
Formal Specification of
Agent-Object Oriented Programs

Francesco Pagliarecci, Luca Spalazzi M.-O. Stehr, C. L. Talcott
Dipartimento di Ingegneria Informatica,

Gestionale e dell’Automazione Computer Science Laboratory
Universit̀a Politecnica delle Marche SRI International,

Ancona, Italy Menlo Park, CA 94025-3493 USA
{pagliarecci, spalazzi}@diiga.univpm.it {stehr, clt}@csl.sri.com

ABSTRACT

This paper presents a methodology for the formal speci-
fication of agent-object oriented programs.Agent-object
oriented programmingis a programming paradigm that
integrates both agent-oriented programming and object-
oriented programming (e.g, see Jack, Jadex). Even if there
are several formal specification frameworks and method-
ologies both for agent-oriented programs and for object-
oriented programs, nothing exists for agent-object program-
ming. In this paper, the rewriting logic language Maude
has been used as a formal framework. This opens to us the
possibility of using the wide-spectrum of formal modeling
and reasoning supported by Maude: analyzing agent-object
programs by means of execution, search, model checking,
or theorem proving to verify properties of a given program
such as goal satisfaction and plan termination.

KEYWORDS: Frameworks and Methodologies for Col-
laboration, Intelligent and Autonomous Agents in Col-
laboration.

1. INTRODUCTION

Agent-object oriented programmingis an emergent pro-
gramming paradigm that integrates both agent-oriented pro-
gramming (e.g., the so called Belief-Desire-Intention (BDI)
model [11]) and object-oriented programming. According
to this paradigm, programming means defining themen-
tal attitudes(i.e., beliefs, desires, and plans) that programs
must exhibit (as in agent-oriented programming). Beliefs,
desires, and plans can be programmed in terms of abstrac-
tion, encapsulation, inheritance, and polymorphism (as in
object-oriented programming). Nowadays, this paradigm
has been adopted in several examples of programming lan-
guages (e.g, see [6, 10, 9]) and methodologies (e.g, see
[14, 1]).

This paper presents a methodology for the formal specifi-
cation of agent-object oriented programs. Even if this pro-
gramming paradigm inherits all the work about methodolo-
gies and formal frameworks done for agent-oriented pro-
gramming (e.g., see [15, 2]) and object-oriented program-
ming (e.g., see [12]), nothing exists specifically conceived
for agent-object programming. Formal frameworks for
agent-oriented programming are usually based on some sort
of modal temporal logic, where beliefs, desires, and inten-
tions are represented by operators. In agent-object program-
ming, mental attitudes are complex structures with their
own attributes and methods and thus they can be hardly rep-
resented by simple modal operators. Formal frameworks
for object-oriented programming are usually based on pro-
cess algebras, where classes are represented by algebraic
structures. These structures can be easily exploited to repre-
sent mental attitudes in agent-object programming, as well.
Nevertheless, in agent-object programming, we often need
to represent temporal properties.
For all the above reasons, in this work we propose to
use the rewriting logic language Maude. Maude [4] is a
high-performance reflective language and system support-
ing both equational and rewriting logic specification and
programming for a wide range of applications (from the
formalization of mathematical structures to the modeling of
biological systems). Its significance is threefold. First,it
is based on a logic that can be used for the precise spec-
ification of a program semantics. Second, it is general in
the sense that various paradigms, especially the agent- and
object-oriented paradigms as well as concurrent behavior
can be integrated by using Maude as a framework. Third,
Maude is not only a language but also a system that supports
light-weight symbolic analysis of specifications, an impor-
tant feature for model validation and a first step on the path
to formal verification.
The paper is structured as follows. In Section 2, we provide
a brief introduction to Maude. Section 3 contains the exam-
ple of agent-object program that is formalized in Section 4

using Maude. The properties to verify and the results are
reported in Section 5. Finally, in Section 6 we give some
conclusions.

2. A BRIEF INTRODUCION TO MAUDE

Maude has been successfully used as a logical framework
[7], e.g. in the development of logics and theorem provers,
and as a semantic framework, e.g in the formalization of
programming language semantics [13].
Maude’s logical foundation is membership equational logic
[3] and rewriting logic [8], and hence it supports the spec-
ification of structured state transition systems over a rich
class of algebraic specifications. Local state transitionsare
expressed as rewrite rulesL ⇒ R over an algebraic speci-
fication of the state space. Such rewrite rules can be con-
ditional, written L ⇒ R if C with C being a condi-
tion, andL, R andC are terms involving operations which
again can be specified algebraically in membership equa-
tional logic. Since many specification, modeling, and pro-
gramming paradigms can be expressed as rewriting modulo
a suitable equational theory characterizing the state space,
Maude is an excellent choice for a framework in which dif-
ferent paradigms ranging from functional programming to
Petri nets can be integrated [8].
The Maude library provides basic syntax for specification
of concurrent object-oriented programming via multi-set
rewriting that we use in the present work. In a nutshell,
the state of a system is modeled as a multiset of objects and
messages. An object is of the form< oid : cid | attrs >,
whereoid andcid are the object and class identifiers, re-
spectively, andattrs is a set of attributes, i.e. labelled fields
of the formaid : val, whereval is the value associated
with attributeaid. An objectobj can perform internal state
transitions using rewrite rules such asobj ⇒ obj′ if C,
whereobj′ has the same identity asobj but with some of
the attributes modified. Alternatively, an objectobj can
participate in communication using rewrite rules such as
obj msg ⇒ obj′ msg′

1
. . . msg′

n
if C, wheremsg is

a message consumed andmsg′
1

. . . msg′
n

is a multiset of
messages produced in this atomic transition. More gener-
ally, obj′ can be a multiset of objects in the above rules so
that new objects can be created. Finally synchronization be-
tween objects can be represented by rules rewriting multiple
objects and messages.
Maude specifications are organized in a hierarchy of mod-
ules. A module may contain sort declarations specifying
the types of things to be represented; operator declarations
(keywordop or ops) giving the sorts of the arguments and
the value returned; equations (keywordeq orceq if there is
a condition) defining the operators; and rewrite rules (key-
word rl or crl). Maude specifications are executable.
Such specification can be used as formal prototypes of sys-

tems, and their behavior and properties can be studied using
symbolic execution, symbolic state space exploration, and
model checking techniques which are all supported by the
Maude rewriting engine [4]. This will be illustrated in Sec-
tion 5.

3. RUNNING EXAMPLE

Agent-object oriented programming means to establish
what are the interactions of the program with the other pro-
grams, what are its beliefs, its desires, and its plans. Beliefs,
desires, and plans should be defined in an abstract way, en-
capsulating their attributes and methods, exploiting inheri-
tance relations among them, and exploiting polymorphism.
In the rest of the paper, we consider the following exam-
ple. Let us suppose we have to program an agent that must
search for a partner (another agent) capable of a given ser-
vice. This example is partially described in Figure 3.

Figure 1: The UML class diagram of the running exam-
ple

Notice that, we describe the program using UML class di-
agram (with appropriate stereotypes). We do not choose a
specific programming language (as Jack, Jadex, or Alan)
since the proposed framework is independent on the pro-
gramming language. The UML diagram can be easily trans-
lated in the preferred language.
Beliefs can be modeled using object-oriented programming
principles. This means that, for each belief, we encapsulate
all the attributes that describe it and all the methods that
manipulate it. Each belief can be modified by any action
(e.g., a reception of a message) that satisfies its encapsula-
tion constraints. The beliefs of the example consist in be-
liefs about the agents that the program is able to contact (the
belief Agent) and their corresponding services (the belief
Service). We also haveAcquaintances andProviders
that are arrays of all the known agents and all the agents
providing a given service, respectively.
Desires are objects with their attributes and methods, as

well 1. When a new desire is asserted, its state becomes
ready (see the attributestate), an appropriate plan (see
the attributeplanlist) is selected and then executed. De-
sires that have been requested to be satisfied become in-
tentions (its state becomesrunning). Finally, the desire
state can besucceeded or failed depending on the fi-
nal result of the last plan execution. In the example, we
have reported only two desires:NameAcquaintances and
NameServiceProvider. The former represents the goal
of finding new acquantancies, the latter the goal of finding
the providers of a given service. Notice that, each desire
declares what plan types to try.
Plans are objects, as well. For each plan, the program-
mer must define at least two methods:precondition and
planbody. precondition is a Boolean method.2 When
a plan is selected and instantiated, the precondition is exe-
cuted. When it returns true, the plan is executed.planbody

is the method that contains the set of actions to be exe-
cuted in order to satisfy a given desire. In Figure 3, we
have reported three plans.SearchNewAcq is a plan to sat-
isfy NameAcquaintances. It sends a message to thefacil-
itator agentdf3 and waits for a list of agents as answer.
SearchOldProvider is a plan that searches the ar-
ray acq for an agent providing a given service.
SearchNewProvider is a plan that first asks a facilita-
tor for information about new agents, saves these informa-
tion in the arrayacq, and then applies theplanbody of
SearchOldProvider to perform a search in the arrayacq.

4. MODELING AN AGENT-OBJECT PRO-

GRAM IN MAUDE

The formal specification of an agent-object program pro-
ceeds in three steps:first, we have to represent theoper-
ational semanticsof an agent-object program (how the in-
terpreter works);second, we have to formalize the specific
program(e.g., the program modeled in Figure 3);third, we
have to formalize thespecificationsand verify them. Here
we describe the first two steps, the third one is reported in
Section 5. To specify theoperational semantics, we first ex-
plain what is theglobal stateof a program, then we discuss
thebehaviorof the interpreter.
Theglobal stateof a program must contain all the elements
of the program (i.e., beliefs, desires, plans, intentions)and
the operations that must be executed by the interpreter.
Beliefs, desires, and plans are modeled as objects with
their own attributes; operations are modeled as messages.
Therefore, the global state of a program is modeled as

1In traditional agent-oriented programming, desires are represented as
logical formulae

2In traditional agent-oriented programming, preconditions are logical
formulae

3A facilitator is an agent that manages an agent directory.

a multiset of objects and messages. Thus a belief is an
object of the form< Bid : BX | ATTS >, whereBid
is a belief object identifier,BX is a belief class identifier,
andATTS stands for the the set of belief attributes. As a
consequence, as reported in Figure 4, we need to define a
subsort ofOid (Oid is predefined in Maude and represents
the sort of all the object identifiers) calledBeliefID and a
subsort ofCid (Cid is predefined in Maude and represents
the sort of all the class identifiers) calledBelief. Letting
BX be a variable of sortBelief allows us to model the
inheritance mechanism, (we have an example in Figure
4). Similarly, plans and desires are objects with the
following structures: < Pid : PX | planState :

..., precondition : ..., planBody : ...,

ATTS > and < Did : DX | desireState : ...,

planList : ..., ATTS >, respectively (see Figure
4). The only difference is the set of attributes ofPlan and
Desire. A plan has at least three predefined attributes:
planState, precondition, and planBody; a desire
has at least two predefined attributes:desireState and
planList. Both planState anddesireState can as-
sume one of the following values:Ready, Running, Wait,
Succeeded, Failed. The two attributesprecondition
and planBody model the two predefined methods of a
plan. The attributeplanList is a list of plans that must
be tried in order to satisfy the desire. These plans are
ordered in a queue according to an order established by the
programmer. The definition of plans and desires in Figure
4 contains rewrite rules. Rules such asstart, success,
failure in modulesDESIRE and PLAN produce a state
change. The ruleplanbody of PLAN starts the execution
of the methodplanbody of a given plan instance. These
rules are activated by appropriate messages (see Figure 4).
The conditional rulestart of PLAN describes a transition
of the plan instancePid from a state whereplanState
is Ready to a state whereplanState is Running. This
rule is activated by the messagestart(Pid) and produces
a new message:planbody(Pid). This rule can be
applied only if theprecondition P is true. The message
planbody(Pid) activates a chain of rules that models the
behavior of the plan, in other words the set of statements
that must be executed in order to satisfy the intention. The
activation of any kind of (belief, desire, or plan) method is
modeled in a similar way. Concerning intentions, from an
intuitive point of view, the selection of a desire produces
the instantiation of a new intention.

Once we have defined the elements of a program, the
next step is the definition of lists of plan identifiers
(PlanIDList) and lists of intentions (IntentionBase).
For instance, let us considerPlanIDList (see Figure
4). The relationsubsort PlanID < PlanIDList states
that eachPlanID is also aPlanIDList (we may have
PlanIDList composed by only onePlanID). The defini-

mod BELIEF is
including CONFIGURATION .
including STRING .
sort Belief BeliefID .
subsort Belief < Cid .
subsort BeliefID < Oid .
op belief : -> Belief [ctor] .
op description :_ :

String -> Attribute [ctor] .
var BX : Belief .
var Bid : BeliefID .
var ATTS : AttributeSet .
endm

mod DESIRE is
including CONFIGURATION .
protecting PLAN-ID-LIST .
sorts Desire DesireID DesireState .
subsort Desire < Cid .
subsort DesireID < Oid .
op desire : -> Desire [ctor] .
op planList :_ :

PlanIDList -> Attribute [ctor] .
op desireState :_ :

DesireState -> Attribute [ctor] .
op Ready : -> DesireState [ctor] .
op Running : -> DesireState [ctor] .
op Wait : -> DesireState [ctor] .
op Succeeded : -> DesireState [ctor] .
op Failed : -> DesireState [ctor] .
ops start suspended resumed

success failure :
DesireID -> Msg [ctor] .

...
endm

mod INTENTION is
protecting DESIRE .
sort Intention .
op i : DesireID PlanIDList ->

Intention [ctor] .
endm

mod PLAN is
including CONFIGURATION .
sorts Plan PlanID PlanState AllSorts .

subsort Plan < Cid .
subsort PlanID < Oid .
op plan : -> Plan [ctor] .
op planState :_ : PlanState ->

Attribute [ctor] .
op precondition :_ : Bool -> Attribute .
op planbody :_ : AllSorts -> Attribute .
op Ready : -> PlanState [ctor] .
op Running : -> PlanState [ctor] .
op Wait : -> PlanState [ctor] .
op Succeeded : -> PlanState [ctor] .
op Failed : -> PlanState [ctor] .
ops start suspended resumed

success failure planbody : PlanID ->
Msg [ctor] .

var Pid : PlanID . var PX : Plan .
var P : Object . var Pr : Bool .
vars ATTS : AttributeSet .
crl [start] :

< Pid : PX | planState:Ready,
precondition:Pr > start(Pid) =>

< Pid : PX | planState:Running,
precondition:Pr > planbody(Pid)

if Pr = true .
rl [planbody] :

< Pid : PX | planState : Running,
ATTS > planbody (Pid) =>

< Pid : PX | planState : Wait, ATTS > .
endm

mod PLAN-ID-LIST is
including PLAN .
sort PlanIDList .
subsort PlanID < PlanIDList .
op noPlan : -> PlanIDList [ctor] .
op _ , _ : PlanIDList PlanIDList ->

PlanIDList [ctor assoc id: noPlan] .
endm

mod INTENTION-BASE is
protecting INTENTION .
sort IntentionBase .
subsort Intention < IntentionBase .
op noneI : -> IntentionBase [ctor] .
op _ , _ : IntentionBase IntentionBase ->

IntentionBase [ctor assoc id: noneI] .
endm

Figure 2: The definition in Maude of Belief, Desires, and Plans

tion op noPlan : -> PlanIDList states thatnoPlan
is a constant plan list: the empty list. Moreover, the con-
catenation between plan lists is denoted by the operator,

and it is defined as follows:op , : PlanIDList

PlanIDList -> PlanIDList. The annotation[ctor
assoc id: noPlan] says that concatenation is associa-
tive with identitynoPlan. The addition of a plan identifier
Pid to a plan listPidL is simply be expressed by the term
Pid, PidL. Lists ofIntentions are modeled in a similar
way. At this point, we can finally define the notion ofState

of a program. As defined in the moduleINTERPRETER, (the
operator declaration for_-_-_) the sortState is a triple
consisting of aConfiguration, anIntentionBase, and
aMsgList. The sortConfiguration is a predefined sort
that denotes a multiset of objects (the sortObject) and
messages (the sortMsg). We use a configuration to denote
the multiset of beliefs, desires, plans, and messages sent to
them. These messages represent the operations that must be
performed by beliefs, desires, and plans. The sortMsgList

is a list of messages (the sortMsg) sent to the interpreter.
They represent the operations that must be performed by
the interpreter.

Thebehavior of the interpreter is based on [5] and consists
in a set of operations for managing (adding, removing) be-
liefs, desires, intentions, and plans; for selecting desires and
plans; for executing methods. Their actions are modeled by
operators[ctor] (e.g.,newDesire, selectDesire,
newIntention, selectPlan in Figure 4) that map
program elements to messages (sortMsg). Messages are
used to build the state and thus to select the appropriate
transition rule. More in detail, let us consider the example
of adding a new belief. The activation of this operation
is modeled by a messagenewBelief(< Bid : BX |

ATTS >). The rulenewBelief (see Figure 4) models the
state transition associated to this operation. Namely, it is
a transition from a state where the configuration isCC and
the operation list contains the messagenewBelief(< Bid

: BX | ATTS >); to a state where the configuration

mod INTERPRETER is
protecting BELIEF .
protecting DESIRE .
protecting INTENTION-BASE .

sorts State MsgList .
subsort Msg < MsgList .

op nomsg : -> MsgList .
op _;_ : MsgList MsgList -> MsgList

[ctor assoc comm id: nomsg] .
op _-_-_ : Configuration IntentionBase

MsgList -> State [ctor] .
op newBelief : Object -> Msg [ctor] .
op delBelief : BeliefID -> Msg [ctor] .
op newDesire : Object -> Msg [ctor] .
ops successD failedD :

DesireID -> Msg [ctor] .
op selectDesire : Object ->

Msg [ctor] .
ops newIntention delIntention :

Intention -> Msg [ctor] .
op selectPlan : PlanIDList ->

Msg [ctor] .

vars B D P P’ : Object .
var I : Intention .
vars IB IB’ : IntentionBase .
var PidL PidL’ : PlanIDList .
var CC : Configuration .
var Bid : BeliefID . var DX : Desire .
vars Pid Pid’ : PlanID .
var BX : Belief . var Did : DesireID .
var PX : Plan . var Pr : Bool .
var ATTS : AttributeSet .
var M : Msg . var ML : MsgList .
rl [newBelief] : (CC - IB -

(newBelief (B) ; ML)) =>
(CC B - IB - ML) .

crl [delBelief] : (CC B - IB -
(delBelief (Bid) ; ML)) =>
(CC - IB - ML)
if < Bid : BX | ATTS > := B .

crl [newDesire] : (CC - IB -
(newDesire (D) ; ML)) =>

(CC D - IB -
(selectDesire (Did) ; ML))

if < Did : DX | desireState : Ready,
ATTS > := D .

crl [selectDesire] : (CC D - IB -
(selectDesire (D) ; ML)) =>

(CC D start(Did) - IB -
newIntention(i(Did, PidL)) ; ML)

if < Did : DX | desireState : Ready,
planList : PidL > := D .

crl [newIntention] : (CC - IB -
(newIntention (I) ; ML)) =>

(CC - addIntention(I, IB) -
(selectPlan (PidL) ; ML))

if i(Did, PidL) := I .
crl [selectPlan] : (CC P - I , IB -

(selectPlan(Pid, PidL’) ; ML)) =>
(CC P start(Pid) - I , IB - ML)
if i(Did, (Pid , PidL’)) := I
/\ < Pid : PX | planState : Ready,

ATTS > := P .
crl [successPlan] : (CC P success(Pid) -

I , IB - ML) =>
(CC P - I , IB -

delIntention (I) ; ML)
if i(Did, (Pid , PidL)) := I
/\ < Pid : PX | planState : Succeeded,

ATTS > := P .
crl [failedPlan] : (CC P’ failure(Pid) -

i(Did, (Pid , Pid’ , PidL)) ,
IB - ML) =>

(CC P’ start(Pid’) -
i(Did, (Pid’ , PidL)) , IB - ML)

if < Pid’ : PX | planState : Ready,
ATTS > := P’ .

/\ < Pid : PX | planState : Failed,
ATTS > := P .

crl [delIntention] : (CC - I , IB -
delIntention (I) ; ML) =>

(CC - IB - successD (Did) ; ML)
if i(Did, (Pid , PidL’)) := I .

rl [successDesire] :
(CC D - IB - successD (Did) ; ML) =>
(D CC success(Did) - IB - ML) .

crl [failedLastPlan] : (CC P failure(Pid) -
i(Did, Pid) , IB - ML) =>

(CC - i(Did, Pid) , IB -
failedD (Did) ; ML)

if < Pid : PX | planState : Ready,
ATTS > := P .

rl [failedDesire] :
(CC D - IB - failedD (Did) ; ML) =>
(D CC failure(Did) - IB - ML) .

endm

Figure 3: The definition in Maude of the Interpreter

is CC < Bid : BX | ATTS > (i.e., the belief< Bid

: BX | ATTS > has been added toCC) and the mes-
sage newBelief(< Bid : BX | ATTS >) has been
removed from the operation list. Removing a belief, adding
or removing a desire, an intention, or a plan are modeled in
a similar way. From an intuitive point of view, the selection
of a desire produces the instantiation of a new intention.
Each intention has a list of plans. They are tried one by one
until a plan able to satisfy the intention is found. Therefore,
the intention is modeled by a pairi(Did, PidL), where
Did is the identifier of the selected desire andPidL is the
list of plan identifiers. This behavior is described by rules
selectDesire, newIntention, and selectPlan of
Figure 4. The conditional ruleselectDesire models a
transition from a state where the operation list contains
the messageselectDesire(< Did : DX | ...>)

to a state that contains the request of a new intention (the

messagenewIntention(I) sent to the interpreter) and
the request of changing the status of the desire (the message
start(Did) sent toDid). The messagestart(Did)
activates the rewrite rulestart of the moduleDESIRE
(see Figure 4). The messagenewIntention(I) activates
the rule newIntention that models a transition from
a state where the intention base isIB and interpreter
has received the messagenewIntention(I) to a state
where I has been added toIB. The rule selectPlan
models a transition from a state that contains the message
selectPlan(Pid , PidL’) to a state that contains
the messagestart(Pid) for the plan with identifier is
Pid. The messagestart(Pid) activates the conditional
rule start of the modulePLAN. The success and the
failure of a plan is represented by rules:successPlan,
failedPlan, delIntention, successDesire,

failedLastPlan, and failedDesire. The rule

successPlan is activated when a plan succeeds (the
plan has received the messagesuccess(Pid)) and
has as effect the deletion of the corresponding intention
(delIntention(I) is sent to the interpreter). On the other
hand, when a plan fails (the rulefailedPlan is activated)
the next plan in the intention is tried. When all the plans
have been tried (the rulefailedLastPlan is activated),
the intention is removed and a messagefailedD(Did) is
sent to the interpreter.
Now we are ready to model theprogram re-
ported in Section 3. First of all, this means we
have to formalize the inheritance mechanism of be-
liefs, desires, and plans. For instance,subsort
SearchOldProvider < Plan in the module
SEARCH-OLD-PROVIDER states that
SearchOldProvider is a subclass ofPlan. In other
words, each object of typeSearchOldProvider is a plan
and, thus, it inherits the structure of a plan. Furthermore,
the rules for a plan can be also applied to objects of type
SearchOldProvider. The sentence

subsort SearchNewProvider < SearchOldProvider

in the moduleSEARCH-NEW-PROVIDERmodels the fact that
SearchNewProvider is a plan type that inherits the struc-
ture and the rules ofSearchOldProvider. In a similar
way, we model the inheritance mechanism for beliefs and
desires.
Second, we have to formalize the encapsulation mecha-
nism. This means we have to formalize the specific at-
tributes and methods of each belief, desire, or plan. Sim-
ilarly to what we have already seen, attributes are rep-
resented by operators of the typeop ... : ... ->

Attribute [ctor], methods by equations (i.e.,eq) and
transition rules (i.e.,rl). Therefore, concerning our exam-
ple, the formalization of the attributes for beliefs, desires,
and plans of Figure 3 is quite straightforward, and the re-
sult is reported in Figure 4. Notice the attributeplanList,
that is defined as an operator whose domain is the list of
all the plans that can be tried to satisfy the desire itself.
Concerning the methods, we have exemplified the formal-
ization of theplanbody of SEARCH-OLD-PROVIDER (see
Figure 4). Notice the combined use of equations and rules.
For instance, theplanbody of SEARCH-OLD-PROVIDER
is composed by a rule (i.e.,rl [planbody] ...)
that models the transition from a state where we have
a running plan (< Pid ... planState : Running

...>) and a method activation (planbody (Pid)) to
a state where we have the instantiation of a new be-
lief Providers that contains a list of acquantances built
by means of the functionop makeLP : Providers

Service Acquaintances -> Providers. This func-
tion is defined by a set of equations. The equations rep-
resent the fact that a list of providers is composed by a set

of acquantancies that provide the requested service.

5. FORMAL SPECIFICATION

Once we have specified the different aspects of an agents
behavior, as explained above, we can take advantage of
Maude’s support for wide spectrum formal analysis to ana-
lyze different initial agent configurations. We describe sev-
eral examples to illustrate the basic ideas. We use Maude’s
rewrite strategy to see the result of a possible execution. We
use search to determine whether, given an intended desire,
the system can reach a state wheredesireState of the
given desire isSucceeded and we use model-checking to
see if all executions lead to such a state.
First, we define the elements of initial states of inter-
est and combine them to form two initial states (IS1

and IS2), the first contains a single desire to be sat-
isfied (of typeNameServiceProvider) and a message
newInternalD(D-011) to initiate the satisfaction pro-
cess, and the second initial state contains an additional de-
sire of the same type with its initiator message. In addition
there are plan objects corresponding to the plans to be tried
in order to satisfy the desires. Formally, we declare object
identifier and object constants

ops B-001 B-002 B-003 B-004 B-005 B-009 : -> BeliefID .
ops D-001 D-001x : -> DesireID .
ops P-001 P-002 : -> PlanID .
ops nsp1 nsp1x s2 p1 p2 aq a1 a2 a3 pv1 : -> Object .

and define the object constants using the following equa-
tions.

eq nsp1 = <D-001 : nameServiceProvider |
desireState : Ready,
planIDList : (P-001, P-002),
wantedService : B-002> .

eq nsp1x = <D-001x : nameServiceProvider |
desireState : Ready,
planIDList : (P-001, P-002),
wantedService : B-002> .

eq s2 = <B-002 : service | description : "Servizio 2"> .
eq pv1 = <B-009 : providers | description:"ST9",

agents:nil, serviceID:B-002> .
eq p1 = <P-001 : searchOldProvider | planState : Ready,

precondition : Pr,
service : B-002,
acq : B-001, agentList : a1> .

eq p2 = <P-002 : searchNewProvider | planState : Ready,
precondition : true, service : B-002,
acq : B-001, agentList : none,
NADesire : D-002> .

eq aq = <B-001 : acquaintances |
agents : (B-003 B-004 B-005)> .

eq a1 = <B-003 : agent | name : "N1", address : "AD1",
services : (B-002 B-003)> .

...

The initial states are defined in terms of configurationsCC1

andCC2 and empty intention and message sets.

ops CC1 CC2 : -> Configuration .
eq CC1 = nsp1 s2 pv1 p1 p2 aq a1 a2 a3 newInternalD(D-001)
eq CC1 = CC1 nsp1x newInternalD(D-001x)

mod ACQUAINTANCES is
including BELIEF .
protecting OID-LIST .
sort Acquaintances .
subsorts Acquaintances < Belief .
op acquaintances : -> Acquaintances [ctor] .
op agents :_ : List{Oid} -> Attribute [ctor] .
endm

mod PROVIDERS is
protecting SERVICE .
including ACQUAINTANCES .
sort Providers .
subsorts Providers < Acquaintances .
op providers : -> Providers [ctor] .
op serviceSort :_ : Service -> Attribute [ctor] .
op newProvider : List{Oid} -> Msg [ctor] .
vars Bid1 Bid2 : BeliefID .
var ST : String .
var OidLS : List{Oid} .
rl [new] : < Bid1 : providers | description : ST,

agents : nil, serviceID : Bid2 >
newProvider(OidLS) =>

< Bid1 : providers | description : ST,
agents : OidLS, serviceID : Bid2 > .

endm

mod AGENT is
including BELIEF .
protecting SERVICE OID-LIST .
sorts Agent . subsort Agent < Belief .
op agent : -> Agent [ctor] .
op name :_ : String -> Attribute [ctor] .
op address :_ : String -> Attribute [ctor] .
op services :_ : List{Oid} -> Attribute [ctor] .
endm

mod SERVICE is
including BELIEF .
sort Service . subsort Service < Belief .
op service : -> Service [ctor] .
endm

mod NAME-SERVICE-PROVIDER is
including DESIRE .
protecting BELIEF .
sorts NameServiceProvider .
subsort NameServiceProvider < Desire .
op nameServiceProvider : -> NameServiceProvider .
op wantedService :_ : BeliefID -> Attribute .
andm

mod SEARCH-OLD-PROVIDER is
including PLAN .
protecting AGENT PROVIDERS .
sorts SearchOldProvider .
subsort SearchOldProvider < Plan .
op searchOldProvider : -> SearchOldProvider [ctor] .
op service :_ : BeliefID -> Attribute [ctor] .
op acq :_ : BeliefID -> Attribute [ctor] .
op agentList :_ : Configuration -> Attribute [ctor] .
op serviceSort :_ : BeliefID -> Attribute [ctor] .
op resetAL : PlanID -> Msg [ctor] .
op makeList : Object PlanID -> Msg [ctor] .
op makeList4Provider : PlanID -> Msg [ctor] .
op checkService : Object BeliefID -> Bool .
op makeLP : List{Oid} BeliefID Configuration -> List{Oid} .

vars Bid1 Bid2 Bid3 : BeliefID .
vars AG SV AQ : Object .
var C : Configuration .
var DS : String .
var LS1 LS2 LS3 : List{Oid} .
var ATTS ATTS’ ATTS’’ : AttributeSet .
var Pid : PlanID .

ceq checkService (AG, Bid2) = true
if < Bid1 : agent | services : LS1, ATTS > := AG
/\ occurs (Bid2 , LS1) .

eq checkService (AG, Bid2) = false [owise] .
ceq makeLP (LS1, Bid2, AG C) =

makeLP ((Bid3 LS1), Bid2, C)
if < Bid3 : agent | services : LS3, ATTS > := AG
/\ checkService (AG, Bid2) .

ceq makeLP (LS1, Bid2, AG C) =
makeLP (LS1, Bid2, C)
if < Bid3 : agent | services : LS3, ATTS > := AG
/\ not (checkService (AG, Bid2)) .

eq makeLP (LS1, Bid2, none) = LS1 .

rl [planbody] :
<Pid:searchOldProvider | planState:Running ,
acq:Bid1, ATTS> planbody (Pid) =>

<Pid:searchOldProvider | planState:Running,
acq:Bid1, ATTS> resetAL (Pid) .

crl [resetAL] :
<Pid:searchOldProvider | planState:Running ,
acq:Bid1, agentList:C, ATTS>

resetAL (Pid) =>
<Pid:searchOldProvider | planState:Running,
acq:Bid1, agentList:none, ATTS>

makeList (AQ, Pid)
if AQ := < Bid1 : acquaintances | ATTS > .

crl [makeList] :
<Pid:searchOldProvider | planState:Running,
acq:Bid1, agentList:C, ATTS>

< Bid2 : agent | ATTS’’ >
makeList (< Bid1 : acquaintances |

agents : (Bid2 LS1), ATTS>, Pid) =>
<Pid:searchOldProvider | planState:Running,
acq:Bid1, agentList:(AG C), ATTS>

< Bid2 : agent | ATTS’’ >
makeList (< Bid1 : acquaintances |

agents : LS1, ATTS >, Pid)
if AG := < Bid2 : agent | ATTS > /\ LS1 =/= nil .

crl [makeList] :
<Pid:searchOldProvider | planState:Running,
acq:Bid1, agentList:C, ATTS>

< Bid2 : agent | ATTS’’ >
makeList (< Bid1 : acquaintances |

agents : (Bid2 LS1), ATTS>, Pid) =>
<Pid:searchOldProvider | planState:Running,
acq:Bid1, agentList:(AG C), ATTS>

< Bid2 : agent | ATTS’’ > makeList4Provider (Pid)
if AG := < Bid2 : agent | ATTS > /\ LS1 == nil .

rl [makeList4Provider] :
< Pid : SOPX | planState : Running, service : Bid1,

agentList : C, ATTS >
makeList4Provider (Pid) =>
< Pid : SOPX | planState : Succeeded, service : Bid1,

agentList : C, ATTS >
newProvider (makeLP (nil, Bid1, C)) success(Pid) .

endm

Figure 4: The definition in Maude of the program of Section 3

ops IS1 IS2 : -> State .
eq IS1 = CC1 - noneI - nomsg .
eq IS2 = CC2 - noneI - nomsg .

As the first analysis we ask Maude torewrite IS1 and ex-
amine the resulting final state. (We show only objects with
changed attributes.)

Maude> rew IS1 .
result State: (
<B-009 : providers | description:"ST9",

agents:(B-005 B-003), serviceID:B-002>
<D-001 : nameServiceProvider | desireState : Succeeded,
planIDList : (P-001,P-002),wantedService : B-002>
<P-001 : searchOldProvider | planState : Succeeded,

precondition : true, service : B-002,acq : B-001,
agentList : ... >

...) - noneI - nomsg

We see that the planP-001 and the desireD-001 have
reached success states. If we rewriteIS2 Maude picks an

execution in which desireD-001x succeeds butD-001 does
not. We then usesearch to see if a state in whichD-001
succeeds can be reached fromIS2.

search IS2 =>! C:Configuration
< D-001 : nameServiceProvider | desireState : Succeeded,

atts:AttributeSet > - II:IntentionBase - ml:MsgList .

The search succeeds and Maude returns the search
state identifier, and values of the pattern vari-
ables C:Configuration, atts:AttributeSet,
II:IntentionBase, ml:MsgList. We can get in-
formation about how the state was reached by asking
Maude> show path labels. This results in the list of
labels of rewrite rules applied to reach the named state.

newInternalD, newInternalD, selectDesire, selectDesire,
newIntention, selectPlan, (start)3, planbody, resetAL,
(makeList)4, makeList4Provider, successPlan, delIntention,
newIntention, successDesire, success, new

We can usemodel checkingto get similar information. For
example, we can ask whether in any execution ofIS2 in
which D-001 is started (there is an intentioni(D-001,
(P-001, pidl)) and the planState of P-001 is
Running) then it completes (the computation eventually
reaches a state in which the value of thedesireState at-
tribute isSucceeded or Failed). This is done by model
checking the temporal formulastarted(D-001,P-001)
=> <> decide(D-001). (The formalaP ⇒<> Q says
that in any state of an execution ifP holds then in that state
or some later stateQ holds.) If the property fails to hold
the model-checker returns a counter-example from which
we can extract the states visited and the rules applied. In
our example situation, the rule list found by the model-
checker is equivalent to that found by search. The prob-
lem is that plan objects are not reusable. This could be a
design decision, in which case the initial state is badly de-
fined, or it could be a missing rule for plan behavior, and
that can be fixed. As a final example we can check if a de-
sire such asD-001 with a given plan list(P-001,P-002)
is in progress,running(D-001,(P-001,P-002)), then
it continuos running until one plan succeeds or all fail,
plansTried((P-001,P-002)). For the initial state
above the model checker confirms that this property holds.

red modelCheck(IS2, running(D-001,(P-001,P-002))
=> (running(D-001,(P-001,P-002))

W plansTried((P-001,P-002)))) .
result Bool: true

6. CONCLUSIONS

Formal specifications are an extremely important part of
programming. This paper presents the formal specifications
of key concepts of agent-object programming, an emerg-
ing programming paradigm. The main contributions are
providing executable specifications, and combining object-
oriented and agent-oriented features in one framework. We
use the rewriting logic language Maude to provide a formal
definition of the notion of beliefs, desires, plans, and their
behavior. Furthermore, we have shown how an agent-object
program can be represented in Maude. We then showed how
the specification can be used to analyze the program using
execution, search, and model-checking (Section 5). This is
only a first step towards formal verification of agent-object
programs. Next steps include developing a mapping from
a specific agent-object programming language and use this
to reason about specific programs. Another step is to cod-
ify properties of interest and specify them in Maude to aid
program developers in their analysis tasks. Substantial case
studies need to be carried out.

REFERENCES

[1] Agent UML Web Site,http://www.auml.org.

[2] Benerecetti, M., F. Giunchiglia, and L. Serafini, “Model
checking multiagent systems,”Journal of Logic and Compu-
tation, vol. 8, no. 3, 1998, pp. 401–423.

[3] Bouhoula, A., J.-P. Jouannaud, and J. Meseguer, “Specifica-
tion and proof in membership equational logic,”Theoretical
Computer Science, vol. 236, 2000, pp. 35–132.

[4] Clavel, M., F. Durán, S. Eker, P. Lincoln, N. Marti-
Oliet, J. Meseguer, and C. Talcott, MAUDE 2.0 MANUAL,
http://maude.cs.uiuc.edu, 2003.

[5] Georgeff, M. P., and A. L. Lansky, ”Reactive Reasoning and
Planning”, AAAI, 1987.

[6] Howden, N., R. Rönnquist, A. Hodgson, and A. Lucas,
“JackTM - summary of an agent infrastructure,” 5th Interna-
tional Conference on Autonomous Agents, Montreal, Canada,
2001.

[7] Martı́-Oliet, N., and J. Meseguer, “Rewriting logic as alogical
and semantic framework,” HANDBOOK OF PHILOSOPHI-
CAL LOGIC, Kluwer Academic Publishers.

[8] Meseguer, J., “Conditional rewriting logic as a unified model
of concurrency,” Theoretical Computer Science, vol. 96,
1992, pp. 73–155.

[9] Pagliarecci, F., L. Spalazzi, and G. Capuzzi, “Formal Defi-
nition of an Agent-Object Pogramming Language” The 2006
International Symposium on Collaborative Technologies and
Systems (CTS 2006), IEEE Computer Society Press, Las Ve-
gas (USA), 2006, pp. 298–305.

[10] Pokahr, A., L. Braubach, and W. Lamersdorf, “Jadex: Im-
plementing a BDI-Infrastructure for JADE Agents,”EXP - In
Search of InnovationTelecom Italia Lab, Vol. 3, No. 3, 2003,
pp. 76–85.

[11] Rao, A. S., and M. P. Georgeff, “Modeling rational agents
within a BDI architecture,” KRR’91.

[12] Smith, G., “The Object-Z Specification Language,” inAd-
vances in Formal Methods, Kluwer Academic Publisher,
2000.

[13] Stehr, M.-O., and C. Talcott, “Plan in Maude Specifyingan
Active Network Programming Language,”Electronic Notes
in Theoretical Computer Science, vol. 71, 2002.

[14] Wagner, G., “A uml profile for agent-oriented modeling,”
Third International Workshop on AgentOriented Software
Engineering, Bologna (Italy), 2002.

[15] Wooldridge, M., REASONING ABOUT RATIONAL
AGENTS, The MIT Press, Cambridge Massachusetts, 2000.

