
objmsg = obj'msg; ... msg,, if C, wheremsg is since the proposed framework is independent on the pro-
a message consumed amdg; ... msg,, is a multiset of gramming language. The UML diagram can be easily trans-
messages produced in this atomic transition. More gener-ated in the preferred language.

ally, obj’ can be a multiset of objects in the above rules so Beliefs can be modeled using object-oriented programming
that new objects can be created. Finally synchronizatien be principles. This means that, for each belief, we encapsulat
tween objects can be represented by rules rewriting meltipl all the attributes that describe it and all the methods that
objects and messages. manipulate it. Each belief can be modified by any action
Maude specifications are organized in a hierarchy of mod- (e.g., a reception of a message) that satisfies its encapsula
ules. A module may contain sort declarations specifying tion constraints. The beliefs of the example consist in be-
the types of things to be represented; operator declagation liefs about the agents that the program is able to contaet (th
(keywordop or ops) giving the sorts of the arguments and belief Agent) and their corresponding services (the belief
the value returned; equations (keywedor ceq if there is Ser vi ce). We also havécquai nt ances andPr ovi der s

a condition) defining the operators; and rewrite rules (key- that are arrays of all the known agents and all the agents
word rl or crl). Maude specifications are executable. providing a given service, respectively.

Such specification can be used as formal prototypes of sysDesires are objects with their attributes and methods, as

well 1. When a new desire is asserted, its state becomesa multiset of objects and messages. Thus a belief is an
ready (see the attributet at), an appropriate plan (see object of the form< Bid : BX | ATTS >, whereBi d

the attributepl anl i st) is selected and then executed. De- is a belief object identifierBX is a belief class identifier,
sires that have been requested to be satisfied become inrand ATTS stands for the the set of belief attributes. As a
tentions (its state becomesinni ng). Finally, the desire consequence, as reported in Figure 4, we need to define a
state can baucceeded or f ai | ed depending on the fi- subsort ofd d (G d is predefined in Maude and represents
nal result of the last plan execution. In the example, we the sort of all the object identifiers) call@d! i ef | Dand a
have reported only two desiresaneAcquai nt ances and subsort ofCi d (G d is predefined in Maude and represents
NameSer vi ceProvi der. The former represents the goal the sort of all the class identifiers) calledl i ef . Letting

of finding new acquantancies, the latter the goal of finding BX be a variable of sorBel i ef allows us to model the
the providers of a given service. Notice that, each desireinheritance mechanism, (we have an example in Figure

declares what plan types to try. 4). Similarly, plans and desires are objects with the
Plans are objects, as well. For each plan, the program-following structures: < Pid : PX | planState :
mer must define at least two methog@gsecondi ti on and ..., precondition : ..., planBody : ...,

pl anbody. precondi ti on is a Boolean method. When ATTS > and < Did : DX | desireState : oy

a plan is selected and instantiated, the precondition is exepl anList : ..., ATTS >, respectively (see Figure
cuted. When it returns true, the plan is executgéchnbody 4). The only difference is the set of attributesrbfan and

is the method that contains the set of actions to be exe-Desire. A plan has at least three predefined attributes:
cuted in order to satisfy a given desire. In Figure 3, we pl anState, precondition, and pl anBody; a desire
have reported three planSear chNewAcq is a plan to sat- has at least two predefined attributekssi r eSt at e and

isfy NameAcquai nt ances. It sends a message to tfaeil- pl anLi st. Bothpl anSt at e anddesi reSt at e can as-
itator agentdf 2 and waits for a list of agents as answer. sume one of the following valueBeady, Runni ng, Wi t,

Sear chd dProvi der is a plan that searches the ar- Succeeded, Fai |l ed. The two attribute®r econdi ti on

ray acq for an agent providing a given service. and pl anBody model the two predefined methods of a
Sear chNewPr ovi der is a plan that first asks a facilita- plan. The attributel anLi st is a list of plans that must

tor for information about new agents, saves these informa-be tried in order to satisfy the desire. These plans are
tion in the arrayacq, and then applies thpl anbody of ordered in a queue according to an order established by the

Sear chd dPr ovi der to perform a search in the arraygq. programmer. The definition of plans and desires in Figure
4 contains rewrite rules. Rules suchsasart, success,
3 _ failure in modulesDESI RE and PLAN produce a state
4. MODELING AN AGENT-OBJECT PRO change. The rulel anbody of PLAN starts the execution
GRAM IN MAUDE of the methodbl anbody of a given plan instance. These

rules are activated by appropriate messages (see Figure 4).
The formal specification of an agent-object program pro- The conditional rulest art of PLAN describes a transition
ceeds in three stepdirst, we have to represent ttaper- of the plan instanc®i d from a state wherel anSt at e
ational semanticef an agent-object program (how the in- js ready to a state wherel anSt at e is Runni ng. This
terpreter works)secondwe have to formalize the specific (e is activated by the messasggear t (Pi d) and produces
program(e.g., the program modeled in Figure 8)ird, we 3 new message:pl anbody(Pi d). This rule can be
have to formalize thepecificationand verify them. Here applied only if thepr econdi ti on Pis true. The message
we describe the first two steps, the third one is reported inp| anbody(Pi d) activates a chain of rules that models the
Section 5. To specify theperational semanticsve firstex- pehavior of the plan, in other words the set of statements
plain what is theglobal stateof a program, then we discuss that must be executed in order to satisfy the intention. The
thebehaviorof the interpreter. activation of any kind of (belief, desire, or plan) method is
Theglobal stateof a program must contain all the elements modeled in a similar way. Concerning intentions, from an

of the program (i.e., beliefs, desires, plans, intenti@m&) intuitive point of view, the selection of a desire produces
the operations that must be executed by the interpreterinhe instantiation of a new intention.

Beliefs, desires, and plans are modeled as objects with _
their own attributes; operations are modeled as messages2nce we have defined the elements of a program, the

Therefore, the g|oba| state of a program is modeled ashext step is the deflnltlon of -IiStS of plan identifiers

(Pl anl DLi st) and lists of intentionsi(nt ent i onBase).

| _1In|tfraditi0|nal agent-oriented programming, desires apeesented as For instance, let us conside? anl DLi st (see Figure

ogicat formuae . . " . 4). The relatiorsubsort Pl anl D < Pl anl DLi st states
In traditional agent-oriented programming, precondii@re logical . .

formulae that eachPl anl D is also aPl anl DLi st (we may have

3A facilitator is an agent that manages an agent directory. Pl anl DLi st composed by only onel anl D). The defini-

nod BELIEF is
i ncl udi ng CONFI GURATI ON .
i ncluding STRI NG .
sort Belief BelieflD .
subsort Belief < Cd .
subsort BeliefID< Od .
op belief : -> Belief [ctor]
op description :_ :

String -> Attribute [ctor]
var BX : Belief .
var Bid : BelieflD.
var ATTS : AttributeSet .
endm

nod DESIRE is

i ncl udi ng CONFI GURATI ON .
protecting PLAN-I1D-LIST .

sorts Desire DesirelD DesireState .
subsort Desire < Cid .

subsort DesirelD < O d .

op desire : -> Desire [ctor]

op planList :_ :

Planl DList -> Attribute [ctor]
desireState :_ :

DesireState -> Attribute [ctor]
Ready : -> DesireState [ctor]
Running : -> DesireState [ctor]
Wait : -> DesireState [ctor]
op Succeeded : -> DesireState [ctor]
op Failed : -> DesireState [ctor]
ops start suspended resuned

success failure :

Desirel D -> Msg [ctor]

op
op

op
op

endm
mod | NTENTION i s
protecting DESIRE .

sort Intention .

op i Desirel D Pl anl DLi st ->
Intention [ctor]

endm

nmod PLAN i s

i ncl udi ng CONFI GURATI ON .
sorts Plan PlanlD PlanState All Sorts .

subsort Plan < Cd .
subsort PlanID < Gd .

op plan : -> Plan [ctor]

op planState :_ PlanState ->
Attribute [ctor]

op precondition :_ : Bool -> Attribute .

op planbody :_ : AllSorts -> Attribute .
op Ready : -> PlanState [ctor]

op Running : -> PlanState [ctor]

op Wit : -> PlanState [ctor]

op Succeeded : -> PlanState [ctor]

op Failed : -> PlanState [ctor]

ops start suspended resuned

success failure planbody : PlanlD ->
Msg [ctor]
var Pid : PlanID. var PX: Plan .
var P : Object . var Pr : Bool
vars ATTS : AttributeSet .
crl [start] :
< Pid : PX | planState: Ready,

precondition: Pr > start(Pid) =>
< Pid : PX | planState: Running,

precondi tion: Pr > pl anbody(Pid)
if Pr = true .

rl [pl anbody]
< Pid : PX| planState : Running,
ATTS > pl anbody (Pid) =>
< Pid: PX| planState : Wiit, ATTS > .
endm

nod PLAN-ID-LIST is

including PLAN .

sort Pl anlDLi st .

subsort PlanlD < Pl anl DLi st .

op noPlan : -> PlanlDList [ctor]

op _, _ Pl anl DLi st Pl anl DLi st ->

Pl anl DLi st [ctor assoc id: noPlan]

endm

nod | NTENTI ON- BASE i s

protecting | NTENTION .

sort IntentionBase .

subsort Intention < IntentionBase .

op nonel -> IntentionBase [ctor]

op _, _ I ntenti onBase | ntentionBase ->

IntentionBase [ctor assoc id: nonel]

endm

Figure 2: The definition in Maude of Belief, Desires, and Plas

tion op noPl an -> Pl anl DLi st states thatoPl an

is a constant plan list: the empty list. Moreover, the con-

catenation between plan lists is denoted by the operator
_and it is defined as followsop _ Pl anl DLi st
Pl anl DLi st -> Pl anl DLi st. The annotation ct or
assoc id: noPl an] says that concatenation is associ
tive with identitynoPl an. The addition of a plan identifier

Pi d to a plan listPi dL is simply be expressed by the term
Pi dL. Lists ofl nt ent i ons are modeled in a similar

Pi d,
way. At this point, we can finally define the notionSifat e
of a program. As defined in the modulSTERPRETER, (the
operator declaration for- _-) the sortSt at e is a triple
consisting of a&onf i gur ati on, anl nt ent i onBase, and
aMsgLi st . The sortConfi gurati on is a predefined sort
that denotes a multiset of objects (the soObf ect) and
messages (the savkg). We use a configuration to denot
the multiset of beliefs, desires, plans, and messagesse

is a list of messages (the satg) sent to the interpreter.
They represent the operations that must be performed by
the interpreter.

Thebehavior of the interpreter is based on [5] and consists
in a set of operations for managing (adding, removing) be-
liefs, desires, intentions, and plans; for selecting @éssind
plans; for executing methods. Their actions are modeled by
operatorg ctor] (e.g.,newDesire, sel ect Desire,
newl nt enti on, sel ect Pl an in Figure 4) that map
program elements to messages (). Messages are
used to build the state and thus to select the appropriate
transition rule. More in detail, let us consider the example
of adding a new belief. The activation of this operation
is modeled by a messagewBel i ef (< Bid BX |
ATTS >). The rulenewBel i ef (see Figure 4) models the

€ state transition associated to this operation. Namelg it i
Nt ta transition from a state where the configuratioadsand

a_

them. These messages represent the operations that must Bge operation list contains the messageBel i ef (< Bi d

performed by beliefs, desires, and plans. ThegogLi st

BX | ATTS >); to a state where the configuration

nod | NTERPRETER i s crl [selectDesire] : (CCD- IB -

protecting BELIEF . (selectDesire (D) ; M)) =>
protecting DESIRE . (CC D start(Did) - IB -
protecting | NTENTI ON- BASE . newi ntention(i(Did, PidL)) ; M)
if <Did: DX| desireState : Ready,
sorts State MsgList . planList : PidL > :=D .
subsort Msg < MsgList . crl [newntention] : (CC- IB -
(newi ntention (1) ; M)) =>
op nomsg : -> MsgList . (CC - addintention(l, 1B) -
op _;_ : MsgList MsgList -> MsgLi st (selectPlan (PidL) ; M))
[ctor assoc commid: nonsg] . if i(bd, PidL) :=1 .
op _-_-_ : Configuration IntentionBase crl [selectPlan] : (CCP -1 , IB -
MsgLi st -> State [ctor] . (selectPlan(Pid, PidL') ; M)) =>
op newBelief : Object -> Msg [ctor] . (CC P start(Pid) - 1, IB- M)
op delBelief : BelieflD-> Msg [ctor] . if i(bd, (Pid, PidL)) :=1
op newDesire : bject -> Msg [ctor] . /\ < Pid: PX| planState : Ready,
ops successD failedD : ATTS > := P .
DesirelD -> Msg [ctor] . crl [successPlan] : (CC P success(Pid) -
op selectDesire : Object -> I, 1B- M) =>
Msg [ctor] . (CCP-1, IB-
ops new ntention dellntention : del Intention (1) ; M)
Intention -> Msg [ctor] . if i(bd, (Pid, PidL)) :=1
op selectPlan : PlanlDList -> /\ < Pid: PX| planState : Succeeded,
Msg [ctor] . ATTS > := P .
crl [failedPlan] : (CC P failure(Pid) -
vars BDP P : bject . i(bid, (Pid, Pid , PidL)) ,
var | : Intention . IB- M) =>
vars IBIB : IntentionBase . (CC P start(Pid) -
var PidL PidL" : PlanlDList . i(Did, (Pid , PidL)) , IB- M)
var CC : Configuration . if <Pid : PX| planState : Ready,
var Bid : BeliefID. var DX : Desire . ATTS > := P .
vars Pid Pid : PlanlD . /\ < Pid: PX| planState : Failed,
var BX : Belief . var Did : DesirelD . ATTS > := P .
var PX: Plan . var Pr : Bool . crl [dellntention] : (CC- 1 , IB -
var ATTS : AttributeSet . del Intention (1) ; M) =>
var M: Mg . var M. : MsgList . (CC - IB - successD (Did) ; M)
rl [newBelief] : (CC- IB - if i(Did, (Pid, PidL")) :=1
(newBelief (B) ; M)) => rl [successDesire] :
(CCB-1B- M) . (CCD- IB - successD (Did) ; M) =>
crl [delBelief] : (CCB- IB - (D CC success(Did) - IB- M) .
(del Belief (Bid) ; M)) => crl [failedLastPlan] : (CC P failure(Pid) -
(CC- 1B - M) i(Did, Pid) , IB- M) =>
if <Bid: BX| ATTS > := B . (cC- i(bid, Pid) , IB -
crl [newDesire] : (CC- IB - failedD (Did) ; M)
(newDesire (D) ; M)) => if <Pid: PX| planState : Ready,
(CCD- IB - ATTS > := P .
(selectDesire (Did) ; M)) rl [failedDesire] :
if <Did: DX| desireState : Ready, (CCD- IB- failedD (Did) ; M) =>
ATTS > := D . (DCCfailure(Did) - IB- M) .
endm

Figure 3: The definition in Maude of the Interpreter

isCC < Bid: BX| ATTS > (i.e., the belief< Bi d messagenewl ntenti on(1) sent to the interpreter) and
BX | ATTS > has been added toC) and the mes- the request of changing the status of the desire (the message

sagenewBelief(< Bid : BX | ATTS >) has been start(Did) senttoDid). The messagatart (Did)

removed from the operation list. Removing a belief, adding activates the rewrite rulgtart of the moduleDESI RE

or removing a desire, an intention, or a plan are modeled in(see Figure 4). The messagew nt enti on(1) activates

a similar way. From an intuitive point of view, the selection the rule newl ntenti on that models a transition from

of a desire produces the instantiation of a new intention. a state where the intention base Ii8 and interpreter

Each intention has a list of plans. They are tried one by onehas received the messagew ntention(l) to a state

until a plan able to satisfy the intention is found. Therefor wherel has been added tbB. The rulesel ect Pl an

the intention is modeled by a padi(Di d, Pi dL), where models a transition from a state that contains the message

Di d is the identifier of the selected desire apidiL is the selectPlan(Pid , PidL') to a state that contains

list of plan identifiers. This behavior is described by rules the messageat art (Pi d) for the plan with identifier is

sel ect Desire, newl ntention, andsel ect Pl an of Pi d. The messaget art (Pi d) activates the conditional

Figure 4. The conditional ruleel ect Desi re models a rule start of the modulePLAN. The success and the

transition from a state where the operation list contains failure of a plan is represented by rulesuccessPI an,

the messagesel ectDesire(< Did : DX | ...>) failedPl an, dellntention, successDesire,

to a state that contains the request of a new intention (thef ai | edLast Pl an, and f ai | edDesi re. The rule

successPl an is activated when a plan succeeds (the of acquantancies that provide the requested service.

plan has received the messag®@&ccess(Pid)) and

has as effect the deletion of the corresponding intenton5 EORMAL SPECIFICATION

(del I ntention(l) issenttotheinterpreter). Onthe other

hand, when a plan fails (the ruiei | edPl an is activated) =~ Once we have specified the different aspects of an agents
the next plan in the intention is tried. When all the plans behavior, as explained above, we can take advantage of
have been tried (the rulieai | edLast Pl an is activated), = Maude’s support for wide spectrum formal analysis to ana-

the intention is removed and a messagel edD(Di d) is lyze different initial agent configurations. We describe-se
sent to the interpreter. eral examples to illustrate the basic ideas. We use Maude’s
Now we are ready to model theprogram re- rewrite strategy to see the result of a possible executien. W

ported in Section 3. First of all, this means we use search to determine whether, given an intended desire,
have to formalize the inheritance mechanism of be- the system can reach a state wheegireSt at e of the

liefs, desires, and plans. For instancepbsort given desire iSucceeded and we use model-checking to
Sear chd dProvi der < Pl an in the module see if all executions lead to such a state.
SEARCH- OLD- PROVI DER states that First, we define the elements of initial states of inter-

Sear chd dProvi der is a subclass ofl an. In other est and combine them to form two initial statesS{
words, each object of typgear chd dPr ovi der is a plan and I S2), the first contains a single desire to be sat-
and, thus, it inherits the structure of a plan. Furthermore, isfied (of typeNaneSer vi ceProvi der) and a message
the rules for a plan can be also applied to objects of typenew nt er nal D(D- 011) to initiate the satisfaction pro-
Sear chd dPr ovi der . The sentence cess, and the second initial state contains an additionral de
sire of the same type with its initiator message. In addition
subsort SearchNewProvider < Searchd dProvider there are plan objects corresponding to the plans to be tried
in order to satisfy the desires. Formally, we declare object

in the moduleSEARCH- NEW PROVI DERmodels the fact that identifier and object constants

Sear chNewPr ovi der is a plan type that inherits the struc-

ture and the rules oear chd dProvi der. In a similar ops B-001 B-002 B-003 B-004 B-005 B-009 : -> BelieflD.
. . . . ops D-001 D-001x : -> DesirelD .

way, we model the inheritance mechanism for beliefs and 5pe 5001 P-002 : -> PlaniD .

desires. ops nspl nsplx s2 pl p2 aq al a2 a3 pvl : -> Object .
Second, we have to formalize the encapsulation mecha-])) .
nism. This means we have to formalize the specific at- a_md define the object constants using the following equa-
tributes and methods of each belief, desire, or plan. Sim-tions.
ilarly to what we have already seen, attributes are rep-., .1 = <p 001 : nameservi ceProvi der |
resented by operators of the typp ... @ ... -> desireState : Ready,

. : : planl DList : (P-001, P-002),
Attr i _but e [ct (_)r] , methods by equatlons_ (i.eeq) and WentedService - B 002>
transition rules (i.ex |). Therefore, concerning our exam- eq nsplx = <D-001x : nameSer vi ceProvi der |

. desireState : Ready,
ple, the formalization of the attributes for beliefs, desir plani DLi st : (P-001. P-002),

and plans of Figure 3 is quite straightforward, and the re- want edServi ce : B-002> .

H : ; ; . . eq s2 = <B-002 : service | description : "Servizio 2"> .
sult is repqrted in Figure 4. Notice the attnbtp?lea_nLn st eq pvl = <B-009 : providers | description: "STo" .
that is defined as an operator whose domain is the list of agents:nil, servicel D B-002> .
all the plans that can be tried to satisfy the desire itself. °9 P = <P-001 = searenC i ovider | planstate = Ready.
Concerning the methods, we have exemplified the formal- service : B-002,
; : acq : B-001, agentlList : al> .
|z_at|on of thep.l anbody of SEARCH— oD PRO‘/.l DER (See eq p2 = <P-002 : searchNewProvider | planState : Ready,
Figure 4). Notice the combined use of equations and rules. precondition : true, service : B-002,

. acq : B-001, agentlList : none,
For instance, thel anbody of SEARCH- OLD- PROVI DER NADesire - D 002> .
is composed by a rule (i.e.rl [planbody] ...) eq ag = <B-001 : acquai ntances |

e agents : (B-003 B-004 B-005)> .

that models the transition from a state where we haveeq al = <B-003 : agent | name : "NI", address : "ADL".

a running plan€ Pid ... planState : Running services : (B-002 B-003)> .
...>) and a method activationp(anbody (Pid)) to

a state where we have the instantiation of a new be-
lief Provi ders that contains a list of acquantances built
by means of the functiorop makelLP : Providers
Servi ce Acquai ntances -> Providers. This func- ops CClL CC2 : -> Configuration .

tion is defined by a set of equations. The equations rep-84 %t = nspl s2 pvl pl p2 ag al a2 a3 new nternal (D 001)

. . X eq CC1 ; CCl nsplx new nternal D(D- 001x)
resent the fact that a list of providers is composed by a set

The initial states are defined in terms of configuratioas
andCcC2 and empty intention and message sets.

mod ACQUAI NTANCES i s

i ncluding BELIEF .

protecting O D-LIST .

sort Acquai ntances .

subsorts Acquai ntances < Belief .

op acquai ntances : -> Acquai ntances [ctor] .
op agents :_ : List{Gd} -> Attribute [ctor] .
endm

nod PROVIDERS i s

protecting SERVICE .

i ncludi ng ACQUAI NTANCES .

sort Providers .

subsorts Providers < Acquai ntances .

op providers : -> Providers [ctor] .

op serviceSort :_ : Service -> Attribute [ctor] .
op newProvider : List{Od} -> Msg [ctor] .

vars Bidl Bid2 : BelieflD.

var ST : String .

var G dLS : List{Gd} .

rl [new] : < Bidl : providers | description : ST,
agents : nil, servicelD: Bid2 >

newPr ovi der (G dLS) =>

< Bidl : providers | description : ST,
agents : QG dLS, servicelD: Bid2 > .
endm
nod AGENT is

i ncludi ng BELI EF .
protecting SERVICE O D-LI ST .
sorts Agent . subsort Agent < Belief .

op agent : -> Agent [ctor] .

op name :_ : String -> Attribute [ctor] .

op address :_ : String -> Attribute [ctor] .

op services :_ : List{Od} -> Attribute [ctor] .
endm

nmod SERVICE i's

i ncludi ng BELI EF .

sort Service . subsort Service < Belief .
op service : -> Service [ctor] .

endm

nod NAME- SERVI CE- PROVI DER i s

i ncluding DESIRE .

protecting BELIEF .

sorts NaneServiceProvider .

subsort NaneServiceProvider < Desire .

op naneServiceProvider : -> NameServi ceProvider .
op wantedService :_ : BelieflD-> Attribute .
andm

nod SEARCH- OLD- PROVI DER i s

including PLAN .

protecting AGENT PROVI DERS .

sorts Searchd dProvider .

subsort Searchd dProvider < Plan .

op searchd dProvider : -> Searchd dProvider [ctor] .
op service :_ : BeliefID-> Attribute [ctor] .

op acq :_ : BeliefID-> Attribute [ctor] .

op agentList :_ : Configuration -> Attribute [ctor] .
op serviceSort :_ : BelieflD-> Attribute [ctor] .
op resetAL : PlanlD -> Msg [ctor] .

op makelist : Cbject PlanlD -> Msg [ctor] .

op makelist4Provider : PlanlD -> Msg [ctor] .

op checkService : Object BelieflD -> Bool .

vars Bidl Bid2 Bid3 : BelieflD.
vars AG SV AQ : Object .

var C: Configuration .

var DS : String .

var LS1 LS2 LS3 : List{Qd} .

var ATTS ATTS ATTS' ' : AttributeSet .
var Pid : PlanID .

ceq checkService (AG Bid2) = true

if < Bidl: agent | services :
I\ occurs (Bid2 , LS1) .
eq checkService (AG Bid2) = false [owise] .
ceq makelLP (LS1, Bid2, AGC =
makelP ((Bid3 LS1), Bid2, ©
if < Bid3: agent | services :
/\ checkService (AG Bid2) .
ceq makelLP (LS1, Bid2, AGC =
makeLP (LS1, Bid2, ©)
if < Bid3: agent | services : LS3, ATTS > := AG
/\ not (checkService (AG Bid2)) .
eq makeLP (LS1, Bid2, none) = LSl .

LS1, ATTS > := AG

LS3, ATTS > := AG

[pl anbody] :
<Pi d: searchd dProvi der | planState: Running ,
acq: Bidl, ATTS> planbody (Pid) =>
<Pi d: searchd dProvi der | planState: Running,
acq: Bidl, ATTS> resetAL (Pid) .
crl [resetAL] :
<Pi d: searchO dProvi der | planState: Running ,
acq: Bi d1, agentList:C, ATTS>
reset AL (Pid) =>
<Pi d: searchd dProvi der | planState: Runni ng,
acq: Bi d1, agentList:none, ATTS>
makeLi st (AQ Pid)
if AQ:=< Bidl :
crl [makeList] :
<Pi d: searchd dProvi der | planState: Runni ng,
acq: Bidl, agentList:C, ATTS>
< Bid2 : agent | ATTS ' >
makeLi st (< Bidl : acquaintances |
agents : (Bid2 LS1), ATTS>, Pid) =>
<Pi d: searchO dProvi der | planState: Runni ng,
acq: Bi d1, agentList:(AG C), ATTS>
< Bid2 : agent | ATTS ' >
makeLi st (< Bidl : acquaintances |
agents : LS1, ATTS >, Pid)
if AG:= < Bid2: agent | ATTS > /\ LSLl =/=nil .
crl [makeList] :
<Pi d: searchd dProvi der | planState: Runni ng,
acq: Bi d1, agentList:C, ATTS>
< Bid2 : agent | ATTS ' >
makeLi st (< Bidl : acquaintances |
agents : (Bid2 LS1), ATTS>, Pid) =>
<Pi d: searchd dProvi der | planState: Runni ng,
acq: Bidl, agentList:(AGC), ATTS>
< Bid2 : agent | ATTS ' > nakeList4Provider (Pid)
if AG:= < Bid2: agent | ATTS > /\ LSl == nil
[makeLi st 4Provi der] :

acquai ntances | ATTS > .

< Pid : SOPX | planState : Running, service : Bidl,
agentList : C, ATTS >

makeLi st 4Provi der (Pid) =>

< Pid : SOPX | planState : Succeeded, service : Bidil,
agentList : C, ATTS >

newProvi der (makeLP (nil, Bidl, C)) success(Pid) .

endm

Figure 4: The definition in Maude of the program of Section 3

op nmakelLP : List{QO d} BelieflD Configuration -> List{Gd} .
ops IS11S2 : -> State .

eq IS1 = CC1 - nonel - nonsg .

eq |S2 = CC2 - nonel - nonsg .

As the first analysis we ask Mauder@write 1 S1 and ex-

amine the resulting final state. (We show only objects with

changed attributes.)

Maude> rew | S1 .
result State: (

<B-009 : providers | description:"ST9",
agent s: (B-005 B-003), servicelD:B-002>

<D-001 : naneServiceProvider | desireState : Succeeded,

pl anl DLi st (P-001, P-002) , want edServi ce : B-002>

<P-001 : searchd dProvider | planState : Succeeded,
precondition : true, service : B-002,acq : B-001,
agentList : ... >

.) - nonel - nonsg

We see that the plaR- 001 and the desird>- 001 have
reached success states. If we rewrig2 Maude picks an

execution in which desire- 001x succeeds bub- 001 does
not. We then useearchto see if a state in which- 001
succeeds can be reached frbse.

search 1S2 =>! C: Configuration

< D-001 : naneServiceProvider |
atts: AttributeSet > - |l:IntentionBase -

desireState : Succeeded,
m : MsgLi st

The search succeeds and Maude returns the search
state identifier, and values of the pattern vari-
ables C: Configuration, atts: AttributeSet,
I'l:IntentionBase, m:MgList. We can get in-
formation about how the state was reached by asking
Maude> show pat h | abel s. This results in the list of
labels of rewrite rules applied to reach the named state.
new nternal D, newi nternal D, sel ectDesire, selectDesire,

new ntention, selectPlan, (start)3, planbody, resetAL,

(mekelLi st)4, makeList4Provider, successPlan, dellntention,
newl ntention, successDesire, success, nhew

We can usenodel checkingto get similar information. For REFERENCES
example, we can ask whether in any execution $f in

which D- 001 is started (there is an intentian(D- 001, [1] AgentUML Web Siteht t p: // wwmv. aum . or g.

(P- 0_01’ pi di)_) and the pl anState Of_P' 001 Is 2] Benerecetti, M., F. Giunchiglia, and L. Serafini, “Model
Runni ng) then it completes (the computation eventually checking multiagent systemslburnal of Logic and Compu-
reaches a state in which the value of tiesi r eSt at e at- tation, vol. 8, no. 3, 1998, pp. 401—423.

tribute isSucceeded or Fai | ed). This is done by model

checking the temporal formulst ar t ed(D- 001, P- 001) [3] Bouhoula, A., J.-P. Jouannaud, and J. Meseguer, “Spaeifi
=> <> deci de(D-001). (The formalaP =<> Q says tion and proof in membership equational logiGheoretical

that in any state of an executionfif holds then in that state Computer Scienceol. 236, 2000, pp. 35-132.

or some later stat€) holds.) If the property fails to hold [4] clavel, M., F. Duran, S. Eker, P. Lincoln, N. Marti-
the model-checker returns a counter-example from which Oliet, J. Meseguer, and C. Talcott, MAUDE 2.0 MANUAL,
we can extract the states visited and the rules applied. In http://maude.cs.uiuc.edu, 2003.

our example situation, the rule list found by the model-
checker is equivalent to that found by search. The prob-
lem is that plan objects are not reusable. This could be a
design decision, in which case the initial state is badly de- [6] Howden, N., R. Ronnquist, A. Hodgson, and A. Lucas,

[5] Georgeff, M. P,, and A. L. Lansky, "Reactive Reasoningl an
Planning”, AAAI, 1987.

fined, or it could be a missing rule for plan behavior, and “Jack’™ - summary of an agent infrastructure,” 5th Interna-
that can be fixed. As a final example we can check if a de- tional Conference on Autonomous Agents, Montreal, Canada,
sire such a®- 001 with a given plan lis{ P- 001, P- 002) 2001.

IS In progressy unni ng(D- 001, (P-001, P-002)), then . [7] Marti-Oliet, N., and J. Meseguer, “Rewriting logic akogical
it continuos running until one plan succeeds or all fail, and semantic framework” HANDBOOK OE PHILOSOPHI-
pl ansTri ed((P-001, P-002)). For the initial state CAL LOGIC, Kluwer Academic Publishers.
above the model checker confirms that this property holds.
[8] Meseguer, J., “Conditional rewriting logic as a unifiedael
of concurrency,” Theoretical Computer Sciencevol. 96,

red nodel Check(IS2, running(D-001, (P-001, P-002)) 1992, pp. 73-155.
=> (runni ng(D 001, (P-001, P-002))
Cesul t BOOY‘{ p't ‘:‘EZT” ed((P-001, P-002)))) - [9] Pagliarecci, F., L. Spalazzi, and G. Capuzzi, “FormafiDe

nition of an Agent-Object Pogramming Language” The 2006
International Symposium on Collaborative Technologied an
Systems (CTS 2006), IEEE Computer Society Press, Las Ve-
gas (USA), 2006, pp. 298-305.

6. CONCLUSIONS [10] Pokahr, A., L. Braubach, and W. Lamersdorf, “Jadex: Im-
plementing a BDI-Infrastructure for JADE Agent&XP - In

Formal specifications are an extremely important part of Search of Innovatioifelecom Italia Lab, Vol. 3, No. 3, 2003,
programming. This paper presents the formal specifications ~ PP- 76-85.
of key concepts of agent-object programming, an emerg-[11] Rao, A. S., and M. P. Georgeff, “Modeling rational agent
ing programming paradigm. The main contributions are within a BDI architecture,” KRR'91.
providing executable specifications, and combining object
oriented and agent-oriented features in one framework. Wel12] Smith, G., “The Object-Z Specification Language,” Aul-
use the rewriting logic language Maude to provide a formal ~ vances in Formal MethodsKiuwer Academic Publisher,
definition of the notion of beliefs, desires, plans, andrthei 2000.
behavior. Furthermore, we have shown how an agent-objec{13] stehr, M.-O., and C. Talcott, “Plan in Maude Specifyiay
program can be represented in Maude. We then showed how Active Network Programming LanguageElectronic Notes
the specification can be used to analyze the program using in Theoretical Computer Scienceol. 71, 2002.
execution, search, and model-checking (Section 5). This is . i _
only a first step towards formal verification of agent-object [14] Wagpner, G., "A umi profile for agem'or'er.'ted modeling,

- . . Third International Workshop on AgentOriented Software
programs. Next stgps include deyelopmg a mapping from Engineering, Bologna (ltaly), 2002.
a specific agent-object programming language and use this
to reason about specific programs. Another step is to cod{15] Wooldridge, M., REASONING ABOUT RATIONAL
ify properties of interest and specify them in Maude to aid AGENTS, The MIT Press, Cambridge Massachusetts, 2000.
program developers in their analysis tasks. Substantal ca
studies need to be carried out.

