
Comparing Three Coordination Models:
Reo, ARC, and PBRD ?

Carolyn Talcott ∗

Computer Science Laboratory, SRI International Menlo Park, CA 94025, USA 1

Marjan Sirjani

Electrical and Computer Engineering Department, University of Tehran; School of
Computer Science, IPM, Tehran, Iran; and School of Computer Science, Reykjavik

University, Iceland

Shangping Ren

Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616,
USA 2

Abstract

Three models of coordination—Reo, Actors-Roles-Coordinators (ARC), and Policy-based
Russian Dolls (PBRD)—are compared and contrasted according to a set of coordination
features. Mappings between their semantic models are defined. Use of the models is illus-
trated by a small case study.

1 Introduction

Coordination is becoming an increasingly important paradigm for systems design
and implementation. With multiple languages and models for coordination emerg-
ing it is interesting to compare different models and understand their strengths and

? Expanded version of a conference paper presented at the FOCLASA07.
∗ Corresponding author.

Email addresses: clt@cs.stanford.edu (Carolyn Talcott),
msirjani@ut.ac.ir (Marjan Sirjani), ren@iit.edu (Shangping Ren).
1 Supported in part by NSF grant CCR-0311348
2 Supported in part by NSF grants CNS-0431832 and CNS-0746643

Preprint submitted to Elsevier 26 April 2009

weaknesses, find common semantic models and develop mappings between for-
malisms. This will help us to gain a deeper insight into coordination concepts
and applications, and also to establish a set of features/criteria for defining and
comparing coordination models. There are two main classes of coordination mod-
els, exogenous and tuple-space based. In this paper, we focus on the exogenous
case and compare and contrast three coordination models: Reo [1], Actors-Roles-
Coordinators (ARC) [2], and Policy-based Reflective Russian Dolls (PBRD) [3].
These three models cover a wide spectrum of communication mechanisms includ-
ing synchronous and asynchronous, message-based and channel based. They also
represent a variety of organization principles such as roles, hierarchical reflection,
nesting of circuits, and mechanisms for hiding. Thus we believe they serve as a
good sample set for a first study. Future work includes considering tuple-based
models such as Linda [4] and its mobile extension, Lime [5], and Klaim[6] and its
stochastic extension [7].

(a) Reo

Policy
Rule 1
Rule 2

(b) PBRD

Coordination Layer

Role Layer

Actor Layer

Inter-role

Coordination
Intra-role

Coordination
MessageCoordinated

Message

(c) ARC

Fig. 1. Three Different Coordination Models

Figure 1 gives a graphical impression of the Reo, ARC, and PBRD. Reo is a
channel-based exogenous coordination model for component composition. In Reo,
complex connectors are compositionally built out of simpler ones. The simplest
connectors are channels with well-defined behaviors. These connectors are repre-

2

sented graphically as circuits. Similar to electronic circuits, connectors show how
distributed coordinatees are connected 3 . The emphasis in Reo is on the connec-
tors, and the coordination and communication patterns which they impose on the
components, but not on the components which are the coordinatees. Compositional
semantics of Reo circuits can be given by Timed Data Streams (TDS) [8] and by
constraint automata [9,10]. Constraint automata can also be used for analyzing and
model checking Reo systems.

ARC uses the separation of concern principle to partition coordination into two dis-
joint categories, i.e., intra-role and inter-role coordination, and uses roles and co-
ordinators, respectively, to abstract these behaviors. The coordinatees in the ARC
model are actors, entities that interact by asynchronous message exchange. Coor-
dination is through message time-space manipulations which are transparent to the
coordinatees. Reasoning in the ARC system is based on message dispatches in time
(when) and space (to whom).

Reflective Russian Dolls (RRD) is a model of reflective distributed object compu-
tation [3]. It uses reflection and hierarchical structure to provide a general layered
coordination model. Each layer (meta-object) controls the communication and the
execution of objects in the layer below. Policy-based RRD (PBRD) is a restricted
form of RRD in which communication control is specified by declarative policies.
The objects being coordinated are actor-like objects. The semantics of PBRD coor-
dinators and coordinatees is interaction semantics [11,12] which is compositional
both horizontally (composing object or coordinated object configurations) and ver-
tically (composing coordinators and coordinatees).

Although the underlying computation model of both ARC and PBRD is the actor
model, they represent very different approaches to coordination. ARC splits coor-
dination into two aspects, one that deals with dynamicity and manages a group of
actors providing similar services to make the dynamicity transparent, while the sec-
ond aspect deals with enforcing given constraints on communication patterns, be-
tween groups of actors rather than between single actors. PBRD is concerned with
enforcing communication constraints between individual actors, using a declara-
tively specified policy. ARC is concerned with systems with large numbers of ac-
tors having a much smaller number of individual behaviors, while PBRD takes a
global view of systems with diverse actors.

Related work. A broad survey [13] of coordination models and languages con-
cluded that coordination models can be categorized as data-driven or control-
driven. In data-driven models such as Linda and its extensions, coordination tends
to be endogenous and embedded within computational entities. In control-driven
models, coordination tends to be exogenous and isolated from computational en-
tities. Reo, ARC and PBRD are all control driven models. Control-driven models

3 We use the term coordinatees to refer to the entities being coordinated.

3

such as ABT [14], ROAD [15], IWIM [16], and CoLaS [17] isolate coordination by
considering functional entities as black boxes. Both IWIM and ABT address com-
putation and coordination concerns in separate and independent levels. ABT treats
both computation and coordination components as composable Abstract Behavior
Types. Hybrid approaches such as tuple center [18] and ReSpecT [19,20] combine
the data-driven and control-driven models.

Some control-driven models, such as ROAD, CoLaS, and Finesse [21], target the
scalability issues of open distributed systems through group-based coordination
models. Most current role-based coordination models are based on organizational
concepts, where roles abstract coordination behaviors among participants that play
the roles. Role-based coordination models are surveyed in [22].

Several coordination models take decentralization into account. TuCSoN [23] dis-
tributes communication abstractions (tuple centers) to multiple Internet nodes, and
every tuple center produces and maintains its own local coordination rules. CoLaS
partitions a distributed system into multiple coordination groups, and each coordi-
nation group enacts an independent set of coordination policies. ROAD provides
a recursive structure that composes fine-grained coordination groups into coarse-
grained groups. LGI [24] provides a controller for every object in the system and
therefore implements completely decentralized coordination.

Reo is built upon the IWIM model of coordination and the coordination language
Manifold and allows sophisticated exogenous coordination of active entities in a
system. It can also be considered as a concrete instance of the application of the
ABT model and demonstrates the expressive power of ABT composition. Reo can
be used as a glue language for compositional construction of connectors that or-
chestrate component instances in a component based system. Connectors and their
composition are the main focus in Reo. The entities are connect to, communicate,
and cooperate through these connectors. Each connector in Reo imposes a specific
coordination pattern on the entities (e.g., component instances) that perform I/O
operations through that connector, without the knowledge of those entities.

Earlier coordination work based on the Actor model includes hierarchical coordi-
nation [25], multi-level meta architectures [26], and synchronizers [27]. However,
the ARC and PBRD model also differs significantly from earlier work. Synchro-
nizers are closed in the sense that all participant actors must be individually speci-
fied when a synchronizer is instantiated, whereas role-based coordination is open,
dynamic, and collectively based on actor behavior. Synchronizers coordinate ex-
isting messages sent by basic actors, whereas ARC coordination actors may also
send messages (events) required to enact coordination policies. The hierarchical
coordination model intentionally does not include a meta-architecture and enacts
coordination via hierarchical grouping of actors, but this grouping is not based on
role behavior. The use of role-based coordination also distinguishes the ARC model
from the multi-level meta architectures.

4

PBRD is an instance of Reflective Russian Dolls formal model of distributed ob-
ject reflection based on rewriting logic [28] and several models of distributed actor
reflection such as the onion skin model [29,30] and the two-level actor machine
model [31,32] have been shown to be special cases of the RRD model. PBRD may
take a global view of coordination, with all coordinatees nested in one coordinator
objects. As shown in [33], such models can be systematically transformed into
multi-coordinator systems that exhibit equivalent behavior, the extreme being on
coordinator per object as in the LGI model. The PAGODA (Policy And GOal based
Distributed Autonomy) architecture, for specifying and prototyping autonomous
systems, uses PBRD coordination to combine local components (aspects) into a
single agent behavior and a higher-level PBRD specification to coordinate behav-
ior of multiple distributed agents [34].

Plan. The remainder of the paper is organized as follows. In Section 2, we spell
out the features to be compared and contrasted. Section 3 describes the three mod-
els and compares and contrasts them according to the listed features. Section 4
describes representations in the three models of a simple coordination task. In Sec-
tion 5 we make a step towards a common semantic foundation for the three models.
Conclusions and future work are discussed in Section 6.

2 Coordination Features

Coordination languages and models are being developed to address the problem of
managing the interactions among concurrent and distributed processes. The under-
lying principle is separation of computations by components and their interactions
[35,36]. In our study of the three chosen models of coordination we considered a
number of features (dimensions in the design space) including those summarized
below.

Computation model. Is communication message-, event-, or channel-based? Is it
synchronous or asynchronous? Is state localized or is there a shared global mem-
ory? Is the state space discrete, continuous, or hybrid?

Control. Is the coordinator in control or is it a passive information store (control
oriented versus data oriented coordination)? Do the coordinated components have
explicit actions for effecting the coordination?

Semantic model. How is the semantics of components and/or coordinators spec-
ified? An operational semantics could be given as a state transition system, such as
automata or rewrite systems. Denotational semantics might be expressed in terms
of observable events, traces/streams, or signals.

Modularity and Compositionality. An important issue is compositionality of

5

system descriptions and semantics at all levels, both vertically and horizontally.
Does the model provide mechanisms for structuring or modularizing coordination
activities?

Distribution. Coordination is inherently a system wide phenomena. However
when the system itself is distributed there are issues of managing distributed state
and actions. Does the coordination model support explicit expression of distribution
aspects or is this addressed at the implementation level?

System Dynamics. To what extent can the system architecture change during
execution. For example can new components or coordinators be created? Can the
communication topology change?

Specification. Coordination models typically focus on how a coordinator achieves
its goals. But how are the goals specified? How can you decide if a coordinator
achieves its goals? Examples of different kinds of goals include: serializing re-
quests to a component; ensuring a given group communication semantics; ensuring
atomicity of a group of messages; providing fault tolerance; and balancing resource
usage, quality and timeliness.

Analyzability. An important and often ignored aspect of specifications is ana-
lyzability. To what degree do different coordination models support analyzability,
verification of certain properties? And how?

3 Three Models of Coordination

Each of the three models is described in some detail, followed by a feature-wise
comparison. As a simple case study we consider the alternating display problem.
The idea is that there are several sensors producing readings, and a display device
that renders each reading it receives. The requirement is that displayed readings
should alternate amongst the available sensors. A practical example is the billboard
display that alternately displays time and temperature. A fancier system might re-
peatedly display date, time, temperature. The coordinator’s task is to ensure that
the display receives readings in the right order.

3.1 Reo

Reo is an exogenous coordination language based on a calculus of channel compo-
sition. A channel is an abstract communication medium with exactly two ends and
a constraint that relates the flow of data at its ends. A channel represents a primitive
interaction (protocol), explicitly represented as a binary constraint. There are two
types of channel ends, source-end where data enters into the channel, and sink-end

6

where data leaves the channel. A channel can have two sources, two sinks, or a
source and a sink. The channel relation can be defined by users which allows an
open-ended set of different channel types, each with its own policy for synchro-
nization, buffering, ordering, computation, data retention/loss, etc.

Channels are connected to make a circuit by joining channel ends together to form
nodes. A node is a source node if all of its channel ends are source ends. It is a sink
node if channel ends are sink ends. Otherwise it is a mixed node. A component can
write data items to a source node that it is connected to. The write operation suc-
ceeds only if all (source) channel ends coincident on the node accept the data item,
in which case the data item is written to every source end coincident on the node.
A source node, thus, acts as a replicator. A component can obtain data items, by a
take operation, from a sink node that it is connected to. A take operation succeeds
only if at least one of the (sink) channel ends coincident on the node offers a suit-
able data item; if more than one coincident channel end offers suitable data items,
one is selected nondeterministically. A sink node, thus, acts as a nondeterministic
merger. A mixed node nondeterministically selects and takes a suitable data item
offered by one of its coincident sink channel ends and replicates it into all of its
coincident source channel ends.

We may put a Reo connector (circuit) in a box to make a component out of it. The
inner nodes become hidden and the source or sink nodes which are the interfaces
of a component and its environment are called (input or output) ports. Mixed nodes
cannot be used as ports and are not available for other components to connect to,
they shall all be included in inner/hidden nodes. Assuming a Reo connector as a
component, it has well-defined behavior and interface (ports) and can be reused.

Constraint automata: Compositional Semantics of Reo Constraint automata
are proposed in [9,10] as compositional semantics of Reo, based on timed data
streams [8]. Each element of a timed data stream is a pair of time and a data item,
where the time indicates when the data item is being input or output. A transi-
tion fires if it observes data item in a port of the component and according to the
observed data, the automaton may change its state. Therefore, the automata-states
stand for the possible configurations (e.g., the contents of the FIFO-channels of a
Reo connector) while the automata-transitions represent the possible data flow and
its effect on these configurations.

Definition [Constraint Automata]: A constraint automaton (over the data do-
main Data) is a tuple A = (Q,Names,−→, Q0) where:

Q is a finite set of states, Names is a finite set of names (e.g. I/O ports of a compo-
nent),−→ is a finite subset of Q×2Names×DC×Q, called the transition relation
of A, and Q0 ⊆ Q is the set of initial states. DC is set of data constraints that play
the role of guard for transitions. For example d A = d B is a data constraint that
requires that the observed data on ports A and B be equal.

7

Sync SyncDrain

Filter

Pat

FIFO1

LossySync

MergerNode

{A,B}
d_A = d_B {A,B}

{A,B}
d_A

d_A = d_B
Pat

{A},
d=d_A

{B}, d_B = d

{A}
d_A Pat

{A,B}
d_A = d_B {A}

{B,C}
d_B = d_C

{A,C}
d_A = d_C

A B A B

A B A B

A B

A
B

C

(a)

(d)

(c)(b)

(e) (f)

Fig. 2. Basic Reo channels and the merger node, together with their deterministic constraint
automata

Figure 2 shows five primitive Reo channels and their corresponding constraint au-
tomata and also the constraint automaton of the merger node. A Sync, (Figure 2.a)
channel has a source (A) and a sink (B) end. It accepts a data item through its
source end iff it can simultaneously dispense it through its sink. SyncDrain which
is shown in Figure 2.b is a channel with two source ends (A and B). It accepts a
data item through one of its ends iff a data item is also available for it to simul-
taneously accept through its other end as well. All data accepted by this channel
are lost. The channel in Figure 2.c is a LossySync channel. This channel is similar
to the Sync channel, except that it always accepts all data items through its source
end (A). If it is possible for it to simultaneously dispense the data item through
its sink (B) the channel transfers the data item; otherwise the data item is lost. A
Filter channel which is shown in Figure 2.d behaves like the Sync except that it
loses all data that do not match the specified pattern of the filter (Pat in the figure).
The FIFO1 channel (Figure 2.e) has a source (A) and a sink end(B), and a bounded
buffer with capacity of 1 data items (the box in the figure). The accepted data items
are kept in the internal FIFO buffer of the channel. The appropriate I/O operations
on the sink end of the channel obtain the content of the buffer in the FIFO order.
The constraint automaton of the MergerNode in Figure 2.f shows that the output
data on C is nondeterministically chosen from one of the inputs of A or B.

Example: An Alternating Display. Figure 3 shows the Reo circuit and constraint
automata for a Display which shows date, time, and temperature in an alternating
sequence. There are three components (Calendar, Timer, Temperature) which are
responsible for generating date, time and temperature data. The fourth component
(Display) displays the data which is given to it through its show port. These compo-
nents are shown as black boxes and we know their behavior and interfaces (ports),
but not their internal structure. We have a circuit, Sequencer, which orders the three
inputs into Display component. By putting a box around Sequencer we can view it
as a component. This component is further used in example of Section 4.

8

(a) ReoTimeTemp (b) TimeTempCA

Fig. 3. Date-Time-Temperature-Display

3.2 Actor-Role-Coordinator (ARC) Model

The Actor-Role-Coordinator (ARC) model [2] is also an exogenous coordination
model. It is based on static behavior abstractions, but targeted on dynamic and large
scale applications. In particular, actors [37,38] are used to model asynchronous and
distributed computations. Roles, on the other hand, are static abstractions for be-
haviors shared by a set of underlying computational actors. The role member actor
set may dynamically change, but all role player actors share the statically defined
behaviors. Such abstraction decouples behaviors from their implementation and
eliminates static binding between behavior coordination (which is the responsi-
bility of coordinators) and computational actors. Coordinators in the ARC model
coordinate different behaviors. Compared to the number of actors involved in an
application, the number of behaviors, i.e. roles, is usually order(s) of magnitude
smaller than the number of contributing actors. Therefore, the coordination model
is not only stable, but also scalable.

To make this point more intuitive, consider a simplified space surveillance scenario
in which infrared and radio wave sensors are deployed in an open space for detect-
ing foreign objects. As shown in Figure 4, depending on where the foreign object
occurs, different groups of sensors are active and generate data. In order for a con-
trol center to take an appropriate action, data from the two types of sensors must be
semantically consistent (i.e., indicating the same type of object) and their arrivals
at the center must be within a specified time range.

Clearly, it is a must that the infrared and radio wave sensors be coordinated in
a timed fashion, but the nature of the problem prohibits us from statically pairing
them up. Hence, two roles are introduced to abstract the dynamic groups of infrared
and radio wave sensors, respectively. Further, the coordination of time synchroniza-
tion among different type of data, from infrared sensors and radio wave sensors, can
now be specified based on the two roles introduced, rather than the dynamic sensor
sets.

9

Infrared Sensor

Radio Wave Sensor

Fig. 4. The ARC Model

Infrared Sensor Radio Wave Sensor

Fig. 5. The ARC View of an Open Space
Surveillance System

In addition to serving as behavior abstractions, roles also share coordination re-
sponsibilities. They manage actor messages’ space domain, i.e., deciding to which
member actor a message should be delivered. However, when an actor message
shall be dispatched is decided conjunctively by both roles and coordinators.

Under the ARC model, there are two types of active coordination objects in the
model: roles and coordinators. The coordination within a role is called intra-role
coordination which focuses on coordination among members that have the same
behaviors, while coordination among the roles is called inter-role coordination.
Both inter-role and intra-role coordination constraints are enforced transparently to
the actors through actor message time-space manipulations.

Example: Coordination in an Alternating Display. Consider again the Date-
Time-Temperature-Display example given in the previous subsection. In this exam-
ple, the date, time and display are modeled by a single actor, respectively. However,
in order to get more accurate temperature, multiple sensor actors are deployed in
the region. The functionality of the date, time and temperature sensor actors are
to send the display actor their corresponding value at their frequency. The display
actor is to read values from the date, time, and sensor actors and display the values
alternately.

Under this setting, we introduce four different roles, i.e., the DateRole, TimeRole,
TemperatureRole, and DisplayRole. For the DateRole, TimeRole, and DisplayRole,
there is only one actor as their member actor. Hence, these three roles are pass-
through roles without any coordination functionality. The TemperatureRole, on the
other hand, may have multiple sensor actors and its coordination functionality is to
decide how to provide a value for the display actor. This value can be the first sen-
sor value that reaches the role, or average sensing value depending on the intra-role
coordination policy. The coordinator in this example is to coordinate the differ-
ent value change frequencies. For instance, the display of the date changes every
86400 seconds, and time every second, while the temperature changes every hour
only. In other words, the ratio among date, time and temperature changes should

10

be 86400:1:3600. Assuming we use the first available sensor value for display, the
intra-role and inter role coordinations are given below.

Temperature role:

γTP (Z = 0 ∧ FirstValueArrived == false) :

P1 : [εtp.send(dp,temp)]

if (tp ∈ γTP ∧ tp 6= α⊥TP
) become (γTP (z + +));

FirstValueArrived = true;

tell (Z = z)→ tp.out (d, temp) 2

ask (Z 6= z)→ reroute (temp, dp, α⊥TP
);

Assume we take the first value from temperature sensor actors tp. The rule states
that only the first message sent to the display actor dp will be sent out, the rest will
be rerouted to the temperature role’s sink actor αbotTP

, while the frequency control
is done at the coordinator below. The role interacts with the coordinator through
ask and tell operations on their observed events. These two operations are applied
to a constraint store defined by concurrent constraint programming model.

Date role:

γDT (X = 0) :

P1 : [εdt.send(dp,date)]

if (dt ∈ γDT ∧ dt 6= α⊥DT
) become (γDT (x+ +));

tell (X = x)→ dt.out (dp, date) 2

ask (X 6= x)→ reroute (date, dp, α⊥DT
);

As there is only one actor under the Date role, we only need to control the display
frequency. The unused date messages sent to display are re-routed to its sink actor.
The time role has a similar policy, but the contributing value is y.

Time role:

γTP (Y = 0 ∧ FirstValueArrived == false) :

P1 : [εt.send(d ,temp)]

if (t ∈ γTP ∧ t 6= α⊥TP
) become (γTP (y + +));

FirstValueArrived = true;

tell (Y = y)→ t.out (d, temp) 2

ask (Y 6= z)→ reroute (temp, d, α⊥TP
);

11

Coordinator:

θ(X : Y : Z = 86400 : 1 : 3600) :

P1 : [εγDT .become (γDT (x=0)) ∪ εγTM .become (γTM (y=0))∪
εγTP .become (γTP (z=0))] become (θ(X : Y : Z = 86400 : 1 : 3600))

The constraint is to reset the counters in different roles and ensure the display
changes at the specified frequency

It is worthwhile to point out that the separation of computation and intra-role and
inter-role coordination advocated by the ARC model is clean and orthogonal. Such
separation mitigates the complexity of each individual type — coordinators only
concern coordination of a small scale of roles while roles care only about actors of
the same behavior, it provides the ground for independent modeling and composi-
tional reasoning.

Formal Reasoning. The denotational semantics of the actor model is often de-
scribed by externally observable event traces. Without external coordination con-
straints, valid traces of an actor computation are a set of all possible linear orderings
of events. When coordination constraints such as timing constraints are imposed
on the computation, valid traces must take into account the maximal allowed time-
spans between event pairs [39]. Hence, some otherwise valid event traces may be
prohibited by the constraints.

The role introduced in the ARC model captures a group of actors sharing the same
behaviors and makes these actors indistinguishable from a coordination perspec-
tive. It therefore extends the set of allowed observable traces and provides certain
degree of relaxation to the constraints.

To be more specific, consider two actor computations represented by the event di-
agrams [40] shown in Figure 6(a) (i) and (ii), respectively, where actors a1 and
a2 share the same behavior, and so do a3 and a4. Based on the traditional ac-
tor trace equivalence [38,41], these two computations are not trace equivalent be-
cause Figure 6(a)(i) has trace {(e1, e3, e2, e4)}, whereas Figure 6(a)(ii) has trace
{(e2, e4, e1, e3)}. However, because a1 and a2 are indistinguishable from a coordi-
nation’s perspective, so are a3 and a4, Figure 6(b) (i) and (ii) can hence both be
reduced to Figure 6(b)(iii). In other words, the two computations are equivalent
under role abstractions. Such a reduction avoids unnecessarily strong equivalence
requirements and leads to an equivalence that is based on coordinated behaviors.

Satisfying Concurrent Constraints. Encapsulating coordination constraints
within independent and distributed coordinators promotes the model’s modular-
ity, scalability and other features that a distributed system may provide. However,
the benefits will only be fully realized if the following two issues can be addressed
for the ARC model.

12

(i) (iii)(ii)

a1 a2 a3 a4

e1

e2

e3

e4

(i) (ii)

(a) Two actor computations (b) Two equivalent computations under role abstractions

Fig. 6. Event Diagrams for Actor Computation and Role Abstraction

The first issue is to satisfy concurrent constraints. We have currently adopted a
Concurrent Constraint Programming (CCP) model [42,43] to communicate coor-
dination between coordinators and roles [44]. operations on their observed events.
By choosing a proper constraint system, such as one that resembles finite domain
constraints [45–47] to define timing constraints, constraint consistency assurance
can be reduced to the problem of checking the entailment of the constraint store
after each tell event that carries a time-stamp of its occurrence.

The second issue is to resolve conflicting constraints encapsulated within different
coordinators. The soft CCP model [48] provides a way to express preferences and
priorities for different constraints. Such global prioritization is feasible under the
CCP model because all the constraints are centralized in a constraint store, but is
difficult to apply in the ARC model because of the model’s distributed coordination
nature. The approach we take is to avoid global prioritization, instead, associate
each constraint with an award value if the constraint is satisfied under the specified
statistic guarantee and resolve the conflicts in a way that maximizes the system
award value.

3.3 Policy-based Russian Dolls (PBRD)

Reflective Russian Dolls (RRD) [3] is a model of distributed object reflection based
on rewriting logic. The model combines logical reflection with a structuring of
distributed objects as nested configurations of meta-objects (a la Russian Dolls) that
can reason about and control their sub-objects. In this formalism, a coordinator is
an object with a distinguished attribute that holds a nested configuration of objects
and messages. The nested configuration itself could consist of base-level objects or
coordinators each with their configuration of coordinated objects. The rewrite rules
that specify the behavior of a coordinator object control delivery of messages in its

13

contained configuration as well as specifying how external messages are processed.

RRD provides a very general coordination mechanism. In [33] a special form of
RRD called Policy-Based Russian Doll coordination (PBRD) was introduced. Here
each coordinator has additional distinguished attributes: a policy attribute, a policy
state attribute, that maintains processing state, and a queue of messages pending
delivery. In PBRD rewrite rules interpret the policy attribute, in the context of the
policy state, selecting messages from the pending queue to process and specifying
what to do with them. Simple policies include ordering of message delivery, seri-
alizing requests, and recording a history of events. Policy languages can be simple
tables, automata, or expressive functional languages.

Formalizing Policy Based Coordination. We explain the key features of PBRD
coordination as formalized in Maude [49,50] a system based on rewriting logic
used for developing, prototyping, and analyzing formal specifications. Rewriting
logic [51] is a logical formalism designed for modeling and reasoning about con-
current and distributed systems. It is based on two simple ideas: states of a system
are represented as elements of an algebraic data type; and the behavior of a system
is given by local transitions between states described by rewrite rules. A rewrite
rule has the form t ⇒ t′ if c where t and t′ are terms representing a local part
of the system state, and c is a condition on the variables of t. Such a rule can be
applied when a system term has a subcomponent matching t, such that c holds.
That subcomponent can then be rewritten to t′, possibly concurrently with changes
described by rules matching other parts of the system state.

A PBRD coordinator is represented using Maude object syntax, by terms of the
following form. 4

[a : A | {_}, policy: P, policyState: pS, pending: pQ
| inQ:(rcp,iMsgQ),outQ: iMsg,up:(ids,uMsgQ),dn: dMsgQ]

where a is the coordinators identifier and A is it class identifier, a subclass of
PBRDCoordinator. Between the vertical bars are attributes holding the coordi-
nators state. {_} is a place-holder for a set of objects being coordinated by a (these
objects have a similar structure). The remaining attributes have a label-value for-
mat. P is the coordinators coordination policy (with label policy:); pS is its policy
state; and pQ is a queue of messages pending delivery.

To the right of the second vertical bar are the coordinators interfaces—its points
of interaction with its environment. Each interface has a label and a queue of mes-
sages. Incoming interfaces additionally have an associated set of object identifiers
constraining the receivable messages. The interface inQ: (rcp,iMsgQ) is the

4 Here we only discuss single level coordination. In general, there can be a hierarchy of
coordinators, with lower-level coordinators being coordinated by higher level ones.

14

interface for messages coming in from the external world. This interface has label
inQ: and message queue iMsgQ. rcp is a set of identifiers of receptionist ob-
jects, that are visible outside the coordinated component. Messages have the form
msg(id,mb) where id is the identifier of the target object and mb is the message
body. Only messages with target in rcp can be received at the inQ: interface. The
interface with label outQ: and message queue oMsgQ is for outgoing messages.
The interface up: (ids, uMsgQ) is for messages coming “up” from coordina-
tee objects with identifier in ids. The interface dn: dMsgQ is for messages go-
ing “down” to coordinatee objects. Messages sent by coordinatees have the form
msg(id,mb)@o where o is the sender’s identifier, exposed to the coordinator but
not to the eventual receiver. Each coordinator interface can be thought of as a col-
lection of ports, each port corresponding to an object that is the sender/receiver of
the messages in the interface queue. In this interpretation, new ports open up when
ever the coordinator learns of a new actor.

Communication rules. There are communication rules that move messages
from a configuration of coordinators and messages into a coordinators input queue
and from a coordinators output queue into the configuration. The rule, beginning
rl[in] moves a message msg(o,mb) to the input queue of its target object, i.e of
the object with o in the set of receptionists.

rl[in]:
[a : A | atts | inQ: ((o rcp), iMsgQ), ips] msg(o,mb)
=>
[a : A | atts | inQ: ((o rcp), (iMsgQ, msg(o,mb))) , ips]

We use the Maude convention for writing object rewrite rules, making explicit only
the attributes or interfaces read or written by the rule. The remaining attributes and
interfaces are represented by variables that are bound to specific values when the
rule is applied. In the above rule the variable atts stands for all of the coordinators
attributes, while the variable ips stands for the remaining interfaces (outQ:, up:,
and dn:). The term (o rcp) matches any identifier set containing the message
target identifier, o.

The rule beginning rl[up] moves a message msg(x,mb)@o sent by coordinatee
with identifier o into the up queue of its coordinator (the coordinator with o in the
up queue identifier set).

rl[up]:
[a : A | atts | up: ((o ids), uMsgQ), ips] msg(x,mb)@o
=>
[a : A | atts | up: ((o ids), (uMsgQ, msg(x,mb)@o)), ips]

The rules for moving a message from an output or down queue are essentially the
dual/reverse of the input/up rules and are omitted.

15

Finally, there are internal coordinator rules that move messages from up and in-
put queues into the pending queue. The up case is given by the rule labelled
rl[up2pQ].

rl[up2pQ]:
[a : A | pending: pQ, atts

| up: (ids,(msg(x,mb)@o,uMsgQ))],ips]
=>
[a : A | pending: (pQ,msg(x,mb)@o), atts

| up: (ids,uMsgQ),ips]

Coordination rules. Coordination policies are specified by axioms for a function
next that determines the next coordination actions—messages to deliver and state
update. The axioms defining this function have the form

next(P,pS,pQ) = {dQ, oQ, pS1, pQ1} if cond

where P is a policy, pS is a policy state, and pQ is a queue of messages pending
processing. On the right, dQ and oQ are lists of messages. Those in dQ (resp. oQ) are
for delivery to nested (resp. external) objects, by placing them in the coordinators
down (resp. out) queues. The rule for policy interpretation (labeled rl[next])
uses the next function to determine the next action, if any.

rl[next]:
[a : A | {_}, policy: P, policyState: pS, pending: pQ, atts

| dn: dMsgQ, outQ: oMsgQ, ips]
=>
[a : A | {_}, policy: P, policyState: pS1, pending: pQ1, atts

| dn: (dMsgQ,dQ), outQ: (oMsgQ,oQ), ips]
if {dQ, oQ, pS1, pQ1} := next(P,pS,pQ)

where pS1 and pQ1 are the updated policy state and pending interaction queues,
respectively.

Composition. There are two forms of composition in the PBRD coordination
model. Horizontal composition is simply forming multisets of objects with dis-
tinct identifiers, using rules such as rl[in] for inter-object communication. More
interesting is the composition of a coordinator with a set of objects to be coordi-
nated, typically the ids part of the coordinators up queue is the set of identifiers of
these objects. In this case, the configuration place holder {_} is filled by the object
configuration {C} and the in/out rules for object communication are replaced by
rules that move messages from an objects out queue to the coordinators up queue,
and that move messages from the coordinators down queue into the target objects
in queue. This vertical composition is a form of reflection and preserves message

16

ordering, while horizontal composition corresponds to standard actor system com-
position and asynchronous messaging.

Alternating display coordinator policy. The policy altP for the alternating
display described at the beginning of this section has a policy state of the form
(od,oQ) where od is the name of the display object and oQ is a queue of reader
object ids (thus it will work for alternation of any number of sensor inputs). The
requirement for alternation of messages to the display is expressed by

next(altP,(od,(o1 o2 ...)), (pQ0, msg(od,r)@o1, pQ1))
=

{msg(od,r),nil,(od,(o2 ... o1)), (pQ0, pQ1)}
if not(containsSender(pQ0,o1))

where containsSender(pQ,o) is true just if pQ has the form pQ0,

msg(id,mb)@o, pQ1. It should be clear that this policy ensures that the sensor
ids of the sequence of messages received by the display alternates according to the
list of object ids in the policy state.

17

3.4 Feature Analysis

The following table summarizes the features of the three models using the features
listed in Section 2. Each feature is discussed in more detail below.

Comparing Features

Feature Reo ARC PBRD

Computation
Model

channel based, syn-
chronous and asyn-
chronous

message based, asynchronous, reflective

Control message routing global constraints,
message order-
ing/routing

message order-
ing/routing

Semantic
Model

CA, State transition,
TDS

State transition rewriting logic, inter-
action semantics

Modularity circuit composition
from basic channels;
CA and TDS seman-
tics are compositional

role based component algebra,
horizontal and ver-
tical compositional
semantics

Distribution global logical view,
distributed implemen-
tation

global coordination
constraints, distributed
roles, actors, and
implementation

global logical coordi-
nation, transformation
to distribute

Dynamics components dynam-
ically connect and
disconnect

actors, roles dy-
namically created,
changing communica-
tion topology

actors, coordinators
dynamically created,
changing communica-
tion topology

Specification multiple temporal log-
ics

rule based integration
of first order logic and
concurrent constraint
programming

search patterns, LTL

Analyzability model checking constraint satisfactions
analysis and constraint
store consistency anal-
ysis

search, model check-
ing

Computation model. Reo is a channel based language. Channels may be either
synchronous or asynchronous. A channel is called synchronous if the pairs of op-
erations on its two ends can only succeed atomically; otherwise it is called asyn-
chronous. There is no shared global memory. Both ARC and PBRD are based on

18

the actor model of computation [37,41,38] with the coordinated objects being actors
and the coordinators being meta-actors. Actors encapsulate their state and thread of
control and communicate by asynchronous message passing. Meta-actors control
the communication semantics of their base level actors.

Control. Coordination is imposed by a Reo circuit on connected components by
determining when data can be accepted on input ports and when it can be taken from
output ports, blocking components attempting write or read until the operation is
available. The decision to connect to a port is made by the coordinatee, but once
connected the coordinatee has no control over how the data is routed.

In the ARC model, role meta-actors intercept and control the delivery of base level
messages. Formally, each base level action generates events that must be handled
by the appropriate role before further base-level computation can take place. Role
and coordinator meta-actors also communicate by events. The base-level actors
have no active role in the coordination. However, roles are aware of the higher level
coordinator and participate actively in their coordination. A novel aspect is that
individual actors in a role are transparent to the coordinator layer. In the PBRD
model, coordination is exogenous at all levels. At each level, lower-level objects
execute as if there were no coordination layer, while the coordination layer controls
delivery of message.

The actor model has a built in notion of communication / message delivery. This is
modified by coordinators in ARC and PBRD using reflective mechanisms. In con-
trast, Reo components have individual behavior but there is no built in communica-
tion semantics for collections of components. This is provided by Reo connectors.

Semantics. Reo has several semantics including an operational semantics given
by constraint automata (CA) [9,10] and a denotational semantics based on Timed
Data Streams (TDS) [8,52]. In CA, states represent Reo configurations and transi-
tions encode maximally-parallel stepwise evolution. Transition labels show max-
imal sets of active nodes and sets of data constraints. Timed data streams model
the possible flows of data on connector ports, assigning a time to each interaction
(input or output of a data element). A Structural Operational Semantics for Reo
is given in [53] and a graph coloring semantics is given in [54]. The semantics of
ARC coordinators, roles and actors is given by the composition of a state transition
system that allows concurrent transitions and a concurrent constraint system that
restricts the order and location of certain transitions. The operational semantics of
PBRD coordinators and components is a rewriting logic system, a state transition
system that allows concurrent transitions. The denotational semantics is a set of in-
teraction paths—sequences of interactions, both peer-peer and object-metaobject.
It is derived from the event partial order generated by executions of the rewriting
semantics. The relationship between timed data stream and interaction path seman-
tics is discussed in Section 5.

19

Modularity and compositionality. In Reo, more complicated connectors are made
out of simpler ones. Nodes can be hidden by putting a box around a Reo connector,
giving the connector a well-defined interface and making it a reusable entity. Both
the CA and the TDS semantics are compositional—the behavior of a system can
be constructed from the behavior of its constituents. The behavior of components
as well as connectors can be given using CA or TDS, and so, we may have the
behavior of the whole system as a CA or a TDS.

The key structuring mechanism of ARC is the notion of role, with overall coordi-
nation layered on top of the per role coordination. ARC semantics is compositional
when certain restrictions are obeyed by the configuration of roles and coordinators,
i.e., neither roles nor coordinators share coordinatees [2].

The essence of PBRD is the nested hierarchical structure of coordinators. This
structure is preserved by basic composition operations. Event based semantics and
interaction semantics are compositional both for pure actor systems and reflective
systems—the semantics of a composition of objects and coordinators can be com-
puted from the semantics of the parts (see [11,12]).

Distribution. In Reo, both components (coordinatees) and connectors (coordina-
tors) may be distributed over a network. Physical locations are not captured by the
semantics of Reo. In Reo implementations nodes may change physical location.
Although this mobility of channel ends has significant consequences both for the
application as well as implementation of channels (considering efficiency), it is
transparent to Reo semantics and does not change the topology of channel connec-
tion. In ARC the overall inter-role constraints are conceptually stored in a central-
ized constraint store. The implementation of ARC distributes constraints based on
criteria such as expected rate of change and locality of use [55]. RRD coordinators
are specified as centralized controllers with global knowledge of the communi-
cation state of the controlled objects. As discussed in [33] RRD models can be
systematically transformed into flat object system specifications that exhibit equiv-
alent behavior, thus providing a principled path to distributed implementation. It
is also shown how coordination policies can be modified, semi-systematically, so
that a coordinator can be split into several distributed coordinators, each managing
a subset of the original coordinated configuration.

Dynamic Behavior. In the Reo model channels can be created through active ob-
jects inside the components. Both components and connectors in Reo are mobile.
Reo connectors are dynamically reconfigurable. We may have two kinds of recon-
figuration: first, physical relocation of channel ends (by move) which is possible in
Reo but entails no semantics consequences; and second, changing the placement
of channel ends in nodes (by join and split) which changes the topology of the
connector and its semantics. Replacements can also be done through active objects
inside the components. Hence, dynamic behavior is under control of the environ-
ment/connecting components, and not part of the connector behavior.

20

Actor systems are inherently dynamic: new actors can be created, and actors names
can be communicated in messages, thus changing the communication topology.
Similarly for meta-actors. Beyond the topological dynamics inherent in actor sys-
tems, roles can re-route messages to different member actors and actors may change
roles. RRD coordinators can be specified to deal with such dynamics in their con-
tained configuration, and new coordinators can be created dynamically. Using the
full reflective power of RRD, coordination of mobile objects can also be modeled.

Specification. A Reo circuit may be specified by a constraint automaton. Then this
constraint automaton can be compared with the constraint automaton obtained as
operational semantics of a Reo circuit to check (bi)simulation or language equiv-
alence. Temporal logics for specifying properties of Reo circuits are presented in
[52], [56,57], and [58], with main focus on real-time, reconfiguration, and model
checking, respectively. Timed scheduled data stream logic (TSDSL) is introduced
in [52] for reasoning about real-time constraints of Reo networks in the linear time
setting. In [56,57], ReCTL* is introduced which combines the well-known CTL*
logic [59] with SDSL for reasoning about Reo reconfiguration connectors. Branch-
ing time stream logic (BTSL) is introduced in [58], which deals with a branching
time, time-abstract variant of TSDSL, and ignoring some minor differences, is con-
tained in ReCTL*.

In ARC there are two types of coordination constraints, namely intra- and inter-
role constraints. For intra-role constraints, we use guarded action to specify when a
message should be re-routed to another destination within the group, or re-ordering
within an actor in order to satisfy the coordination constraints. In contrast, inter-
role constraints are a set of boolean properties that the roles being coordinated
must satisfy. Requirements for PBRD coordinators have been specified by informal
constraints on the resulting interactions of the coordinated actors (see [33,34]). Be-
haviors of specific ARC and PBRD coordinators can be specified in rewriting logic.
No formal logic has been developed or adapted to date for either ARC or PBRD.
Promising candidates include Event Logic [60] and temporal logic of rewriting
[61,62].

Analyzability. Compositionality means that coordinators and coordinatees can be
analyzed separately in any of the models. For Reo, regular model checking ap-
proaches can be adapted for constraint automata [58,56,57]. ARC’s analyzability
lies in the satisfiability and schedulability of composed inter-role and intra-role
constraints. Although the satisfiability and schedulability in general are undecid-
able, certain techniques, such as graph theory, can be applied to identify infeasible
situations. Furthermore, if the roles and coordinators are well partitioned, the com-
plexity of constraint analysis can be reduced. The Maude rewriting logic language
provides search and model-checking functions that can be used to analyze RRD
systems. Use of policies expressed in restricted form can make coordinators easier
to analyze.

21

4 Car Factory Case Study

In this section we look at how each of the three models addresses a particular coor-
dination problem, namely coordinating different jobs in a factory. This example is
taken from [2].

4.1 Specification

There are three factory jobs (called roles in [2]) to be coordinated: an assembler and
some number of wheel and chassis producers. The requirements for job components
(role players) are the following.

• An assembler receives car requests from a buyer, and parts (wheel or chassis)
from producers. For each car request, it sends four part requests to wheel pro-
ducers and one to a chassis producer. When four wheels and a chassis have been
received it sends a car reply to a buyer.
• A wheel producer receives wheel requests and sends wheel replies.
• A chassis producer receives chassis requests and sends chassis replies.

The car factory system has one assembler, a, one chassis producer, c, and n wheel
producers, w1, . . . , wn. The assembler knows the chassis producer and one or more
wheel producers, each producer (wheel or chassis) knows the assembler 5 . The
assembler is the only receptionist (the only actor that can receive messages sent
from outside the system). The requirements for the factory coordinator are

1. The ratio of chassis to wheel deliveries to the assembler is 1 : 4.
2. The 1 + 4 parts are delivered atomically.
3. Work is uniformly distributed amongst the wheel producers.

In the following subsections factory coordinators are described in Reo, ARC and
PBRD.

4.2 Reo Factory

The actors—assembler, wheel producers, and chassis producers—are modeled as
components. By putting an unbounded FIFO where an actor is connected to a Reo
circuit, the inherent non-blocking and asynchronous behavior of actors is kept un-
changed (i.e., Reo connectors cannot block actors sending messages). A Reo circuit

5 In the actor setting one actor must ‘know’ another in order to send a message. In a
channel based setting, ‘knows’ means sending on a suitable port.

22

Assembler

W1 W2 Wn Chassis

oo

Dispatcher

Request

1 2 3 4 5 6

Receiver

Sequencer

Car

Fig. 7. Factory example using Reo

to coordinate these actors that satisfies the three requirements is shown in Figure 7.
Using boxes, we may distinguish two modules: request dispatcher and part re-
ceiver in the Reo circuit, which we call as Dispatcher and Receiver, respectively.
The Dispatcher sends chassis requests to the chassis producer and incorporates a
round-robin policy in sending requests to “four out of n” wheel producers (to sat-
isfy Requirement 3). The produced parts (messages) go from the producer actors
to the Receiver. A Sequencer is used in the Receiver to send the parts atomically to
the Assembler, satisfying Requirements 1 and 2.

The Reo circuit has been mapped to constraint automata compositionally. We first
constructed the constraint automata of the Dispatcher and Receiver using the tool
presented in [63], and then applied the hiding to avoid state explosion. Actors
are modeled as CA and are composed with the CA of the rest of the circuit to

23

obtain the overall behavior. The resulting CA is used to show that the requirements
are satisfied (the constraint automaton is not included in this paper for the lack of
space).

The CA of the Receiver show that a request from the Assembler is received by
the Receiver, then four wheels are received and sent to the Assembler, and finally a
chassis is received and sent to the Assembler. The Sequencer guarantees the desired
ratio and atomicity of the operations. The round-robin policy is shown by the CA
of the Dispatcher.

Note that the round-robin dispatcher works properly because of the actor-nature of
the wheel and chassis components. Without this assumption a request will get lost
if none of the components are ready to receive it. In the general case, we use a
four-way exclusive router [1] instead of LossySyncs. This can also be seen in the
CA of the Dispatcher.

4.3 ARC Factory

γA(busy = false) :

P1 : [εa.receive(carReq)]

if (busy == true) reroute (carReq , a, α⊥A
) else (busy = true);

P2 : [εa.send(buyer ,car)] busy = false;

γW (x = 0) :

P1 : [εw.send(a,wheel)]

if (w ∈ γW ∧ w 6= α⊥W
) become (γW (x+ +));

tell (X = x)→ w.out (a,wheel) 2

ask (X 6= x)→ reroute (wheel , a, α⊥W
);

P2 : [εA.send(buyer ,car)] become (γW (x = 0));

P3 : [εwi.receive(wheelReq)]

if (∃j, 1 ≤ j ≤ n, s.t., |µwj
| = min

1≤k≤n
|µwk
|) reroute (wheelReq , wi, wj);

θ(X : Y = 4 : 1) :

P1 : [εγW .become (γW (x=0)) ∪ εγC .become (γC(y=0))] become (θ(X : Y = 4 : 1))

Fig. 8. Factory example using ARC

The ARC specification of the car factory coordination is shown in Figure 8. γA,
γW , and θ denote structure of assembler role, wheel role, and the coordinator, re-

24

spectively, with initial states 6 . The Pi specify the coordination behavior associated
with the coordinating actors. Expressions of the form [εaction] denote events that
trigger role and coordinator actions, A 2 B denotes that either A or B will take
place; and | µα | represents the size of actor α’s mail box. The intra-role coordina-
tion for the assembler role is to ensure that if its member actor is busy (represented
by the role’s state variable busy), the role will buffer further incoming requests by
rerouting them to its sink actor, α⊥A

. Upon observing the assembler actor finishing
a car, the role resets its busy state to false. The wheel role has a state variable x,
initially 0, that tracks the number of wheels produced since the last delivery to the
assembler. The wheel role not only synchronizes with the chassis role through the
coordinator by the primitive tell and ask operations to ensure a 4:1 ratio, but
also reroutes wheel requests to ensure that they are evenly distributed. The coordi-
nator specifies the inter-role coordination requirement. In this example, it ensures
that wheel role and chassis role’ productivity must be a 4:1 ratio.

4.4 PBRD Factory

A PBRD factory coordinator has the form

[FC : Factory | {_},
policy: FP, policyState: wQ, pending: pQ,
| in: ((FC a), iQ), out: oQ,

up: ((a c w1 .. wk), uQ), dn: dQ]

The factory receptionist set includes the factory coordinator and the assembler, rep-
resented by (FC a) in the in: interface. The identifier set (a c w1 .. wk) in
the up: interface gives the identifiers of the coordinated objects. The factor coor-
dinator policy is represented by the constant FP. A PBRD policy state is a wheel
actor queue, wQ, used to decide which wheel actor will receive the next request.
There are five equational rules axiomatizing the next function for the policy, FP.

r1. if pQ has 4 wheel replies and at least 1 chassis reply addressed to the assembler
a, remove them from pQ and deliver them to a (put them in dn:)

next(FP,wQ,pQ) = {mQ,nil,wQ,remove(pQ,mQ)}
if mQ is a sublist of pQ containing

4 wheel replies and at least 1 chassis

r2. if pQ has a car request, deliver it to a
next(FP,wQ,(pQ0, msg(a,carReq)@a, pQ1))

= {msg(a,carReq),nil,wQ,(pQ0,pQ1)}

6 As the chassis role has similar behavior to the wheel role, we omit its discussion.

25

r3. if pQ has a wheel request for some w, deliver it to the next wheel in wQ and rotate
wQ

next(FP,(w wQ),(pQ0, msg(wh,wheelReq)@a, pQ1))
= {msg(w,wheelReq),nil,(wQ w),(pQ0,pQ1)}

r4. if pQ has a chassis request, deliver it to c
next(FP,wQ,(pQ0, msg(c,chassisReq)@a,pQ1))

= {msg(c,chassisReq),nil,wQ,(pQ0,pQ1)}

r5. if pending has a car reply put it in out:
next(FP,wQ,(pQ0, msg(c,carReply)@a, pQ1))

= {nil,msg(c,carReply),wQ,(pQ0,pQ1)}

It is easy to see from the equations axiomatizing next(FP,wQ,pQ) that the PBRD
Factory coordinator satisfies the three requirements. In particular the only parts
messages delivered to the assembler are by rule r1, and each delivery consists of 4
wheels and a chassis, thus guaranteeing the 4:1 ration (requirement 1) and atomicity
(requirement 2). The only requests delivered to wheel actors are by rule r3, which
uses a round robin policy, thus guaranteeing uniform load distribution (requirement
3) in the sense of the number of requests to any two wheel actors differ by at most
1 at any time.

Discussion. Although the three models use different basic coordination primitives,
there is a clear correspondence in the organization. Requirement 1-2 are addressed
by the Reo Sequencer module, by the ARC coordinator rule plus the wheel rule
P1, and by the PBRD rule r1. Requirement 3 is addressed by the Reo Dispatcher
module, the ARC wheel role (P3) and the PBRD rule r3.

5 Semantic Foundations

In addition to comparing coordination models according to qualitative features,
one can consider when coordinators represented in the different models are equiva-
lent. For this purpose a common semantic foundation is needed. For the present,
we focus on coordinating actor-like communication, that is asynchronous mes-
sage passing. We assume an unbounded FIFO buffer at each connection point be-
tween a component and a Reo connector. We also assume Reo components send
messages—pairs consisting of a target name and a data element 7 . Under these con-
ditions we establish mappings between the TDS semantics of Reo components and

7 Although communication of Reo components is “untargeted”, nothing prevents a con-
nector from using information in the data to redirect it (by using a filter channel). Dually,
although actor messages are targeted, a coordinator in ARC or RRD may redirect it.

26

connectors [8,52] and the Interaction Semantics of actors and meta actors [11,12]
for ARC and PBRD coordination.

5.1 Basic Definitions

We first define the two semantic domains and some auxiliary notation and give a
small example.

Sequences. Following the Reo convention, we assume sequences are infinite and
can thus be treated as functions from the natural numbers to the domain of sequence
elements. We write s(i) for the ith element of sequence s.

Timed Data Streams (TDS). A TDS over a set E is a pair (a, α) where a is a
sequence with elements from E and α is a monotonically increasing sequence with
elements from the non-negative reals. The semantics of a Reo connector with m
ports is a set of m tuples of timed data streams, one for each port (i.e. an m-ary
relation).

As an example, consider an alternating display (see section 3) with two sensors: a
clock c producing time readings hr : min of sort Time (Time, 24 hour format);
and a thermometer t producing temperature readings n C or n F (for Centigrade or
Fahrenheit) of sort Temp. A Reo alternating display connector for this case would
have three ports, two for input from the senders and one for output to the receiver.
The TDS semantics for this connector is a set of triples with a TDS for each port:

((ac, αc), (at, αt), (ad, αd)).

A possible run is given by

• port c: ((9 : 00, 10 : 00), (0, 5))
• port t: ((15 : C, 17 : C), (1, 3))
• port d: ((9 : 00, 15 C, 10 : 00, 17 C), (2, 4, 6, 7))

where for each port we have a pair of sequences of the same length. The first el-
ement of each pair is a data sequence, and the second element is a time sequence
(time being represented by natural numbers). Thus 9 : 00 is sent on port c at time 0
and received on port d at time 2.

Interaction Paths (IP). Given a set of object identities O and a data domain D,
an interaction is a triple (φ, o, d) where φ is an interaction point of the form (x, dir)
for x ∈ O and dir ∈ {in, out, up, dn}; and (o, d) corresponds to a message, with
target o ∈ O and contents d ∈ D. An interaction path is a sequence of interactions.
The semantics of a PBRD coordinator is a set of interaction paths corresponding
to its possible sequences of interactions. Interactions correspond to firing of rules

27

that move messages between the coordinators interface queues and the external en-
vironment. For example firing rl[up]: with message msg(o,d)@x corresponds
to an interaction ((x, up), o, d); and firing rl[in]: with message msg(o,d) cor-
responds to an interaction ((o, in), o, d).

Consider a PBRD alternating display coordinator for sensors c, t and display d. It
doesn’t accept messages from the environment, thus the interface for input from
the environment has the form in: (mt, nil). Its up interface for messages sent
by coordinatees has the form up: (c t d), uMsgQ. The interaction path for this
PBRD coordinator corresponding to the Reo run above is:

((c, up), d, 9 : 00), ((t, up), d, (15 C)), ((d, dn), d, 9 : 00), ((t, up), d, (17 C)),

((d, dn), d, (15C)), ((c, up), d, 10 : 00), ((d, dn), d, 10 : 00), ((d, dn), d, (17C))

The projection, π(θ, φ), of an interaction path, θ, onto an interaction point φ is
the subsequence of elements of θ of the form (φ, o, d) (preserving order). The
function ix(θ, φ)(j) returns the index of the jth element of π(θ, φ) in θ. Thus if
ix(θ, φ)(j) = n, then θ(n) = (φ, o, d) for some (o, d), and there are j occurrences
of interactions with interface φ in θ before n (since sequence indices start at 0).
Given a correspondence of PBRD interaction point φi to Reo port i and letting
E = O × D, the projection π(θ, φi) corresponds to the data stream on port i, and
the function ix(θ, φi) corresponds to the relative temporal ordering of events on
port i.

Formalizing Requirements for the Alternating Display.

The alternating display semantics for the Reo connector is a relation AltTDS on
TDS triples where

((ac, αc), (at, αt), (ad, αd)) ∈ AltTDS

just if for i ∈ Nat

ad(2i) = ac(i), ad(2i+ 1) = at(i), αc(i) < αd(2i), and αt(i) < αd(2i+ 1).

The interaction semantics for a PBRD alternator is the set of interaction paths that
satisfy Altio where

θ ∈ Altio ⇔ π(θ, φd)(2i) = π(θ, φc)(i) ∧ π(θ, φd)(2i+ 1) = π(θ, φt)(i)∧
ix(θ, φc)(i) < ix(θ, φd)(2i) ∧ ix(θ, φt)(i) < ix(θ, φd)(2i+ 1)

Thus, if we identify π(θ, φi) with ai and ix(θ, φi) with αi we see that the two
relations correspond.

28

5.2 Factory Specification

Having introduced the semantic model, we can make the Factory Coordinator re-
quirements more mathematically precise as constraints on the interaction paths θ of
the coordinator semantics. We let m, i, j, i′, j′, j1, . . . range over the natural num-
bers. The interfaces are (a, in), (x, out) (assembler communication with customer
x), (a, up), (a, dn) (assembler output/input), (c, up), (c, dn) (chassis output/input),
and (wi, up), (wi, dn) (ith wheel output/input), for 1 ≤ i ≤ n.

Requirements 1, 2. Given that interaction paths are infinite, the notion of ratio of
deliveries is not so simple to define. Thus requirements 1 and 2 are reformulated
as: if any part is delivered to the assembler, the remaining parts of the 1 + 4 set are
delivered in a sequence that is not interleaved with any other deliveries. Namely,
there is a function g mapping numbers to sequences of numbers such that if θ(m) =
((a, dn), p) where p is chassis or wheel (a part delivered to the assembler) then
m ∈ g(m) = [j1, j2, j3, j4, j5] where j1 < j2 < j3 < j4 < j5 and {d (∃1 ≤
k ≤ 5)θ(jk) = ((a, dn), d)} consists of one chassis and four wheels. If θ(m′) =
((a, dn), p′) then either g(m) = g(m′) or g(m) ∩ g(m′) = ∅. For other m, g(m) is
the empty sequence.

Requirement 3. Uniform distribution of requests to wheel producers can be in-
terpreted in at least two ways, one is essentially round-robin scheduling, the other
is balancing the pending requests for each producer. These differ if the wheel pro-
ducers have different production rates. The following formalizes the round-robin
interpretation. If θ(m) = ((wi, dn), wheel) (a wheel request delivered to wheel
producer wi), and m is the index in θ of the jth wheel delivery, then i = j mod n.

5.3 Mappings between TDS and IP

We define functions tds2ip mapping timed data streams to sets of interaction paths,
and ip2tds mapping interaction paths to sets of timed data streams. The mapping of
data sequences is one-to-one. The fact that the images of these mappings are sets is
due to the fact that for each stream or path there are a number of streams/paths that
are equivalent in the sense that they represent different temporal views of the same
underlying execution. We characterize the temporal views by ordering constraints
and show that related streams satisfy the same ordering constraints.

Let D and O be a data domain and set of object identifiers, as above, and let IF
be a set of m interaction points. Let τ = ((ai, αi) 1 ≤ i ≤ m) be a TDS tuple
over E = O×D for a connector with m ports, and let θ be an interaction path over
IF,O,D.

To define the mappings it is convenient to introduce the notion of stage in a TDS.

29

The nth stage of data transmission of τ , S(τ)(n), is defined using auxiliaries
J(τ)(n, i)—the index of the remaining tail of αi after the nth global time point
and N(τ)(n)—the set of ports active at the nth global time point as follows.

J(τ)(0, i) = 0

N(τ)(n) = {i αi(J(τ)(n, i) ≤ αl(J(τ)(n, l)) for 1 ≤ l ≤ m}
J(τ)(n+ 1, i) = J(τ)(n, i) + if i ∈ N(τ)(n) then 1 else 0

S(τ)(n) = {(i, J(τ)(n, i)) i ∈ N(τ)(n)}

Thus (i, j) ∈ S(τ)(n) if data flows on the ith port at the nth global time point,
αi(J(τ)(n, i)). Note that if (i, j) ∈ S(τ)(n), (i′, j′) ∈ S(τ)(n), n < n′, and
(i′′, j′′) ∈ S(τ)(n′) then αi(j) = αi′(j

′) < αi′′(j
′′). Furthermore for any 1 ≤ i ≤ m

and any j, there is some n such that (i, j) ∈ S(τ)(n), and if (i′, j′) ∈ S(τ)(n′) with
n < n′ then αi(j) < αi′(j

′).

We restrict attention to semantic relations defining coordinator behavior to those
specified by a (possibly infinite) set of timing constraints of the form t(i, j) <
t(i′, j′) and a set of constraints on the data streams. τ satisfies t(i, j) < t(i′, j′)
(written τ |= t(i, j) < t(i′, j′)) just if αi(j) < αi′(j

′) and θ satisfies t(i, j) <
t(i′, j′) (written θ |= t(i, j) < t(i′, j′)) just if ix(θ, φi)(j) < ix(θ, φi′)(j

′). A set of
constraints is satisfied if each element is satisfied. Here we do not further restrict
the form of data constraints. Each TDS tuple, τ , or IP, θ, defines a set of temporal
constraints, C(τ) or C(θ), characterizing its temporal view such that τ |= C(τ) and
θ |= C(θ).

C(τ) = {t(i, j) < t(i′, j′) (∃n < n′)((i, j) ∈ S(τ)(n) ∧ (i′, j′) ∈ S(τ)(n′))}
C(θ) = {t(i, j) < t(i′, j′) ix(θ, φi)(j) < ix(θ, φi′)(j

′)}.

In a TDS tuple it is possible that more than one port is active at a given time,
i.e. S(τ ′)(n) has more than one element for some n. Following [64], we interpret
this as meaning that the two communications could have occurred in either order
rather than requiring strict synchrony. We write τ ′ ∼ τ if τ ′ has the same ports and
underlying data streams as τ , S(τ ′)(n) is a singleton for each n, and τ ′ |= C(τ).
We call such a τ ′ an interleaving of τ . Note that τ ′ ∼ τ implies that τ ′ satisfies
any of the considered temporal and data constraints that τ does. By the non-zeno
assumption for TDS, there are many such τ ′, each obtained by adding/subtracting
small amounts to times at appropriate points in τ guided by the sets S(τ)(n).

To simplify the treatment of multiple ‘simultaneous’ communications we general-
ize interaction paths to sequences of multisets of interactions. A generalized inter-
action path stands for a (possibly infinite) set of interaction paths, each obtained by
choosing some order for the elements of each multiset.

To define tds2ip we first define tds2ipg from timed data streams to a general-

30

ized interaction paths, then tds2ip(τ) is the set of interaction paths represented
by tds2ipg(τ). tds2ipg(τ)(n) is the set of interactions that occur at the nth time
point from the set of time streams of τ .

tds2ipg(τ)(n) = {(φi, ai(j)) (i, j) ∈ S(τ)(n)}

ip2tds(θ) is the set of tuples of TDS such that the data part of the jth tuple com-
ponent is the projection of θ onto the jth interface, and the time part is a monoton-
ically increasing time sequence such that the ordering between interactions of θ is
preserved.

ip2tds(θ) = {((π(θ, φi), αi) 1 ≤ i ≤ m)

(∀1 ≤ i, i′ ≤ m)(∀j, j′)(ix(θ, φi), j) < ix(θ, φi′ , j
′) ⇒ αi(j) < αi′(j

′))

Lemma. The mappings between TDS and IP satisfy the following.

(1) θ ∈ tds2ip(τ) ⇒ θ |= C(τ) ∧ τ ∈ ip2tds(θ) ⇒ τ |= C(θ)

(2) θ ∈ tds2ip(τ) ⇒ (∃τ ′ ∈ ip2tds(θ))(τ ′ ∼ τ)

(3) τ ∈ ip2tds(θ) ⇒ {θ} = tds2ip(τ)

(1) says that every IP in the image of a TDS satisfies the temporal constraints of
that TDS, and every TDS in the image of an IP satisfies the temporal constraints
of that IP. (2) and (3) say that modulo choice of interleaving the mappings between
TDS and IP define an isomorphism. Thus we see that we can move between the
two forms of semantics preserving essential information.

Proof Sketch. For (1), assume θ ∈ tds2ip(τ) and (t(i, j) < t(i′, j′) ∈ C(τ)) then
by the definition ofC(τ) let n < n′ such that (i, j) ∈ S(τ)(n) ∧ (i′, j′) ∈ S(τ)(n′).
If θ∗ = tds2ipg(τ), then ix(θ∗, φi)(j) = n, ix(θ∗, φi′)(j′) = n′ and θ∗ |= (t(i, j) <
t(i′, j′) as does any flattening of θ∗. Now assume τ ∈ ip2tds(θ) and (t(i, j) <
t(i′, j′) ∈ C(θ)). Then ix(θ, φi)(j) < ix(θ, φi′)(j

′) and by definition of ip2tds ,
αi(j) < αi′(j

′). For (2), the linearizing map used to obtain θ from tds2ipg(τ) can
be used to transform τ to a linear form τ ′ ∼ τ satisfying the mapping conditions.
For (3), note that S(τ)(n) is a singleton for any n.

6 Conclusions and Future Work

Each of the models is clearly highly expressive. The Reo model is more mature,
with several formal semantics and tools for analysis. Reo is closer to being a pro-
gramming model, while PBRD focuses on more abstract specifications. The ARC
model is aimed at coordination of resource usage and QoS goals while PBRD
has focused on logical communication constraints, as has much of the Reo work.

31

All three models provide for user definable coordination behavior, but in different
ways: channel behavior (Reo), coordinator events (ARC), coordination policy rules
(PBRD).

Although channels and messages seem very different operationally, denotationally
they have similar semantics. To simplify details we focused on coordination of
actor-like components that communicate asynchronously. The denotational seman-
tic model does not distinguish between synchronous and asynchronous events, the
difference is in the semantic function mapping specifications to denotations. Op-
erationally, synchronous communication introduces some complexity. The PBRD
coordination rules could be modified to model synchronous coordination by taking
messages from coordinatee output queues or putting messages into coordinatee in-
put queues only when they can be processed. The execution rules of ARC roles and
coordinators could similarly be adapted to handle synchronous communication.

There are a number of topics for future work. One topic is covering a broader range
of coordination languages and models. Preliminary work indicates that Reo spec-
ifications as CA can be used as a policy language for PBRD and that ARC can
be embedded fairly naturally into PBRD. These mappings need to be worked out
in detail. The full generality of rewriting logic and PBRD make it difficult to give
simple mappings from PBRD to Reo or ARC. Logics for specification and reason-
ing about coordination are of great interest. Do the logics developed for Reo work
more generally? Are new logics needed to express end-to-end properties emerging
from coordination? An important topic is developing methods to combine coor-
dination rules for different concerns: communication constraints, timing, resource
usage, etc., and to assure safe composition.

References

[1] F. Arbab, Reo: A channel-based coordination model for component composition,
Mathematical Structures in Computer Science 14 (2004) 329–366.

[2] S. Ren, Y. Yu, N. Chen, K. Marth, P.-E. Poirot, L. Shen, Actors, roles and coordinators:
a coordination model for open distributed and embedded systems, in: Coordination
Models and Languages, Vol. 4038 of LNCS, Springer, 2006, pp. 247–265.

[3] J. Meseguer, C. L. Talcott, Semantic models for distributed object reflection, in:
European Conference on Object-Oriented Programming, ECOOP’2002, Vol. 2374 of
LNCS, Springer, 2002, pp. 1–36, invited paper.

[4] D. Gelernter, Generative communication in Linda, ACM Transactions on
Programming Languages and SySystems (TOPLAS) 7 (1) (1985) 80–112.

[5] G. Picco, A. Murphy, G.-C. Roman, LIME: Linda meets mobility, in: 21 Int. Conf. on
Software Engineering, 1999, pp. 368–377.

32

[6] R. De Nicola, G. Ferrari, R. Pugliese, KLAIM: A kernel language for agents
interaction and mobility, IEEE Transactions on Software Engineering 24 (5) (1998)
315–330.

[7] R. De Nicola, J. Katoen, D. Latella, M. Massink, Towards a logic for performance
and mobility, in: 3rd Workshop on Quantitative Aspects of Programming Languages,
QAPL05, Vol. 153 of ENTCS, Elsevier, 2006, pp. 161–175.

[8] F. Arbab, J. Rutten, A coinductive calculus of component connectors, in: Proceedings
of WADT’02, Vol. 2755 of LNCS, Springer, 2002, pp. 34–55.

[9] F. Arbab, C. Baier, J. J. Rutten, M. Sirjani, Modeling component connectors in Reo by
constraint automata (extended abstract), in: Proceedings of FOCLASA’03, Vol. 97 of
ENTCS, Elsevier, 2003, pp. 25–46.

[10] C. Baier, M. Sirjani, F. Arbab, J. Rutten, Modeling component connectors in reo by
constraint automata, Science of Computer Programming 61 (2006) 75–113.

[11] C. L. Talcott, Composable semantic models for actor theories, Higher-Order and
Symbolic Computation 11 (3) (1998) 281–343.

[12] G. Denker, J. Meseguer, C. L. Talcott, Rewriting semantics of distributed meta
objects and composable communication services, in: Third International Workshop
on Rewriting Logic and Its Applications (WRLA’2000), Vol. 36 of ENTCS, Elsevier,
2000, pp. 405–425.

[13] G. A. Papadopoulos, F. Arbab, Coordination models and languages, Advances in
Computers 46 (1998) 330–401.

[14] F. Arbab, Abstract behavior types: a foundation model for components and their
composition, Science of Computer Programming (2005) 3–52.

[15] A. W. Colman, J. Han, Coordination systems in role-based adaptive software, in:
Proceedings of COORDINATION’05, Vol. 3454 of LNCS, Springer, 2005, pp. 63–
78.

[16] F. Arbab, The IWIM model for coordination of concurrent activities, in: Proceedings
of COORDINATION’96, Vol. 1061 of LNCS, Springer, 1996, pp. 34–56.

[17] J. C. Cruz, S. Ducasse, A group based approach for coordinating active objects, in:
Proceedings of COORDINATION’99, Vol. 1594 of LNCS, Springer, 1999, pp. 355–
370.

[18] A. Omicini, F. Zambonelli, Tuple centres for the coordination of internet agents, in:
Proceedings of the ACM Symposium on Applied Computing, 1999, pp. 183–190.

[19] A. Omicini, E. Denti, Formal ReSpecT, in: Declarative Programming – Selected
Papers from AGP’00, Vol. 48 of ENTCS, Elsevier, 2001, pp. 179–196.

[20] A. Omicini, Formal ReSpecT in the a&a perspective, in: Proceedings of the Fifth
International Workshop on the Foundations of Coordination Languages and Software
Architectures (FOCLASA’06), Vol. 175 of ENTCS, Elsevier, 2007, pp. 97–117.

33

[21] A. Berry, S. M. Kaplan, Open, distributed coordination with finesse, in: Proceedings
of the 1998 ACM symposium on Applied Computing (SAC’98), ACM, 1998, pp. 178–
184.

[22] G. Cabri, L. Ferrari, F. Zambonelli, Role-based approaches for engineering
interactions in large-scale multi-agent systems, in: Proceedings of SELMAS’03, Vol.
2940 of LNCS, Springer, 2003, pp. 243–263.

[23] M. Cremonini, A. Omicini, F. Zambonelli, Coordination and access control
in open distributed agent systems: The TuCSoN approach, in: Proceedings of
COORDINATION’00, Vol. 1906 of LNCS, Springer, 2000, pp. 369–390.

[24] W. Zhang, C. Serban, N. H. Minsky, Establishing global properties of multi-agent
systems via local laws, in: Proceedings of Environments for Multi-Agent Systems III
(E4MAS), Vol. 4389 of LNCS, Springer, 2007, pp. 170–183.

[25] C. A. Varela, G. Agha, A hierarchical model for coordination of concurrent activities,
in: Proceedings of COORDINATION’99, Vol. 1594 of LNCS, Springer-Verlag, 1999,
pp. 166–182.

[26] N. Venkatasubramanian, C. L. Talcott, Reasoning about meta level activities in open
distributed systems, in: Proceedings of the fourteenth annual ACM symposium on
Principles of distributed computing (PODC), ACM, 1995, pp. 144–152.

[27] S. Frølund, Coordinating Distributed Objects: An Actor Based Approach to
Synchronization, MIT Press, 1996.

[28] J. Meseguer, Conditional rewriting logic as a unified model of concurrency,
Theoretical Computer Science 96 (1) (1992) 73–155.

[29] G. Agha, S. Frølund, W. Kim, R. Panwar, A. Patterson, D. Sturman, Abstraction
and modularity mechanisms for concurrent computing, Parallel and Distributed
Technology: Systems and Applications 1 (2) (May 1993) 3–14.

[30] G. Agha, S. Frølund, R. Panwar, D. Sturman, A linguistic framework for dynamic
composition of dependability protocols, in: Proceedings of the IFIP Conference on
Dependable Computing for Critical Applications, 1992.

[31] N. Venkatasubramanian, C. L. Talcott, Reasoning about meta level activities in open
distributed systems, in: Proceedings of the fourteenth annual ACM Symposium on
Principles of Distributed Computing, ACM, 1995, pp. 144–152.

[32] N. Venkatasubramanian, C. Talcott, G. A. Agha, A formal model for reasoning about
adaptive qos-enabled middleware, ACM Transactions on Software Engineering and
Methodology 13 (1) (2004) 86–147.

[33] C. Talcott, Coordination models based on a formal model of distributed object
reflection, in: Proceedings of the first International Workshop on Methods and Tools
for Coordinating Concurrent, Distributed and Mobile Systems (MTCoord 2005), Vol.
150, Elsevier, 2006, pp. 143–157.

34

[34] C. Talcott, Policy-based coordination in pagoda: A case study, in: Proceedings of
Second International Workshop on Methods and Tools for Coordinating Concurrent,
Distributed and Mobile Systems (MTCoord 2006), Vol. 181, Elsevier, 2007, pp. 97–
112.

[35] R. Gorrieri, C. Hankin, Theoretical aspects of coordination languages (foreword),
in: Theoretical aspects of coordination languages, Vol. 192 of Theoretical Computer
Science, 1998, pp. 163–165.

[36] F. Arbab, What do you mean, coordination?, in: Bulletin of the Dutch Association for
Theoretical Computer Science, NVTI , 1998, pp. 11 – 22.

[37] G. Agha, Actors: A Model of Concurrent Computation in Distributed Systems, MIT
Press, 1986.

[38] G. Agha, I. A. Mason, S. F. Smith, C. L. Talcott, A foundation for actor computation,
Journal of Functional Programming 7 (1997) 1–72.

[39] D. L. Dill, Timing assumptions and verification of finite-state concurrent systems, in:
Proceedings of the International Workshop on Automatic Verification Methods for
Finite State Systems, Springer-Verlag, London, UK, 1990, pp. 197–212.

[40] W. Clinger, Foundations of Actor Semantics, AI-TR- 633, MIT Artificial Intelligence
Laboratory (May 1981).

[41] I. A. Mason, C. L. Talcott, Actor languages their syntax, semantics, translation, and
equivalence, Theoretical Computer Science 220 (1999) 409 – 467.

[42] V. A. Saraswat, Concurrent Constraint Programming, The MIT Press, 1993.

[43] V. Saraswat, R. Jagadeesan, V. Gupta, Foundations of timed concurrent constraint
programming, in: Proceedings of the Symposium on Logic in Computer Science,
LICS’94, 1994, pp. 71–80.

[44] S. Ren, Y. Yu, N. Chen, K. Marth, P.-E. Poirot, L. Shen, Actors, roles and coordinators
- a coordination model for open distributed and embedded systems., in: Proceedings
of COORDINATION’06, Vol. 4038 of LNCS, Springer, 2006, pp. 247–265.

[45] B. Carlson, Compiling and executing finite domain constraints, Ph.D. thesis, Uppsala
University, Sweden (1995).

[46] B. Carlson, M. Carlsson, D. Diaz, Entailment of finite domain constraints, in:
Proceedings of the Eleventh International Conference on Logic Programming, MIT
Press, 1994, pp. 339 – 353.

[47] P. V. Hentenryck, V. A. Saraswat, Y. Deville, Design, implementation, and evaluation
of the constraint language cc(fd), Journal of Logic Programming 37 (1-3) (1998) 293
– 316.

[48] S. Bistarelli, U. Montanari, F. Rossi, Soft concurrent constraint programming, ACM
Trans. Comput. Logic 7 (3) (2006) 563–589.

35

[49] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart´-Oliet, J. Meseguer, C. Talcott,
All About Maude: A High-Performance Logical Framework, Vol. 4350 of LNCS,
Springer, 2007.

[50] http://maude.cs.uiuc.edu, The Maude Homepage.

[51] J. Meseguer, Conditional Rewriting Logic as a unified model of concurrency,
Theoretical Computer Science 96 (1) (1992) 73–155.

[52] F. Arbab, C. Baier, F. de Boer, J. Rutten, Models and temporal logics for timed
component connectors, in: Proceedings of IEEE International Conference on Software
Engineering and Formal Methods, IEEE Computer Society, 2004, pp. 198–207.

[53] M. R. Mousavi, M. Sirjani, F. Arbab, Formal semantics and analysis of component
connectors in reo, in: FOCLASA’05, Vol. 154 of ENTCS, 2006, pp. 83–99.

[54] D. Clarke, D. Costa, F. Arbab, Connector colouring I: Synchronisation and context
dependency, in: FOCLASA’05, Vol. 154 of ENTCS, 2006, pp. 101–119.

[55] N. Chen, S. Ren, Building a coordination framework to support behavior-based
adaptive checkpointing for open distributed embedded systems, in: Proceedings
of Hawaii International Conference on Systems Sciences, HICSS-40, IEEE Press,
Hawaii, 2007.

[56] D. Clarke, Reasoning about connector reconfiguration II: Basic reconfiguration logic,
in: Proceedings of First International Symposium on Fundamentals of Software
Engineering, FSEN’05, Vol. 159 of ENTCS, Elsevier, 2006, pp. 61–77.

[57] D. Clarke, A basic logic for reasoning about connector reconfiguration, Fundamenta
Informaticae 82 (2008) 361–390.

[58] S. Klüppelholz, C. Baier, Symbolic model checking for channel-based component
connectors, in: Proceedings of FOCLASA’06, Vol. 175 of ENTCS, Elsevier, 2007,
pp. 19–37.

[59] E. M. Clarke Jr., O. Grumberg, D. A. Peled, Model Checking, MIT Press, 1999.

[60] M. Bickford, R. L. Constable, A causal logic of events in formalized computational
type theory, Tech. Rep. Technical Report 2005-2010, Cornell University (2005).
URL \url{http://techreports.library.cornell.edu:
8081/Dienst/UI/1.0/Display/cul.cis/TR2005-2010}

[61] J. Meseguer, The temporal logic of rewriting: A gentle introduction, in: P. Degano,
R. de Nicola, J. Meseguer (Eds.), Concurrency, Graphs and Models: Essays Dedicated
to Ugo Montanari on the Occasion of His 65th Birthday, Vol. 5065 of LNCS, 2008.

[62] K. Bae, J. Meseguer, A rewriting-based model checker for the linear temporal logic of
rewriting, in: 9th International Workshop on Rule-based Programming, RULE 2008,
2008.

[63] B. Pourvatan, N. Rouhy, An alternative algorithm for constraint automata product,
in: Second International Symposium on Fundamentals of Software Engineering,
FSEN’2007, Vol. 4767 of LNCS, Springer, 2007, pp. 412–422.

36

[64] F. Arbab, A behavioral model for composition of software components, L’Objet 12
(2006) 33–76.

37

