
Unification and Narrowing in Maude 2.4?

Manuel Clavel1,2, Francisco Durán3, Steven Eker4, Santiago Escobar5,
Patrick Lincoln4, Narciso Martı́-Oliet2, José Meseguer6, and Carolyn Talcott4

1 IMDEA Software, Madrid, Spain
2 Universidad Complutense de Madrid, Spain

3 Universidad de Málaga, Spain
4 SRI International, CA, USA

5 Universidad Politécnica de Valencia, Spain
6 University of Illinois at Urbana-Champaign, IL, USA

Abstract. Maude is a high-performance reflective language and system support-
ing both equational and rewriting logic specification and programming for a wide
range of applications, and has a relatively large worldwide user and open-source
developer base. This paper introduces novel features of Maude 2.4 including sup-
port for unification and narrowing. Unification is supported in Core Maude, the
core rewriting engine of Maude, with commands and metalevel functions for
order-sorted unification modulo some frequently occurring equational axioms.
Narrowing is currently supported in its Full Maude extension. We also give a
brief summary of the most important features of Maude 2.4 that were not part of
Maude 2.0 and earlier releases. These features include communication with ex-
ternal objects, a new implementation of its module algebra, and new predefined
libraries. We also review some new Maude applications.

1 Introduction

Maude is a language and a system based on rewriting logic [7]. Maude modules are
rewrite theories, while computation with such modules corresponds to efficient deduc-
tion by rewriting. Because of its logical basis and its initial model semantics, a Maude
module defines a precise mathematical model. This means that Maude and its formal
tool environment can be used in three, mutually reinforcing ways: as a declarative pro-
gramming language, as an executable formal specification language, and as a formal
verification system.

The first version of Maude was publicly released at the beginning of 1999 and pre-
sented at RTA’99 [5]; four years later, Maude 2.0 was introduced at RTA’03 [6]. The
? M. Clavel has been partially supported by Spanish MICINN grants TIN2005-09207-C03-03

and TIN2006-15660-C02-01, and by CAM Program S-0505/TIC/0407. F. Durán has been
partially supported by Spanish MICINN grant MDD-MERTS TIN2008-03107 and Junta de
Andalucı́a grants PICASSO P06-TIC2250 and MOVIS P07-TIC3184. S. Escobar has been par-
tially supported by Spanish MICINN grant TIN2007-68093-C02-02, Integrated Action HA
2006-0007, and Generalitat Valenciana GVPRE/2008/113. P. Lincoln’s effort partially sup-
ported by NSF grant CNS-0749931, “SCIF: Securing the Computing and Information Future”.
N. Martı́-Oliet has been partially supported by Spanish MICINN grant DESAFIOS TIN2006-
15660-C02-01 and CAM program PROMESAS S-0505/TIC/0407.



new and improved features since Maude 2.0 include: built-in AC unification; narrowing;
object-message fairness and communication with external objects; a new implementa-
tion at the core level of its module algebra with operations for summation and renaming
of modules, as well as support for parameterized programming by means of theories
and views; new predefined libraries of parameterized data types, supporting efficient
versions of lists, sets, maps, and arrays; and a linear Diophantine equation solver.

Unification is built-in in Core Maude 2.4. Currently, narrowing is available in Full
Maude [11, 7], an extension of Maude written in Maude itself by taking advantage of
its reflective capabilities. It has been used as a testbed for prototyping new features:
parameterization [11], strategies [19], unification [7], and so on; and as a key component
to build various formal tools by reflection (see Section 5).

There are several functional-logic programming languages based on narrowing (see,
e.g., http://www.informatik.uni-kiel.de/˜mh/FLP/implementations.html). However,
we are not aware of any other programming language supporting AC-narrowing, or
combining narrowing with all the other features that Maude provides.

The releases of Maude since Maude 2.0 have added many other new features and
improvements that cannot be described here. We refer the reader to the Maude docu-
mentation [8] for more details. The LNCS book on Maude [7] contains many additional
examples and explanations, as well as information on applications and tools. However,
the book only covers up to Maude 2.3, and therefore does not cover features like AC
unification and narrowing. The Maude system, its documentation, and related papers
and applications are available from its website at http://maude.cs.uiuc.edu.

2 Unification

Unification is a fundamental deductive mechanism used in many automated deduction
tasks. It is also very important in combining the paradigms of functional programming
and logic programming. Furthermore, in the context of Maude, unification can be very
useful to reason not only about equational theories, but also about rewrite theories.
In this section, we explain how order-sorted unification modulo frequently occurring
equational axioms is currently supported in Maude 2.4.

Although the most general equational theories supported by Maude are membership
equational theories, to obtain practical unification algorithms, allowing us to effectively
compute the solutions of an equational unification problem, it is important to restrict
ourselves to order-sorted equational theories. Furthermore, for an arbitrary set of equa-
tions no unification algorithm may be known; even if one is known, the number of
solutions may be infinite. This suggests a hybrid approach, in which we take advantage
of Maude’s structuring of a module’s equations into equational axioms Ax, such as as-
sociativity, and/or commutativity, and/or identity, and equations E, which are assumed
to be confluent and terminating modulo Ax. We can then consider order-sorted equa-
tional theories of the form (Σ,E ∪Ax) and decompose the E ∪Ax-unification problem
into two problems: one of Ax-unification, and another of E∪Ax-unification that uses an
Ax-unification algorithm as a subroutine. The point is that only Ax-unification needs to
be built-in at the level of Core Maude’s C++ implementation for efficiency purposes.
Instead, E ∪Ax-unification can then be implemented in Maude itself. Since the axioms

2



Ax are well-known and unification algorithms exist for them, the task of building in
efficient Ax-unification algorithms, although difficult, becomes manageable.

Unlike unsorted syntactic unification, which always either fails or has a single most
general unifier, order-sorted syntactic unification is not unitary, that is, there is in gen-
eral no single most general unifier. What exists (if Σ is finite) is a finite minimal com-
plete set of syntactic unifiers. For some commonly occurring theories having a unifi-
cation algorithm, such as associativity of a binary function symbol, it is well-known
that unification is not finitary. However, for other theories, such as commutativity (C)
or associativity-commutativity (AC), unification is finitary, both when Σ is unsorted and
order-sorted (and finite). Maude 2.4 provides an order-sorted Ax-unification algorithm
for all order-sorted theories (Σ,E ∪Ax) such that:

– the signature Σ is preregular modulo Ax [7];
– the axioms Ax associated to function symbols are as follows:
• there can be arbitrary function symbols and constants with no attributes;
• the iter equational attribute can be declared for some unary symbols;
• the comm or assoc comm attributes can be declared for some binary function

symbols, but no other equational attributes can be given for such symbols.

Explicitly excluded are theories with binary function symbols having either: (i) the
id:, left id:, or right id: attributes; or (ii) the assoc attribute without the comm
one; or (iii) a combination of (i) and (ii). The reason for excluding the assoc attribute
without comm is the already-mentioned fact that associative unification is not finitary.
The reason for excluding for the moment the id:, left id:, and right id: attributes
is that they are collapse equations (one of the terms in the equation is a variable),
requiring a more complex way of combining their unification algorithms. However,
Ax-unification, where Ax includes such id:, left id:, and right id: attributes, is
currently supported in Full Maude by narrowing (see Section 3).

If we give to Maude a unification problem in a functional module fmod (Σ,E ∪Ax)
endfm, then the equations E are ignored and we get a complete set of order-sorted
unifiers modulo the theory (Σ,Ax). To deal with E ∪Ax-unification, other methods, that
use the Ax-unification algorithm as a component, can later be defined (see Section 5).

Maude provides a unification command of the form:
unify [n] in ModId : t1 =? t ′1 /\ . . . /\ tk =? t ′k .

where k ≥ 1, n is an optional argument providing a bound on the number of unifiers,
and ModId is the name of the module or theory in which the unification takes place.

The use of a bound on the number of unifiers, as well as the use of the AC operator
+ in the predefined NAT module, plus the fact that even small AC-unification problems

can generate a large number of unifiers are all illustrated by the following command:

Maude> unify [10] in NAT : X:Nat + X:Nat + Y:Nat =? A:Nat + B:Nat .
Solution 1
X:Nat --> #1:Nat + #2:Nat + #4:Nat
Y:Nat --> #3:Nat + #5:Nat
A:Nat --> #1:Nat + #1:Nat + #2:Nat + #3:Nat
B:Nat --> #2:Nat + #4:Nat + #4:Nat + #5:Nat
...

3



Solution 10
X:Nat --> #1:Nat + #2:Nat
Y:Nat --> #3:Nat
A:Nat --> #1:Nat + #1:Nat
B:Nat --> #2:Nat + #2:Nat + #3:Nat

Notice that in each assignment X --> t in a unifier, the variables appearing in the term t
are always fresh variables of the form #n:Sort. Assuming that no bound on the number
of unifiers is specified by the user, Maude will compute a complete set of order-sorted
unifiers modulo Ax, for Ax a set of supported equational axioms. However, there is no
guarantee that the computed set of unifiers is minimal, that is, some of the unifiers in
the computed set may be redundant, since they could be obtained as instances (modulo
Ax) of other unifiers in the set.

Order-sorted unification is NP-complete in general [12], because of arbitrary com-
plex sort hierarchies, but has reasonable performance in practice, and fails more often
than unsorted unification. The AC-unification algorithm implemented is in the style
of [4], but uses order-sorted reasoning to filter out (potentially many) unfeasible un-
sorted AC-unifiers. The unification algorithm has been thoroughly tested (by S. Escobar
and R. Sasse) using CiME [10] as an oracle, and has shown better average performance
than CiME on the same problems.

Much of Maude’s functionality is supported in its metalevel, so that it becomes
available by reflection [7]. Unification is reflected in by the following descent functions:

op metaUnify : Module UnificationProblem Nat Nat ˜> UnificationPair? .
op metaDisjointUnify :

Module UnificationProblem Nat Nat ˜> UnificationTriple? .

The key difference between metaUnify and metaDisjointUnify is that the latter
assumes that the variables in the left- and right-hand unificands are to be considered
disjoint even when they are not so, and it generates each solution to the given unification
problem not as a single substitution, but as a pair of substitutions, one for left unificands
and the other for right unificands. This functionality is very useful for applications, such
as critical-pair checking or narrowing (see Section 3), where a disjoint copy of the terms
or rules involved must always be computed before unification is performed.

Since it is convenient to reuse variable names from unifiers in new problems, for ex-
ample in narrowing, this is allowed via the third argument, which is the largest number
n appearing in a unificand metavariable of the form #n:Sort. Then the fresh metavari-
ables in the computed unifiers will all be numbered from n+1 on.

Results are returned using the following constructors:

subsort UnificationPair < UnificationPair? .
subsort UnificationTriple < UnificationTriple? .
op {_,_} : Substitution Nat -> UnificationPair [ctor] .
op {_,_,_} : Substitution Substitution Nat -> UnificationTriple [ctor] .

The Nat component is the largest n occurring in a fresh #n:Sort metavariable. In this
way, the next invocation of the function can use this parameter to make sure that the
new variables generated are always fresh.

Examples illustrating the use of these metalevel functions can be found in [8].

4



3 Narrowing

Narrowing generalizes term rewriting by allowing free variables in terms (as in logic
programming) and by performing unification instead of matching in order to (non–
deterministically) reduce a term.

At each narrowing step, one must choose which subterm of the subject term, which
rule of the specification, and which instantiation on the variables of the subject term
and the rule’s lefthand side is going to be considered. Given an order-sorted rewrite
theory (Σ,Ax,R) where R is a set of unconditional rewrite rules such that the lefthand
sides are non-variable terms and the rules are explicitly Ax-coherent [21], and Ax is a
set of axioms such that a finitary Ax-unification procedure is available in Maude, the
R,Ax-narrowing relation is defined as t ;σ,p,R,Ax t ′ iff there is a non-variable position
p of t, a (possibly renamed) rule l → r in R, and a unifier σ ∈ Unif Ax(t|p, l) such that
t ′ = σ(t[r]p). Full Maude supports a version of narrowing with simplification. That is,
given an order-sorted rewrite theory (Σ,Ax∪E,R) where R and Ax are defined as above
and E are the remaining equations, the combined relation (;σ,p,R,Ax;→!

E,Ax) is defined
as t ;σ,p,R,Ax;→!

E,Ax t ′′ iff t ;σ,p,R,Ax t ′, t ′ →∗E,Ax t ′′, and t ′′ is E,Ax-irreducible. Note
that this combined relation may be incomplete, i.e., given a reachability problem of the
form t →∗ t ′ and a solution σ (i.e., σ(t)→∗R,E∪Ax σ(t ′)), the relation ;σ,p,R,Ax;→!

E,Ax
may not be able to find a more general solution. The reason is that the equations E
should also be executed by narrowing instead of rewriting to ensure completeness under
appropriate conditions (see [21] and Section 5).

The user can enter in Full Maude a search command of the form:
search [n,m] in ModId : t1 SearchArrow t2 .

where: n and m are optional arguments providing, respectively, a bound on the number
of desired solutions and the maximum depth of the search; ModId is the module where
the search takes place; t1 is the starting non-variable term, which may contain variables;
t2 is the term specifying the pattern that has to be reached, with variables possibly shared
with t1; SearchArrow is an arrow indicating the form of the narrowing proof from t1 until
t2 (˜>1 for a narrowing proof consisting of exactly one step; ˜>+ for a proof of one or
more steps; ˜>* for a proof of none, one, or more steps; and ˜>! to indicate that only
strongly irreducible final states are allowed, i.e., states that cannot be further narrowed).

Consider, for example, the following Petri-net-like specification of a vending ma-
chine to buy apples (a) or cakes (c) with dollars ($) and/or quaters (q):

(mod VENDING-MACHINE is
sorts Coin Item Marking Money State .
subsort Coin < Money .
op __ : Money Money -> Money [assoc comm] .
subsort Money Item < Marking .
op __ : Marking Marking -> Marking [assoc comm] .
op <_> : Marking -> State .
ops $ q : -> Coin [format (r! o)] .
ops a c : -> Item [format (b! o)] .
var M : Marking .
rl [buy-c] : < $ > => < c > .
rl [buy-c] : < M $ > => < M c > .

5



rl [buy-a] : < $ > => < a q > .
rl [buy-a] : < M $ > => < M a q > .
rl [change]: < q q q q > => < $ > .
rl [change]: < M q q q q > => < M $ > .

endm)

We can use the narrowing search command to answer the question: Is there any com-
bination of one or more coins that returns exactly an apple and a cake? This is done
by searching for states that have a variable of sort Money instead of sort Marking at the
starting term and match a corresponding pattern at the end.

Maude> (search [,4] in VENDING-MACHINE : < M:Money > ˜>* < a c > .)
Solution 1
M:Money --> $ q q q
Solution 2
M:Money --> q q q q q q q
No more solutions.

Note that we must restrict the depth, because narrowing does not terminate for this
reachability problem even though the above two solutions are indeed the only solutions.

Narrowing-based reachability analysis is also available at the metalevel by using the
following metaNarrowSearch function.

op metaNarrowSearch :
Module Term Term Substitution Qid Bound Bound -> ResultTripleSet .

If a non-identity substitution is provided in the fourth argument, then any computed
substitution must be an instance of the provided one, i.e., we can restrict the computed
narrowing sequences to some concrete shape. The Qid metarepresents the appropriate
search arrow, similar to the metaSearch command (see [8, Section 11.4.6]). For the
bounds, the first one is the number of computed solutions, and the second one is the
maximum length of the narrowing sequences, i.e., the depth of the narrowing tree.

Unification modulo identity: The id-unify command. As described in Section 2,
Maude 2.4 provides an order-sorted Ax-unification algorithm for all order-sorted theo-
ries (Σ,E ∪Ax) such that Σ is preregular and Ax can include any combination of equa-
tional axioms for a function symbol except the id:, left id:, right id:, and assoc
without comm. If a theory (Σ,Ax) contains the id:, left id:, or right id: attributes
in Ax (but not assoc without comm), we can perform unification modulo Ax as follows:

1. we decompose Ax into a disjoint union Ax = Ãx∪Ids, where Ãx does not contain any
id:, left id:, or right id: attribute, and Ids is the set of such extra attributes;

2. we define the rewrite theory (Σ, Ãx,−→Ids) where −→Ids contains the obvious rules for
each of the equational identity attributes, that is:

– if f has an id: attribute in Ax and [s] is the top sort of f (which we can identify
with the kind), we add rules f (x,e)→ x and f (e,x)→ x into −→Ids, where x is a
variable of sort [s] and e is the identity symbol (if f has also the comm attribute,
only one such rule is needed);

6



– Likewise, for f with the left id: (resp. right id:) attribute, we add the rule
f (e,x)→ x (resp. f (x,e)→ x) into −→Ids.

3. based on the idea of “variants” in [9], for the Ax-unification problem t ?= t ′, we
compute the variants of t and the variants of t ′ using narrowing modulo Ãx within
the theory (Σ, Ãx,−→Ids) and perform Ãx-unification pairwise among all the variants
of t and t ′ (see [16] for details).

The Full Maude id-unify command implements the above Ax-unification proce-
dure (with Ax = Ãx∪ Ids) using variants.7 Given a module or theory ModId having a set
Ax of equational axioms for the signature Σ such that Σ does not include symbols with
assoc without comm attributes in Ax, Full Maude provides a unification command for
Ax-unification of the form:

id-unify in ModId : t =? t ′ .
where only one unification problem is admitted, in contrast to the unify command, and
such that no limit to the number of unifiers can be specified.

The procedure for equational Ax-unification, where Ax can contain any Maude equa-
tional attribute except assoc without comm, is also available at the metalevel thanks to
the metaACUUnify function.

op metaACUUnify : Module Term Term -> SubstitutionSet .

4 Other Available Features

In this section we briefly mention some of the other features introduced in Maude since
Maude 2.0. More details can be found in the Maude documentation [8, 7].

Object-message fairness and external objects. Distributed systems can be modeled
as multisets of entities, coupled by some suitable communication mechanism. In object-
based distributed systems, the entities are objects, each with a unique identity, and the
communication mechanism is message passing. Maude 2.4 supports the modeling of
such systems by providing a predefined CONFIGURATION module and an object-message
fair rewriting strategy that is well suited for executing object system configurations. It
also supports external objects, so that objects inside a Maude configuration can interact
with different kinds of objects outside it. The external objects directly supported are
internet sockets, but through them it is possible to interact with other external objects.

Module algebra. As in other languages in the Clear/OBJ tradition, the abstract syntax
for writing specifications in Maude can be seen as given by module expressions, defin-
ing a new module out of previously defined modules by combining or modifying them
according to a specific set of operations. Maude 2.4 supports module operations for
summation, renaming, and instantiation of parameterized modules. Theories, parame-
terized modules, and views are the basic building blocks of parameterized program-
ming.

7 Of course, this is less efficient than built-in Ax-unification. However, a number of useful appli-
cations can be supported in practice even with id-unify (see Section 5).

7



New predefined libraries. Maude has a standard library of predefined modules. In ad-
dition to predefined modules providing commonly used data types, such as Booleans,
numbers, strings, and quoted identifiers, that were already available in Maude 2.0, the
following modules are predefined. The RANDOM module provides a pseudo-random num-
ber generator, and the system module COUNTER a “counter” that can be used to generate
new names. These modules can be used together, e.g., to specify probabilistic models
in Maude [7]. For certain applications, it is convenient to have a predefined specifi-
cation for machine integers instead of the arbitrary size integers provided by the INT
module. The parameterized module MACHINE-INT takes a bit-width parameter n ≥ 2,
which must be a power of 2, and defines machine integer operations. For parameterized
programming, several functional theories like TRIV, DEFAULT, STRICT-WEAK-ORDER,
TOTAL-PREORDER, and TOTAL-ORDER are predefined. Also predefined are the modules
LIST, SET, LIST*, and SET*. The WEAKLY-SORTABLE-LIST module, parameterized by
STRICT-WEAK-ORDER, specifies a stable version of the mergesort algorithm, and the
SORTABLE-LIST module sorts lists with respect to the TOTAL-ORDER theory. Maps and
arrays are supported by the MAP and ARRAY modules.

5 Some Applications

In this section we review briefly some Maude applications that have been or can be
developed, particularly with the new unification and narrowing infrastructure.

Narrowing-based unification. If we have a dedicated algorithm to solve unification
problems in an order-sorted theory (Σ,Ax), then we can use it as a component to obtain
a unification algorithm for theories of the form (Σ,E∪Ax), provided the equations E are
coherent, confluent and terminating modulo Ax [17]. We just need to add to (Σ,E ∪Ax)
a new constant tt, a binary symbol eq, and equations of the form eq(x,x) = tt (one for
each top sort in Σ, with x of that top sort). Then we can reduce an E ∪Ax-unification
problem t ?= t ′ to the narrowing reachability problem eq(t, t ′) ;∗ tt modulo Ax in the
theory extending (Σ,E ∪Ax) with these new operators, and equations.

The computation of E ∪Ax-unifiers by narrowing modulo Ax yields a complete but
in general infinite set of E ∪Ax-unifiers. When Ax = /0, sufficient conditions are known
ensuring termination of the basic narrowing strategy (see, e.g., [18, 1]), and therefore
yielding a finite complete set of E ∪Ax-unifiers. However, for axioms Ax such as AC, it
is well-known that narrowing modulo AC “almost never terminates” and, furthermore,
that basic narrowing is incomplete [24, 9]. Based on the idea of “variants” in [9], a com-
plete narrowing strategy modulo Ax called variant narrowing has been proposed in [16].
Furthermore, in [15] sufficient checkable conditions on (Σ,E∪Ax) have been given en-
suring that the E ∪Ax-unification algorithm provided by variant narrowing modulo Ax
is finitary, even though variant narrowing modulo Ax may still not terminate in spite of
such conditions. A Maude-based narrowing library that uses the current built-in unifi-
cation algorithm as a component has been developed by S. Escobar.

Symbolic reachability analysis in rewrite theories. A rewrite theory, say R = (Σ,E∪
Ax,R), specified in Maude as a system module, describes a concurrent system whose

8



states are E∪Ax-equivalence classes of ground terms, and whose local concurrent tran-
sitions are specified by the rules R. When formally analyzing the properties of R , an
important problem is ascertaining for specific patterns t and t ′ the symbolic reachabil-
ity problem (∃X) t −→∗ t ′ with X the set of variables appearing in t and t ′. As shown
in [21], provided the rewrite theory R = (Σ,E ∪Ax,R) is topmost (that is, all rewrites
take place at the root of a term), or, as in the case of AC rewriting of object-oriented
systems, R is “essentially topmost,” and the rules R are coherent with E modulo Ax,
narrowing with the rules R modulo the equations E ∪Ax gives a constructive, sound,
and complete method to solve reachability problems of the form (∃X) t −→∗ t ′.

Of course, narrowing with R modulo E∪Ax requires performing E∪Ax-unification
at each narrowing step, which as explained above can itself be performed by narrowing
with the equations E modulo Ax, provided E is coherent, confluent, and terminating
modulo Ax. Therefore, in performing symbolic reachability analysis in a rewrite the-
ory R = (Σ,E ∪ Ax,R) there are usually two levels of narrowing and two levels of
unification: narrowing with R modulo E ∪Ax for reachability, and narrowing with E
modulo Ax for unification modulo E ∪Ax. This is exactly the approach taken in the
Maude-NPA protocol analyzer [13], where cryptographic protocols are formally spec-
ified as rewrite theories of the form R = (Σ,E ∪Ax,R), and the formal reachability
analysis is performed in a backwards way, from an attack state to an initial state. This
just means that we perform standard (forwards) reachability analysis with the rewrite
theory R −1 = (Σ,E ∪Ax,R−1), where R−1 = {r −→ l | (l −→ r) ∈ R}. The equational
theory E∪Ax typically specifies the algebraic properties of the cryptographic functions
used in the given protocol, for example, public key encryption and decryption, exclusive
or, modular exponentiation, and so on, which often have the finite variant property [9].

Solving a symbolic reachability problem (∃X) t −→∗ t ′ corresponds to falsifying an
invariant, namely, that all states reachable from t are in the complement of the instances
of t ′. The paper [14] shows how narrowing can be used to perform a more general
symbolic model checking, not just for invariants, but for temporal logic formulas.

Building Formal Tools Reflectively in Maude. Another important application area is
the development of formal tools by reflection. This can be done directly in Core Maude
using the META-LEVEL module, or in Full Maude as a language extension.The Maude
book [7] describes many such tools: the Maude inductive theorem prover, Church-
Rosser checker, coherence checker, sufficient completeness checker, termination tool,
real-time Maude tool, and several others. Some recent new tools are the Maudeling
and MOMENT-2 tools, for formal specification and analysis in model-based software
engineering [22, 3], the already mentioned Maude-NPA [13], and a model checker for
the linear temporal logic of rewriting [2]. With metalevel support for unification and
narrowing, new formal tools can be built in the near future.

The Rewriting Logic Semantics Project. An important and very active area of Maude
applications is based on the idea of giving formal semantics to a programming language
L as a rewrite theory RL = (ΣL ,EL ,RL), where ΣL defines the syntax and the semantic
types of L , EL the deterministic semantics, and RL the concurrent semantics (see [20,
23]). Specifying RL in Maude as a system module yields not only an L-interpreter, but
also an L-model checker that can perform sophisticated program analysis.

9



References

1. M. Alpuente, S. Escobar, and J. Iborra. Modular termination of basic narrowing. In Procs. of
RTA’08, LNCS 5117:1–16, 2008.

2. K. Bae and J. Meseguer. A rewriting-based model checker for the linear temporal logic of
rewriting. In Procs. of RULE’08, ENTCS, to appear.

3. A. Boronat and J. Meseguer. An Algebraic semantics for MOF. In Procs. of FASE’08, LNCS
4961:377-391, 2008.

4. A. Boudet, E. Contejean, and H. Devie. A new AC unification algorithm with an algorithm
for solving systems of diophantine equations. In Procs. of LICS’90, pp. 289–299.

5. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and J. Quesada. The
Maude system. In Procs. of RTA’99, LNCS 1631:240–243, 1999.

6. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and J. Talcott. The
Maude 2.0 system. In Procs. of RTA’03, LNCS 2706:14–29, 2003.

7. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and C. L. Talcott. All
about Maude, A high-performance logical framework, LNCS 4350, 2007.

8. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and C. L. Talcott.
Maude Manual (v. 2.4), SRI Intl. & U. of Illinois at Urbana-Champaign, Oct. 2008. Available
at http://maude.cs.uiuc.edu.

9. H. Comon-Lundh and S. Delaune. The finite variant property: how to get rid of some alge-
braic properties. In Procs. of RTA’05, LNCS 3467:294–307, 2005.

10. E. Contejean, C. Marché, and X. Urbain. CiME 3. Available http://cime.lri.fr/. 2004.
11. F. Durán and J. Meseguer. Maude’s module algebra. Sci. Comp. Progr. 66(2):125–153, 2007.
12. S. Eker. Unification in Maude. Talk at the “Protocol eXchange Seminar”, Naval Postgraduate

School, January 2007.
13. S. Escobar, C. Meadows, J. Meseguer. A rewriting-based inference system for the NRL Pro-

tocol Analyzer and its meta-logical properties. Theor. Comput. Sci. 367(1-2):162–202, 2006.
14. S. Escobar and J. Meseguer. Symbolic model checking of infinite-state systems using nar-

rowing. In Procs. of RTA’07, LNCS 4533:153–168, 2007.
15. S. Escobar, J. Meseguer, and R. Sasse. Effectively checking the finite variant property. In

Procs. of RTA’08, LNCS 5117:79–93, 2008.
16. S. Escobar, J. Meseguer, and R. Sasse. Variant narrowing and equational unification. In

Procs. of WRLA’08, ENTCS:88–102, 2008.
17. J.-P. Jouannaud, C. Kirchner, and H. Kirchner. Incremental construction of unification algo-

rithms in equational theories. In Procs. of ICALP’83, LNCS 154:361–373, 1983.
18. J.-M. Hullot. Canonical forms and unification. Procs. CADE’80, LNCS 87:318–334, 1980.
19. N. Martı́-Oliet, J. Meseguer, and A. Verdejo. Towards a strategy language for Maude. In

Procs. of WRLA’04, ENTCS 117:417–441, 2005.
20. J. Meseguer and G. Roşu. The rewriting logic semantics project. Theor. Comput. Sci. 373(3):

213-237, 2007.
21. J. Meseguer and P. Thati. Symbolic reachability analysis using narrowing and its application

to verification of cryptographic protocols. High.-Ord. Symb. Comp. 20(1-2):123–160, 2007.
22. J. E. Rivera and A. Vallecillo. Adding behavioral semantics to models. In Procs. of

EDOC’07, pp. 169-180, 2007.
23. T. F. Şerbănuţă, G. Roşu, and J. Meseguer. A rewriting logic approach to operational seman-

tics. Information and Computation. In Press. Available online 6 December 2008.
24. E. Viola. E-unifiability via narrowing. In Procs. of ICTCS’01, LNCS 2202:426–438, 2001.

10


