
PLANNING AND LEARNING ALGORITHMS
FOR ROUTING IN DISRUPTION-TOLERANT NETWORKS

Mark-Oliver Stehr and Carolyn Talcott
SRI International, Computer Science Laboratory, Menlo Park, California 94025, USA

Abstract—We give an overview of algorithms that we have
been developing in the DARPA Disruption-Tolerant Networking
program, which aims at improving communication in networks
with intermittent and episodic connectivity. Thanks to the use of
network caching, this can be accomplished without the need for
a simultaneous end-to-end path that is required by traditional
Internet and mobile ad-hoc network (MANET) protocols. We
employ a disciplined two-level approach that clearly distinguishes
the dissemination of application content from the dissemination
of network-related knowledge, each of which can be supported
by different algorithms. Specifically, we present probabilisitc
reflection, a single-message protocol enabling the dissemina-
tion of knowledge in strongly disrupted networks. For content
dissemination, we present two approaches, namely a symbolic
planning algorithm that exploits partially predictable temporal
behavior, and a distributed and disruption-tolerant reinforcement
learning algorithm that takes into account feedback about past
performance.

I. DELAY/DISRUPTION-TOLERANT NETWORKING

In the current generation of Internet protocols based on
the packet switching paradigm, packets are discarded by
routers immediately after forwarding, independent of their
sucessful reception or acceptence at the next hop. Essen-
tially, this means that sucessful delivery of a packet requires
the existence of a sufficiently stable end-to-end path at
some instant in time. However, in today’s networks, which
are often characterized by intermittent connectivity, there
are various reasons why maintaining such paths becomes
impossible or even undesirable. For instance, node failures
and disruptions are part of the normal operation in mobile
ad hoc networks set up for military operations or emergency
response. Space-ground-networks (e.g. involving satellites)
are often characterized by episodic connectivity and long
latencies. In many applications, e.g. in sensor networks,
resource constraints (e.g. regarding energy and spectrum)
make it undesirable to keep active all nodes and links all
the time even if it would be physically possible. More
generally, there is need to support communication even
in scenarios when end-to-end paths never exists, such
as in networks relying on message ferries, e.g. vehicles,

We gratefully acknowledge support from DARPA through Contract
W15P7T-06-C-P427. Distribution Statement A: Approved for Public
Release, Distribution Unlimited.

unmanned aerial vehicles (UAVs), or simply personal digital
assistants (PDAs), for the transport of data. The trend
of an explosively growing number of energy-constrained
networked devices competing for communication spectrum
growing at a much slower pace indicates that intermittent
connectivity will become an even more common mode of
operation in the near future. However, even in cases where
the probablility of stable end-to-end paths is reasonably
high, end-to-end retransmission such as implemented by
TCP/IP may not be a satisfactory solution, because first it
relies on relatively small round-trip times, and second the
waste of resources by retransmitting data that has made
it half-way to its destination is considerable and usually
occurs when the network is already stressed enough.

The goal of delay/disruption-tolerant networking (DTN)
[7] is to design protocols that are suitable for networks
with intermittent connectivity of various degrees of pre-
dictability, ranging from unpredictable networks, arising
from random movements of people or vehicles, to highly
predictable networks, e.g. satellite networks based on well-
defined satellite orbits. To overcome disconnection, content
will be stored in the network for extended periods of time up
to an expiration time that can be specified for each unit of
information, which is called a bundle in DTN terminology.
Since the use of storage is so central to the solution,
we think of DTN, more generally, as an experiment of
what can be achieved in storage-rich networks, i.e. if
storage would not be a constraining resource, an assumption
fundamentally different from that underlying the Internet
protocols. The justification for being interested in this case
is that a rapidly growing gap can be observed between the
cost of storage vs. the cost of communication bandwidth
making storage relatively less expensive and storage-rich
ad hoc networks an increasingly relevant case.

II. RELATED WORK

The Delay-Tolerant Networking Research Group (DT-
NRG) proposed the delay-tolerant network architecture [6],
[2] based on a store-and-forward paradigm and a notion
of custody transfer, which we more generally view as a
special case of network caching. Our experimental work
is based on the DTN reference implementation that was
originally developed by the DTNRG and further advanced

Page 1 of 8

in the DARPA DTN program [11] towards an architec-
ture for policy-based networking using a knowledge-based,
declarative approach.

Jain et al. [10] described a number of routing approaches
in delay-tolerant networks. These approaches are based on
oracles to provide nodes with complete or partial informa-
tion about contacts, queuing at nodes, and traffic demands.
The novelty of the overall approach lies in the consider-
ation of the temporal aspect of network connectivity. The
limitations of these approaches are that they focus on single-
path routing, and are based on modifications of Dijkstra’s
shortest-path algorithm, which relies on a relatively up-to-
date view of the network topology.

Another effort that considers the temporal aspect of net-
work connectivity is the space-time routing (STR) approach
proposed in [5]. STR consists of an on-demand routing
scheme based on distances to destinations that incorporates
information about the times when routes to destinations
are established and the times when packets are originated
by their sources. However, the inclusion of the temporal
dimension in STR is limited to the freshness of information.

For capturing the dependency of routing on space and
time, [15] proposes a different framework which is suitable
for networks with predictable mobility and attempts to cap-
ture the time dependency of links rather than the freshness
of information as STR does. The new framework is based
on space-time graphs, which are layered graphs with each
layer corresponding to a discrete time interval in the lifetime
of the network and containing all network nodes.

Epidemic routing has been proposed for partially con-
nected networks when nodes move randomly. The approach
by [20] uses summary vectors stating the messages that
have been received by nodes, and packets are forwarded
to all neighbors. Serveral ways to control the message
flooding of epidemic routing, see e.g. [13] or [17], have
been developed to overcome its high overhead, including
directed diffusion [9] which has been proposed as a scalable
and robust communication paradigm for sensor networks.
It refers to a class of routing algorithms based on interest
and reinforcement learning. Their objective is to route
streams of small units of information from sources to
sinks guided by interest. Directed diffusion is based on
selecting paths between source and sink with the idea that
the choice can adapt to changing network conditions. For
backward reinforcement and suppression of paths, there is
an assumption that routers have some freedom to locally
adapt the rate (e.g. by omitting sensor readings), which is
not an option for the potentially large bundles that DTNs
are concerned with. In contrast to bundles in DTNs, units
of information in directed diffusion are typically short-
lived, and although they are stored in local data caches,

the purpose of caching is the avoidence of routing loops
rather than to overcome intermittent connectivity or increase
information availability. Hence, interest attracts streams of
data from all sources rather than locating one replica of a
bundle that is stored in the network independent of when
and where it originated.

A few algorithms for learning-based routing have been
developed, although all of them in the context of an IP-
style rather than a DTN-style model. An early reference is
[1], which proposes Q-routing, a reinforcement learning ap-
proach to packet routing in dynamically changing networks.
This work presents a simple routing algorithm that adjusts
the weight at each router for choosing a certain outgoing
link according to historical effectiveness. Q-routing has
several drawbacks: it is deterministic and does not allow
exploratory behavior so that some links may never be
tried, network changes may not be discovered, and the
well-known counting-to-infinity effect can occur. Related
approaches are Predictive Q-routing [3] and DRQ-routing
[12]. Another class that has attracted some interest is that of
ant routing algorithms (see e.g. [8]), which are also based
on reinforcement learning.

A distributed learning approach that was originally de-
signed for robots but has been applied to routing algorithms
is presented in [18]. It is named TPOT-RL for Team-
Partitioned, Opaque-Transition Reinforcement Learning,
and is a distributed reinforcement learning technique that
allows a team of independent agents to learn a collabo-
rative task. According to the published empirical results,
individual nodes can learn to efficiently route packets
through a network that exhibits changing traffic patterns
based on local sensing. Unfortunately, this algorithm suffers
from weaknesses similar to those of Q-routing, except
that counting-to-infinity can be avoided. A quite different
approach to multiagent learning that avoids these problems
is routing based on OLPOMDP [19], a policy-gradient
reinforcement learning algorithm.

Peer-to-peer networking [14] and (adaptive) web caching
[21], [16] and are research areas that have a similar em-
phasis on replication and caching as DTN. In fact, their
top level objective is the same, namely the improvement
of information availability and avoidence of costly end-to-
end retransmissions. However, nearly all current systems, a
notable exception being the approach to peer-to-peer file-
sharing proposed in [4], are designed for fixed infrastructure
rather than for mobile ad hoc or even disruption-tolerant
networks. Their algorithms usually abstract to a large degree
from the underlying physical network topology and the
routing process.

In our view the interesting feature of DTN is that both
caching and routing are considered on an equal footing.

Page 2 of 8

III. TECHNICAL APPROACH

In order to function properly, the network nodes need to
operate in a reasonably coordinated way, but what is needed
is a very loosely coupled communication paragdigm that
supports local autonomy without requiring peers to wait
for each other before being able to proceed with the local
operations.

Since knowledge about the network is the basis for deci-
sions in our approach, this is achieved by evolving the net-
work towards a state where all nodes have sufficient knowl-
edge to make local decisions and where the distributed
knowledge is approximately consistent. We acknowledge
that due to delays and bandwidth limitations neither full
consistency nor completeness of the knowledge distribution
can be achieved, and design our routing algorithms to
tolerate partial and inconsistent knowledge.

The approach to disseminate certain kinds of knowl-
edge is present in many traditional routing protocols such
as link-state routing, where link-state advertisements are
disseminated, or distance-vector routing, where knowledge
about distance to potential destinations is exchanged. In
both cases the aggregated knowledge is later used as a basis
for routing decisions. Our approach is generic in the sense
that to a large degree it abstracts from the particular kind of
knowledge that is disseminated and also allows the choice
between different knowledge dissemination protocols.

Since the ultimate goal of traditional networking is
to disseminate application content, we clearly distinguish
knowledge (about the network) from content (application
payload). This separation also reflects fundamental differ-
ences in their distributed processing. Knowledge is subject
to in-network processing, whereas content is stored and
forwarded logically without modification. Knowledge is fed
into the local knowledge base at each node and can be
subject to deletion and aggregation.

The notion of a path between source and destination
is not very useful in DTN, not only due to intermittent
connectivity, but because also publisher and subscriber
of bundles can be temporarily decoupled. In DTNs we
distinguish a node identifier that uniquely identifies a single
node, e.g. the source of a bundle, from a symbolic address
expression, e.g. the destination of a bundle, that is a
symbolic representation of a set of nodes. The interpretation
of a symbolic address is a function of time, because it
represents the set of nodes registered/subscribing to this
address, which can significantly change over the lifetime of
a bundle. Hence, DTNs use late binding, that is the delayed
binding of nodes to symbolic addresses, as opposed to e.g.
the resolution of addresses at the source via the domain
name system (DNS).

Symbolic addresses allow for various interpretations, e.g.

a symbolic address can stand for an individual, a group, a
function, a role, or a topic. Depending on the expressiv-
ity of the language, the user can form symbolic address
expressions that can be matched (or logically speaking,
satisfied) by a set of symbolic addresses. For instance, our
implementation in the DTNRG framework currently sup-
ports symbolic address destinations containing wildcards
(logically speaking, existential variables), but our routing
algorithms are independent of the syntax and semantics
and hence would work equally well with more expressive
languages or logics.

A. Knowledge Representation and Dissemination

The local knowledge base is a set of knowledge items
conveying the status and statistics about various entities.
Each knowledge item has at least the following attributes
associated with it: the creator, i.e. the node that created it;
its creation time and its expiration time.

All node-related knowledge items contain information
about the node that is the creator of the knowledge item.
All link-related knowledge items have an additional link
attribute that relative to the creator uniquely identifies an
outgoing link. An interest knowledge item has an additional
address attribute, which is a set of symbolic addresses
that the creator is registered for. A bundle-delivered sta-
tus knowledge item has a bundle attribute that uniquely
identifies an (end-to-end) bundle. A bundle-received status
knowledge item has a bundle attribute that uniquely defines
a bundle fragment (a complete bundle being a special case)
in the network.

In the following, we define an equivalence relation ≡
and a partial ordering ≺ on knowledge items. Intuitively,
the equivalence k ≡ k′ means that k and k′ contain the
same information, and the relation k ≺ k′ means that k′

subsumes k. In the latter case we also say that k is obsolete
given k′ or that k′ is fresher that k. For the operation of
the knowledge manager, k ≺ k′ implies that if k is in the
local knowledge base and k′ is received then k should be
replaced by k′. Similarly, k ≡ k′ implies that if k is in the
local knowledge base and k′ is received then k′ is redundant
and can be ignored.

The main protocol that we have developed for knowledge
dissemination is called probabilistic reflection. For com-
parison purposes, we have also implemented two simple
flooding algorithms that we call deterministic flooding and
periodic advertisement.

Both deterministic flooding and periodic advertisement
have their drawbacks in the sense that the former dis-
seminates knowledge not sufficiently often (only once) to
overcome failures whereas the latter disseminates the same
knowledge again and again without taking into account

Page 3 of 8

any feedback. Hence it is natural to try to find a solution
which combines the advantages of both with an overhead
that is somewhere in the middle. A clear advantage of
both protocols is that they both do not use complicated
(multiround) protocols. In fact, not even a round trip, but a
single message transmission is sufficient to make progress,
which means that they can utilize the smallest windows
of opportunity. This is in contrast to more complex epi-
demic protocols which first require messages, exchanging
so-called summary vectors, before exchanging the actual
knowledge, and hence require bidirectional links and a
larger window of opportunity.

Probabilistic reflection makes minimal assumptions on
the network as well. Links can be bidirectional or unidirec-
tional, since feedback does not have to be direct. The error
rate can be high. Complete dissemination of knowledge is
guaranteed under the eventual weak connectivity assump-
tion. It is a single message protocol with medium overhead,
because a knowledge item is possibly disseminated more
than once, but higher numbers of retransmissions occur with
decreasing probability.

Probabilistic reflection makes use of knowledge about
knowledge to reduce the number of unnecessary retrans-
missions. To this end, we keep an additional awareness
attribute for each knowledge item, which is the set of nodes
that, according to the local knowledge, are already aware
of this item. If a knowledge item k′ is received and there
is an existing knowledge item k in the local knowledge
base such that k ≡ k′, then k will not be replaced by
k′ but the awareness set of k will be extended by the
awareness set of k′. In this way awareness propagates
though the network even if no fresh knowledge is generated.
The awareness set is now taken into account to eliminate
redundant transmissions of knowledge items. A knowledge
item is only transmitted if the receiving neighbor is not
already in its awareness set.

Specifically, each node participating in probabilistic re-
flection executes the following algorithm. Periodically, for
each new knowledge item k and for each each outgoing
neighbor one of the following actions is performed: (1) If
the potential receiver is not known to be aware of k, then k
will be sent out on the corresponding link. (2) Otherwise,
k is sent out with a non-zero probability p = r/n where r
is a reflection parameter and n is the number of outgoing
neighbors.

Intuitively, a large reflection parameter leads to unneces-
sary high overhead due to repeated reflection of knowl-
edge in the network. A small reflection parameter, on
the other hand, prevents feedback to populate awareness
sets and hence also leads to frequent retransmissions of
knowledge items. For a wide range of network conditions

and parameters between 0.6 and 0.9, however, we have
found that probabilisitic reflection provides relatively low
overhead and a good compromise between flooding and
periodic advertisement. Due to space limitations, we will
not atempt a detailed performance comparison of knowl-
edge dissemination algorithms in this paper, but instead
we focus on the performance of content dissemination
using deterministic flooding as an underlying knowledge
dissemination protocol, because it is sufficient for sample
scenario.

B. Content Dissemination and Caching

We have developed three approaches to content dissem-
ination which all use opportunistic content replication and
caching to store and hence replicate bundles on the way to
the destination whenever possible. Altough more proactive
approaches are possible, we are currently focussing on
the opportunistic approach, since the networking overhead
added relative to routing without caching is zero. The issue
of cache management can be separated from the replication
strategy. Currently, we use a lazy deletion policy that stores
bundles as long as possible and discards bundles only if the
expiration time has been reached.

1) Route Planning: Our route planning is reflective in
the sense that it uses a perceived model of the network
reality as the basis for the planning process. To this end, the
delayed approximation of the current known network con-
ditions, which is given by the state of the local knowledge
base, is translated into an internal symbolic network model
that can be executed using reflective techniques. The goal of
route planning is to produce a content dissemination plan,
which is then attached to the bundle and executed while the
bundle is in transit. Plans are not necessarily linear, as for
instance source routes, but have a branching structure to ac-
count for alternatives and concurrent forwarding. Although
our DTN simulator has been developed in Java, we used
the rewriting logic language Maude in the development of
the reflective route planner, because a logic-based language
is better suited to deal with constraints, reflection, and the
planning process.

Borrowing ideas from Petri net theory, a content dis-
semination plan is a directed acyclic graph (representing a
causal order) with two different kinds of nodes. Each edge
represents the forwarding of a bundle to a neigbor, and
the entire graph explains how a bundle can be routed from
a source to a destination, allowing for planned multi-copy
routing, and planned multi-choice routing. The two kinds of
nodes are AND nodes and OR nodes. AND nodes express
multi-copy routing, meaning that the bundles needs to be
routed concurrently. OR nodes express routing alternatives,
e.g. rerouting on failure. The alternatives are explored in

Page 4 of 8

a particular order (specified by annotations), meaning that
the first applicable alternative will be chosen.

The planner consists of three phases: building a net-
work model, searching for feasible routes (linear plans),
and assembling a set of routes into a plan. The external
interface for the planner is a function that takes a number of
parameters specifying the planning problem - a knowledge
base, source and destinations nodes, bundle size - and
additional parameters that control the planning process.
It first computes an executable network model, reflects it
to the meta-level, and applies a state space exploration
function to the reflected model and a suitably constructed
initial state. The result of the search is a set of feasible
traces, that we interpret as linear plans. Different from link-
state routing, route planning does not require up-to-date
link-state information, but can utilize delayed information
about (time-stamped) link-state events and link statistics to
evaluate the quality of each linear plan. This set of linear
plans is then fed into a function along with the parameters
specifying the plan selection and composition process. The
main options are to synthesize a single best linear plan or
a branching plan with parameters to control branching and
the ordering of choices in multi-choice branches.

2) Interest-Driven Routing: Our interest-driven routing
algorithm is designed to support multiparty communication
based on the idea of active interest signaling from interested
destinations. It uses the knowledge about interest, i.e.
registrations for a symbolic address, which is disseminated
by the underlying distributed knowledge manager between
neighbors. The direction from which interest in a given
symbolic destination is first received is used to estimate
the best routing path for bundles toward the corresponding
symbolic address. In general, however, interest can orig-
inate from multiple interested parties, which are situated
in different directions from the viewpoint of the current
router. Hence, if interest for a bundle comes from multiple
directions, the bundle is forwarded simultaneously over
multiple corresponding links.

To support interest-driven routing, the knowledge man-
ager maintains a received-from attribute for interest knowl-
edge items, which is a list of nodes. If the knowledge
manager receives a knowledge item k from a neighbor n
there are two cases. If k is fresh the knowledge manager
creates a local copy with the received-from attribute set to
the singleton list containing n. Otherwise, there is a unique
knowledge item k′ in the local knowledge base such that
k ≺ k′, and the knowledge manager adds n at the end of
the received-from list of k′ if n is not already in the list.

When processing a bunde b with destination d, the de-
cision logic of interest-based routing uses this information
as follows. For all known nodes n of the network (this

information is available as node knowledge in the local
knowledge base) and for all outgoing links l that are ready
for transmission or retransmission of bundle b, perform the
following: If a bundle interest with creator n and address d
exists in the local knowledge base and its received-from list
has the receiver r of link l as its first element then b will be
transmitted to r. As an optimization we ignore nodes n in
the above procedure for which it can be determined (based
on the local bundle status knowledge) that have already
received b.

3) Learning-Based Routing: Our learning-based routing
algorithm is based on distributed reinforcement learning,
which adapts its routing policy in response to the rewards
it receives from delivered bundles. A reward function of
is used to assess the quality of a routing decision. In the
case of a single destination this function is simply 1/∆
where ∆ is the transit time of the data bundle. Hence, in
the limit case, a bundle that is not delivered will not lead to
an increase of reward. Punishments or negative rewards do
not exist in our approach. The function is then generalized
to the case of multiple destinations by adding i/∆i for
each additional node i ≥ 2 at which the bundle has been
delivered after a transit time of ∆i. In this way, the number
of destination nodes can remain open-ended and there is a
strong incentive to deliver to as many nodes as possible.

Two challenges of using a reinforement learning ap-
proach in DTN routing lie in the potentially large action
space and the need to operate in a highly distributed and
delay-/disruption-tolerant fashion without strong synchro-
nization assumptions. A further challange is to associate
causes and effects in such an environment so that the
reward can be credited to agents and actions that have
contributed to the succesful delivery of a bundle to its
destination. The latter is known in the literature as the
credit assignment problem, but it is more complicated in
our context, because even the question whether (or more
precisely to what degree) the objective has been achieved
cannot be decided locally.

a) Selection of Forwarding Actions: Like our interest-
driven routing algorithm, learning-based routing supports
singleton and non-singleton destinations. This is achieved
by associating with each node a set of forwarding actions,
where each forwarding action is defined by a subset of its
neighbors to each of which a node transmits a bundle if this
action is performed. To limit the complexity of the action
space we usually constrain the cardinality of forwarding
actions, and hence the maximum number of neighbors a
bundle can be transmitted to in a single routing decision.

Our learning-based routing algorithm consists of explo-
ration and exploitation subalgorithms. The choice of the
algorithm is determined by a Bernoulli experiment for each

Page 5 of 8

bundle that needs to be routed or reconsidered for routing,
e.g. due to the need for a retransmission.

The difference between exploration and exploitation lies
in the way the forwarding action is selected. Although
it may sound counterintuitive, a forwarding action will
always at least contain the previous hop of an incoming
bundle, because in this way valuable information about
the context of the decision can be represented as part of
the action. Another possible picture consistent with this
idea is to view an action as a local undirected abstraction
of the bundle flow, which contains both the immediate
source and the immediate destinations of a bundle. In the
case of exploration, we essentially use the (unoptimized)
interest-driven routing algorithm to compute the forwarding
action. The idea behind exploitation is to exploit learned
knowledge (that has been accumulated in terms of rewards)
to make the best possible routing decision based on a
window of recorded forwarding actions (in the so-called
forwarding action log) performed in the recent past. Our
current algorithm deterministically selects the best possible
forwarding action, i.e. the one that has received the maximal
average reward, with ties broken probabilistically.

Once the forwarding action is computed, the current
bundle can be sent to all neighbors contained in this action.
The optimization of interest-driven routing that interested
nodes that are known to have received the content already
is not used in the computation of the forwarding action, be-
cause learned actions should remain as general as possible.
Similar to interest-driven routing, a bundle is never sent
back to the previous hop and, furthermore, bundle status
knowledge is used to avoid uneccessary transmissions of
bundles to neighbors which are known to have received the
bundle already.

b) Credit Assignment and Reward Computation: The
computation of reward is performed whenever fresh bundle-
delivered knowledge is received. There are two levels of
computations. First, based on the above-mentioned reward
function, a reward is added for each recorded action which
may have contributed to the sucessful delivery of the bundle,
meaning that the transit time is a positive number that is not
smaller than some configurable lower bound. Second, for
each symbolic destination and each possible action of the
node we compute the corresponding entry in the average
reward matrix by averaging the rewards for all recorded
actions that correspond to this entry. Only the reward
matrix is used for routing decisions in the exploitation
subalgorithm. Since recorded actions are removed from the
forwarding action log after some configurable expiration
time (usually larger than the expiration time of bundles) the
recorded actions and hence the reward matrix represents the
cumulative reward for a window of past behviour.

C. Performance in a Typical Scenario

Most existing network simulators have been specifically
developed to study protocols for the traditional IP stack and
hence rely on very specific and detailed models of all layers.
However, at the current stage our objective is to evaluate
and compare different DTN algorithms independent of the
underlying networking technology. To this end, we have
developed a DTN network simulator that abstracts from the
underlying networking stack in order to obtain approximate
performance results. It uses use a simple graph-based pipe
model of potential links (which can be up or down) where
each link is characterized by its abstract features such
as bandwidth, latency, error rate, and the distribution of
disruptions parameterized by average up and down times.

Network dynamics of mobile ad hoc networks is of-
ten generated by traditional simulators using very specific
physcial models of mobility, e.g. random waypoint, which
are often based on simplistic assumptions about the move-
ment of nodes. In our analysis, we allow the specifica-
tion of abstract mobility models for a concrete scenario,
where instead of actual coordinates we use regions defining
equivalence classes of states or locations exhibiting similar
connectivity. The battlefield scenario in Fig. 1 is an example
of such an abstract dynamic model. As an alternative
to specific scenarios, we study models generated from a
well-defined family of synthetic models using predefined
distributions. By averaging the performance metrics over a
large number of such models we obtain a more realistic
expectation of the range of results and can reduce the
likelihood of overfitting our algorithms to specific scenarios.

Enemy

Command

Center

Veh1

Veh2

Sat1 Sat2

Mobile

Command

Outpost

UAV 1

UAV 2

UAV 3 UAV 4

AP1

AP3

AP2
AP4

high bandwidth!
high latency"

medium bandwidth!
low latency"

low bandwidth!
low latency"

scheduled!
connectivity"

intermittent!
connectivity"

Fig. 1. Battlefield Scenario

Table I shows how the delivery time varies with the
choice of the algorithm in battlefield scenario with traffic
between random sources and destinations. The results have
been obtained by averaging 100 simulation runs (10 in case
of planning). To enable a more precise understanding of
the performance of our algorithms we have disabled the

Page 6 of 8

retransmission of content bundles, which would eventually
lead to a 100% delivery rate. Hence, the delivery rates can
be interpreted as delivery rates for the first attempt.

Not surprisingly, optimized flooding shows a high first-
attempt delivery rate, but has the drawback of a high
network load, which in turn leads to high delivery times.
Flooding is already optimized in the sense that, like all
our routing algorithms, it exploits knowledge about the
reception of bundles to avoid redundant transmissions.
Shortest path routing computes the shortest path in the
potential link graph and hence leads to uneccessary long
delays due bundles waiting for specific links to open. Link-
state routing needs to disseminate the link-state but can
significantly improve the delivery time by chosing a shortest
path in the subgraph of open links. The planning approaches
can improve the delivery times or rates by exploiting
temporal predictions and multi-path routing. In general, our
planning algorithms can operate with a reduced overhead
by relying on less frequently disseminated link statistics
instead of current link-state information. The performance
of interest-driven routing is similar to link-state routing, but
it has lower overhead because the dissemination of link-
state information is entirely avoided.

Table I. Simulated Performance
Delivery Utili- Number Delivery

Rate zation of Hops Time
Optimized Flooding 87.28 % 0.97 % 3.12 13.97s
Shortest Path Routing 76.77 % 0.07 % 2.30 12.42s
Single-Path Planning 80.56 % 0.14 % 2.68 6.53s
Multi-Choice Planning 79.92 % 0.14 % 2.81 6.16s
Multi-Copy Planning 94.17 % 0.23 % 2.77 8.18s
Link-State Routing 79.77 % 0.28 % 2.52 9.29s
Interest-Driven Routing 78.57 % 0.09 % 2.55 9.41s

To study the performance of learning-based routing
relative to interest-driven routing, each simulation run is
organized in two phases: In the first phase, the learning-
based routing algorithm is executed purely in exploration
mode, meaning that it behaves like interest-driven routing,
but records all information learned from the feedback. In the
second phase, the learning algrithm exploits all previously
accumulated knowledge to make routing decisions.

From each such simulation we now extract two data
points as depicted in Fig. 2. The first point is given by
the network utilization (y-axis) and delivery rate (x-axis)
of the interest-driven routing used for the Phase 1, and the
second point is given by the corresponding results for Phase
2. Connecting these points by an arrow gives us a graphical
visualization of the impact of learning in one particular
run by means of a family of vectors. For a representative
average, we have accumulated the vectors of 100 simulation
runs. From the direction of the arrows, a general tendency

 0

 5

 10

 15

 20

 25

 30

 60 65 70 75 80 85 90 95 100

Fig. 2. Relative Performance of Learning-Based Routing

for arrows to improve both delivery time and delivery rates
can be observed. Table II summarizes the averages over this
set of simulations, and confirms that in average a factor
of about 1.6 in reduction of delivery time together with a
modest improvement in the delivery rate can be achieved.

Table II. Relative Performance in Average
Delivery Utili- Number Delivery

Rate zation of Hops Time
Exploration 78.48 % 0.09 % 2.39 9.79s
Exploitation 84.10 % 0.09 % 2.44 6.06s

IV. CONCLUSIONS

We have introduced three routing algorithms for con-
tent dissemination in disruption-tolerant networks, namely
interest-driven routing, route planning, and learning-based
routing, and studied their performance relative to three sim-
ple baseline routing algorithms, namely optimized flooding,
shortest-path routing and link-state routing. We have eval-
uated our algorithms under a variety of network topolo-
gies and conditions, but due to space limitations we have
only presented selected results for a particular scenario in
this paper. We have demonstrated that our interest-driven
routing algorithm can yield average delivery times lower
than (shortest-path) link-state routing with lower overhead
thanks to the dissemination of interest instead of frequently
changing link-state information. We have also shown that
route planning can improve delivery times over (shortest-
path) link-state routing by exploiting the predicted temporal
evolution and can deal with unpredictability by planning
for alternatives or redundant routes. Finally, we have inves-
tigated the effect of our newly developed learning-based
routing algorithm, which uses a distributed reinforcement
learning approach and utilizes interest-driven routing as
a base algorithm to explore relevant routing opportunities
with low overhead. Our simulations over a large number of
different scenarios and network conditions show improve-
ments in the delivery time of a factor between 1 and 2

Page 7 of 8

for unstructured dense networks and over 4 for structured
networks with exploitable asymmetries. We also found that
that learning tends to increase the first-attempt delivery rates
(and hence reduces the need for retransmissions) with no or
modest increase of the network load. However, we have also
found entire classes of scenarios, where learning does not
show significant improvements or only improvements in the
delivery rate while at the same time increasing the delivery
time. The results for learning have to be interpreted in the
light that the underlying interest-driven routing has been
shown to work already remarkably well for the timely dis-
semination of information for a wide spectrum of network
conditions. Furthermore, learning-based routing can only
improve the performance if opportunities for improvement
are offered by the underlying physical network.

Since disruption-tolerant networking aims at covering a
wide range of possible applications, it is most likely that a
better understanding of the tradeoffs between different ap-
proaches will eventually lead to a family of protocols with
phase-transitions that determine which protocols should be
used where and when. To complete the picture, further
metrics need to be investigated, especially those relevant at
the application level (e.g. QoS metrics for video streaming).
One big challenge that remains is to develop a framework
based on higher-level knowledge that could be expressed in
the form of networking policies in which various protocols
interoperate seamlessly and cooperatively. In our view, a
knowledge-based approach is a good starting point, but a
lot more work is needed on the semantic level of interaction,
interoperation, and on the abstract specification of networks,
algorithms and their capabilities.

Acknowledgements: We would like to thank Thomas Scharler
for his help with the implementation of several of our algorithms
in the DTN reference implementation, in particular probabilistic
reflection, interest-driven routing, and learning-based routing;
Sebastian Guteirrez-Nolasco for improving the simulation compo-
nent; and Mike Demmer for fixing bugs and implementing several
of our suggestions. We are grateful to our collaborators Ignacio
Solis and J.J. Garcia-Luna-Aceves for the opportunity of using
the wireless testbed at PARC Palo Alto Research Center. We also
appreciate the interest and various contributions of our visiting
students Gianluca Capuzzi and Egidio Cardinale.

REFERENCES

[1] Justin A. Boyan and Michael L. Littman. Packet routing in dy-
namically changing networks: A reinforcement learning approach.
In Advances in Neural Information Processing Systems, volume 6,
pages 671–678, 1993.

[2] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott,
K. Fall, and H. Weiss. Delay-tolerant network architecture. Infor-
mational RFC 4838, April 2007.

[3] S. P. M. Choi and D.-Y. Yeung. Predictive Q-routing: A memory-
based reinforcement learning approach to adaptive traffic control.
In Advances in Neural Information Processing Systems, volume 8,
1996.

[4] G. Ding and B. Bhargava. Peer-to-peer file-sharing over mobile
ad hoc networks. In PERCOMW ’04: Proceedings of the Second
IEEE Annual Conference on Pervasive Computing and Communi-
cations Workshops, page 104, Washington, DC, USA, 2004. IEEE
Computer Society.

[5] H. Dubois-Ferriere, M. Grossglauser, and M. Vetterli. Space-time
routing in ad hoc networks. In Proceedings Ad Hoc Now 03,
Montreal, Canada, October 2003.

[6] Kevin Fall. A delay-tolerant network architecture for challenged
internets. In SIGCOMM ’03: Proceedings of the 2003 conference
on Applications, technologies, architectures, and protocols for
computer communications, pages 27–34. ACM, 2003.

[7] Stephen Farrell and Vinny Cahill. Delay- and Disruption-Tolerant
Networking. Artech House Publishers, September 2006.

[8] Mesut Günes and Otto Spaniol. Ant-routing algorithm for mobile
multi-hop ad-hoc network. In Network Control and Engineering
For QoS, Security and Mobility II, pages 120–138. Kluwer Aca-
demic Publishers, 2003.

[9] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion:
a scalable and robust communication paradigm for sensor networks.
In Mobile Computing and Networking, pages 56–67, 2000.

[10] S. Jain, K. Fall, and R. Patra. Routing in a delay tolerant network.
In SIGCOMM ’04: Proceedings of the 2004 conference on Ap-
plications, technologies, architectures, and protocols for computer
communications, pages 145–158. ACM, 2004.

[11] R. Krishnan, P. Basu, J. M. Mikkelson, C. Small, R. Ramanathan,
D. Brown, J. Burgess, A. Caro, M. Condell, N. Goffee, R. R.
Hain, R. Hansen, C. Jones, V. Kawadia, D. Mankins, B. Schwartz,
T. Strayer, J. Ward, D. Wiggins, and S. Polit. The SPINDLE
disruption-tolerant networking system. In Proceedings of MILCOM
2007, Orlando, FL, November 2007, 2007.

[12] S. Kumar and R. Miikkulainen. Dual reinforcement Q-routing:
An on-line adaptive routing algorithm. In Intelligent Engineering
Systems Through Artificial Neural Networks (ANNIE-97, St. Louis,
MO), volume 7 of Smart Engineering Systems: Neural Networks,
Fuzzy Logic, Data Mining, and Evolutionary Programming, pages
231–238. ASME Press, 1997.

[13] A. Lindgren, A. Doria, and O. Schelén. Probabilistic routing in
intermittently connected networks. SIGMOBILE Mob. Comput.
Commun. Rev., 7(3):19–20, 2003.

[14] Keong Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A
survey and comparison of peer-to-peer overlay network schemes.
Communications Surveys & Tutorials, IEEE, pages 72–93, 2005.

[15] S. Merugu, M. Ammar, and E. Zegura. Routing in space and time in
networks with predictable mobility. Technical Report GIT-CC-04-
07, College of Computing, Georgia Institute of Technology, March
2004.

[16] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang, S. Floyd, and
V. Jacobson. Adaptive web caching: towards a new global caching
architecture. Comput. Netw. ISDN Syst., 30(22-23):2169–2177,
1998.

[17] T. Spyropoulos, K. Psounis, and C. Raghavendra. Spray and wait:
An efficient routing scheme for intermittently connected mobile
networks. In Proceedings of SIGCOMM 2005.

[18] P. Stone. TPOT-RL applied to network routing. In Proceedings
of the Seventeenth International Conference on Machine Learning,
pages 935–942, 2000.

[19] N. Tao, J. Baxter, and L. Weaver. A multi-agent policy-gradient
approach to network routing. In ICML ’01: Proceedings of the
Eighteenth International Conference on Machine Learning, pages
553–560, 2001.

[20] A. Vahdat and D. Becker. Epidemic routing for partially connected
ad hoc networks. Technical report, Duke University, 2000.

[21] J. Wang. A survey of web caching schemes for the internet.
SIGCOMM Comput. Commun. Rev., 29(5):36–46, 1999.

Page 8 of 8

