
Understanding Signalling Networks as Collections of
Signal Transduction Pathways

Robin Donaldson
Dept. of Computing Science

University of Glasgow
Glasgow, UK

radonald@dcs.gla.ac.uk

Carolyn Talcott
Computing Science Lab

SRI International
Menlo Park, CA

carolyn.talcott@sri.com

Merrill Knapp
Biosciences Division

SRI International
Menlo Park, CA

merrill.knapp@sri.com

Muffy Calder
Dept. of Computing Science

University of Glasgow
Glasgow, UK

muffy@dcs.gla.ac.uk

ABSTRACT
A signalling network is a network of reactions that govern
how a cell responds to its environment. A pathway is a dy-
namic flow of “signal” through the network (signal transduc-
tion), for example from a receptor to a transcription factor
that enables expression of a gene. In this paper we introduce
a method to compute all pathways in a signalling network
that satisfy a simple property constraining initial, final and
intermediate states. This method, concerned with signal
transduction, is compared to the steady state view under-
lying Petri net place/transition invariants and flux balance
analysis. We apply the method to the signalling network
model being developed in the Pathway Logic project and
identify knockout/inhibition targets and common (pathway)
events. This approach also allows us to better understand
and formalise the interaction between pathways in a net-
work, for example to identifying pathway inhibition targets
that limit the effect on unrelated pathways.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: Model Validation and
Analysis; J [Computer Applications]: Life and Medical
Sciences

General Terms
Algorithms

Keywords
Signalling Networks, Pathways, Reaction Minimal Paths, T
Invariants

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1. INTRODUCTION
Pathway Logic (PL) [20, 19] is a formal framework for

modelling biological processes based on Rewriting Logic [12,
1]. The objective of the Pathway Logic project is to help
biologists to

• organise and represent experimental data in a com-
putable form (linked to publications and/or lab note-
books, controlled vocabularies and relevant databases)

• build and compute with models, based on data and
conjectures, that describe behaviours of interest

• understand data and models in a larger context.

To this end, the PL framework provides a formal com-
putable representation of experimental data and possible
events (using rewrite rules); executable models of behaviour;
and tools to visualise and explore knowledge bases and model
behaviours.

Computable representations with appropriate visualisa-
tion enable biologists to work with much larger models, to
combine models and data in new ways, and to discover pos-
sible interactions among multiple processes. The point of
computable models is that they can be executed. That is,
they provide a direct (abstract) representation of a system’s
activities and can be used to sample possible behaviours
(simulation), as well as analysing properties of the system
in isolation or in larger contexts.

Here we focus on the use of PL for modelling cellular
signalling processes. Signalling processes transmit informa-
tion that controls cellular decisions: for example, what pro-
teins to express and differentiation or phenotype choices. A
cell senses its environment by way of receptors that bind
molecules present in the immediate neighbourhood. This
event causes a change in the receptor, which in turn may
enable further events that change the state of proteins (pro-
tein modification, complex formation, or location) and other
biochemical entities. These states encode information that
is propagated via signalling events. Possible events are de-
scribed by rules that specify the conditions for an event to
occur (the starting state of participating entities) and the
outcome of the event (the state after the event has hap-
pened). A rule knowledge base (RKB) is a set of rules.

The rules form a network where rules and entity states are
nodes, and edges connect input entity states of a rule to that
rule and the rule to its output entity states. An executable
model is obtained by specifying an initial state (entities and
their states) and a RKB. A pathway is a (multi)set of rules
that can fire in some order (an execution). The model’s
behaviour is the set of possible pathways.

We are interested in signal transduction pathways in which
the flow of the“signal”is indicated by transitory local changes
of state. More specifically, we are not interested in the sig-
nalling events of predefined pathways (i.e. predefined by
biologists) but rather we are interested in all the possible
signalling events in the set of pathways in a network of rules.
Given a model, some of the questions of interest concerning
pathways are

• What are all the pathways leading from a state satis-
fying property PA to a state satisfying property PB?
For example PA might be the presence of one or more
signals (ligands) and PB might be activation of a tran-
scription factor.

• Is there an entity that is required in all these pathways?
This would be a knockout. Are there pairs of entities
such that every pathway uses at least one of the pair
(double knockouts)?

• Are there events that are common to all the pathways?

Pathways of interest are characterised by specifying an
initial state along with goals (desired final states of some
entities) and avoids (entity states that should not occur dur-
ing execution). A subset of rules within the global network
called the relevant subnet is defined in [20] and shown to
contain all the pathways leading from the initial state and
satisfying the goals and avoids. The Pathway Logic Assis-
tant (PLA) provides an interactive graphical interface to
browse and query an RKB and associated models. Using
PLA one can

• explore a network of rules to discover what is up/down
stream of some entity X, or to see if X and Y can be
connected

• specify simple properties – to reach or avoid particular
entity states

• find the relevant subnet for a specified property

• find a pathway within the relevant subnet

• compare pathways – what is shared, what is different.

PLA uses model checking to find pathways (counter exam-
ples to the assertion that no pathway exists). What it cur-
rently can not do is automatically find all pathways. That
is a key aspect of the work presented here.

We adopt Petri nets [15, 5] as our underlying computa-
tional model, to formalise rule networks, models, executions,
and pathways. Petri nets provide graphical representations
of biochemical systems with places (corresponding to bio-
chemical entities), transitions (corresponding to reactions),
and tokens (corresponding to concentrations of molecules).
Analysis of (independent) pathways within a network is typ-
ically carried out by derivation of minimal T invariants [9],
which are vectors of transitions that achieve a steady state.

However, in some cases analysis by T invariants is insuffi-
cient. The main contribution of this paper is to identify
those situations and to develop a complete algorithm that
computes pathways, that produce (goal) outputs, avoiding
designated (avoid) outputs, and are minimal with respect
to reactions. Our algorithm, concerned with signal trans-
duction, is compared to the steady state view underlying T
invariant analysis. We apply the algorithm to a Pathway
Logic knowledge base of cellular signalling response to a va-
riety of stimuli, to find all pathways activating two choices
of goals, and to then compute knockout sets and essential
transition sets.

The remainder of this paper is organised as follows. Sec-
tion 2 introduces the Petri net notation used. Section 3 re-
views how pathways are currently computed using T invari-
ants (the steady state view) and shows that in some cases,
the steady state view is not sufficient. Section 4 introduces
an algorithm to compute all pathways in a Petri net that
satisfy given constraints on initial, final and intermediate
states. Section 5 is concerned with the application of the
new method to Pathway Logic models. Section 6 compares
our work to the current work in the literature, both model
checking and steady state techniques. We suggest future
lines of research and conclude in Section 7.

2. PETRI NETS
We follow the notation of Heiner et al. [7]. A Petri net, or

net for short, is a tuple (T, P, f). P is a finite set of places
(biochemical entities) and T is a finite set of transitions (re-
actions) such that P ∩ T = ∅. f : ((P × T) ∪ (T × P))→ N
is the set of (non-negatively) weighted directed arcs be-
tween places and transitions. A marked Petri net is a tuple
M = (T, P, f,m0). m0 is the initial marking on the net
where a marking m : P → N is a mapping of places to to-
kens. The number of tokens on a place p ∈ P in a marking
m is m(p). A Petri net is represented graphically by circles
(places), rectangles (transitions), arcs with arrows (directed
arcs) and dots or numbers within places (tokens).

The set of pre- and post-places of a transition t is •t =
{p ∈ P | f(p, t) > 0} and t• = {p ∈ P | f(t, p) > 0}
respectively. Likewise the set of pre- and post-transitions
of a place p is •p = {t ∈ T | f(t, p) > 0} and p• = {t ∈
T | f(p, t) > 0} respectively.

The dynamic behaviour of a net is defined by the firing
of transitions in T . A transition t is enabled in a mark-
ing m, written m[t〉, if ∀p ∈ •t : m(p) ≥ f(p, t). The
set of transitions enabled in m, {t ∈ T | m[t〉}, is writ-
ten Enabled(T,m). A transition t that is enabled in m may
fire to produce a new marking m′, written m →t m

′ where
∀p ∈ P : m′(p) = m(p)− f(p, t) + f(t, p).

An execution is a sequence of transitions R = t1, . . . , tk
from m reaching m′, written R ` m → m′, if m →t1

m1 . . . →tk m′. An execution is reaction minimal, with re-
spect to a given set of output places, if there is no proper
subsequence of the transitions in R that can be fired to mark
the given output places. There may be more than one reac-
tion minimal execution for a set of outputs.

The incidence (stoichiometric) matrix of a net (T, P, f) is
a matrix C : P × T → Z, indexed by P and T , such that
C(p, t) = f(t, p) − f(p, t). Hence, C(p, t) is the change in
marking on p by firing t.

Place and transition invariants formalise a steady state
view of Petri nets.

A T invariant is a transition vector y : T → Z such that
y is a nontrivial nonnegative integer solution of C · y = 0.
Hence a transition vector is a T invariant if there exists some
marking (not necessarily reachable) such that the sequential
firing of the transitions in the T invariant reproduces the
marking (cyclic behaviour). For a T invariant y, there is an
execution R (an ordering of y) such that R ` m→ m.

The support of an invariant x is the set of nodes corre-
sponding to the non-zero entries of x, written supp(x). An
invariant x is minimal if there is no invariant z such that
supp(z) ⊂ supp(x) and the greatest common divisor of all
nonzero entries of x is 1. In the following text we consider
only minimal invariants and henceforth omit the word min-
imal.

A P invariant is a place vector x : P → Z such that
x is a nontrivial nonnegative integer solution of x · C =
0. The weighted sum of the tokens on the places in a P
invariant is constant for any marking reachable by the firing
of transitions (mass conserving places).

A Petri net is k-bounded (has a finite set of reachable
markings) if there is some k such that no place in the net
can have more than k tokens. A Petri net is guaranteed to
be k-bounded if all places belong to at least one minimal P
invariant (all places are mass conserving).

3. T INVARIANT ANALYSIS
In this section we explore how to compute T invariants

that in some cases correspond to pathways in a Petri net.
We then characterise three network structures that cause
this approach to produce incorrect results.

The usual approach to compute T invariants that corre-
spond to pathways is to apply transformations to the net
prior to computing the T invariants. The purpose of these
transformations is to repeat the empty marking (all places
have no tokens), such that the transitions in the T invariant
capture the production of tokens, their flow through the net
and their consumption. We follow the approach taken by
[8, 11] and apply the following three transformations (illus-
trated in Figure 1):

(1) T invariant analysis is not concerned with the initial
marking m0 of a Petri net. To encode the initial marking,
any place p that is initially marked m0(p) > 0 is given a
source transition that can generate an infinite number of
tokens on p.

(2) To allow the possibility of repeating the empty mark-
ing, places with no post-transitions p• = ∅ are given a sink
transition that can consume an infinite number of tokens on
the place.

(3) Again, to allow the possibility of repeating the empty
marking, places that are both pre- and post-places •t ∩ t•
of a transition t are changed to be only pre-places of the
transition t• = t•− (•t∩ t•). Hence all bidirectional arcs are
changed to unidirectional arcs from the place to the transi-
tion.

These transformations allow us to use T invariant analysis
to compute pathways in a network. The pathways are com-
puted from inputs (places with source transitions) to outputs
(places with sink transitions). If we wish to designate a place
as an output that was not given a sink transition through
transformation (2), we can explicitly add a sink transition
to the place.

In some cases T invariant analysis computes pathways
very efficiently. However we have found three structure pat-

A B G

C

A B G

C

(1)

(3)

(2)

(1)

Figure 1: A marked Petri net before (top) and after
(bottom) applying the transformations required to
compute pathways. Source and sink transitions are
denoted by long rectangles. Labels (1), (2) and (3)
denote the transformation applied to the net. Petri
net images are produced by Snoopy [18].

terns that can cause incorrect results. We describe the pat-
terns (place traps, consumption conflicts and protein degra-
dations) below.

3.1 Place Traps
A place trap (often referred to as trap) is a set of places

that once marked cannot become unmarked [7]. A set of
places Q ⊆ P is a place trap if Q• ⊆ •Q (every transition
that subtracts tokens from the place trap also puts tokens
into the place trap). Place traps are found in many mod-
els of biological systems, for example protein phosphoryla-
tion, protein ubiquitination and enzymes often involve place
traps.

A model that contains a place trap cannot always repeat
an empty marking because once the place trap is marked, it
cannot become unmarked. Because of this, there can be no T
invariant that places a token onto the place trap. However, a
T invariant can include a place trap by repeating a marking
that is empty for all places except at least one place in the
place trap.

B

DC

A

G

Figure 2: A Petri net containing a place trap on {B,
D}. The single T invariant and all related places are
highlighted in grey.

Consider the problem of finding a pathway from {A,C} to
{G} in the Petri net in Figure 2. The Petri net has a single
T invariant that starts with the place trap {B,D}. The
T invariant repeats a marking that is empty for all places
except B. The T invariant is not an execution because it
is not realisable – there is no ordering of the transitions in
the T invariant such that all the transitions can fire. The T

invariant misses the transitions to produce B.
We note that the place trap in Figure 2 could be caused

by an enzymatic reaction where B is the enzyme, C is the
substrate, D is the enzyme-substrate complex and G is the
product. The enzyme and enzyme-substrate complex is the
place trap in this case.

Enzymes are often abstracted such that the enzyme-
substrate complex is removed and hence an enzyme is then
a place with a bidirectional arc to a transition. The enzyme
is a place trap (with a single place) if there are no unidi-
rectional outgoing arcs from the place. Transformation (3)
removes place traps with a single place, however this can
cause extra consumption conflicts as described below. Place
traps with multiple places can be handled similarly by re-
moving (by hand) an arc that will break the trap, as per [11].
However, we wish to avoid manual alteration of models.

3.2 Consumption Conflicts
Consider the problem of finding a pathway from {A,D}

to {G} in the Petri net in Figure 3. There is no marking
that can be repeated by a T invariant. The production of
E and F is coupled because E and F are produced by the
same transition (perhaps a decomplexation or protein cleav-
age reaction). The number of tokens produced on E and F is
always the same however there is a difference in the number
of outgoing arcs from E and F, 2 and 1 respectively. These
arcs are required to produce a token on place G. We call
this scenario a consumption conflict. Producing a token on
G will always leave one more token on F than E, therefore
it is never possible to repeat any marking.

A B C G

E F

D

zyx

Figure 3: A Petri net containing a consumption con-
flict between places E and F. There are no T invari-
ants in this Petri net because of the conflict.

Note that arcs x, y and z in Figure 3 can either be uni-
directional or bidirectional arcs (E and/or F can be an en-
zyme) because transformation (3) will convert all bidirec-
tional arcs to unidirectional arcs. Hence, transformation (3)
can cause extra consumption conflicts in a model.

3.3 Protein Degradations
Consider the problem of finding a pathway from {A,B} to
{G} in the Petri net in Figure 4. The minimal sequence of
transitions to produce G will leave a token on D. The token
on D must be consumed because the empty marking must be
repeated. An extra two transitions must fire to consume the
token on D, hence the T invariant contains extra transitions
that are not part of the (minimal) pathway from {A,B} to
{G}. The T invariant in this net is actually a pathway from
{A,B,E} to {G,F}.

A

G

C D

F

E

B

Figure 4: A Petri net with the single T invariant
and all related places are highlighted in grey. The T
invariant does not correspond to a (minimal) path-
way from A to G because unrelated transitions are
included.

To summarise, the three patterns above illustrate types
of Petri nets where T invariant analysis is inappropriate to
compute pathways. Place traps are detectable, however it is
not immediately obvious whether consumption conflicts and
protein degradations are always detectable.

3.4 Alternative Approach
An alternative approach is to use a different set of trans-

formations. We change transformation (3), the consumption
of enzymes, to

(3’) All places that are both pre- and post-places •t∩ t• of
a transition t are given a sink transition that can consume
an infinite number of tokens on the place.

A B G

C

(1)

(3’

(2)

(1)

)

Figure 5: The alternative set of transformations ap-
plied to the Petri net from Figure 1. Notice the sink
transition added by transformation (3’).

Rather than consume the enzyme in the transition, we al-
low the enzyme to be consumed by a sink transition (shown
in Figure 5). This removes consumption conflicts caused
by transformation (3). However this is not a complete fix
because not all consumption conflicts are caused by trans-
formation (3), unrelated transitions may be included due to
protein degradation and place traps may exist.

If the model contains no bidirectional arcs, there will be
the same T invariants as before otherwise there will be a
larger number of smaller T invariants. In this case we must
compose T invariants to find (minimal) pathways, however
composing T invariants is a non trivial task (discussed briefly
in [5]). Also note that composing T invariants to find (min-
imal) pathways is similar to the initial problem, composing
transitions to find (minimal) pathways. The alternative ap-
proach is therefore not suitable.

4. REACTION MINIMAL PATHS
We introduce the notion of a reaction minimal path that

is well suited to describe pathways in a signalling network.
Specifically, we are interested in reaction minimal goal/avoid
paths that produce the goal (outputs) from the initial mark-
ing of a model (inputs) without using an avoid. This ap-
proach is based on a direct analysis of the possible execu-
tions/pathways of a (marked) Petri net rather than a steady
state analysis of a modified Petri net. Therefore this ap-
proach does not face challenges described in the previous
section and requires no semantic transformations of the Petri
net.

A multiset is a pair (A, f) where A is the underlying set
of elements and f : A→ N+ is the (positive) multiplicity of
each element in A. The multiplicity of a ∈ A is written f(a).
Given a multiset M = (A, f), the elements of M are written
{f(a1) ∗ a1, . . . , f(an) ∗ an} where n = |A| and if f(a) = 1
then f(a)∗ is omitted. The cardinality of M , written |M |,
is

P
a∈A f(a). An element a belongs to M , written a ∈ M ,

iff a ∈ A. An element a is added to M , written Add(M,a),
returning M ′ = (A′, f ′) where A′ = A∪{a}, ∀b ∈ (A−{a}) :
f ′(b) = f(b) and if a ∈ A, f ′(a) = f(a) + 1 else f ′(a) = 1.
Given two multisets M1 = (A1, f1) and M2 = (A2, f2), M1 is
a proper submultiset of M2, written M1 ⊂M2, if M1 6= M2

and ∀a ∈ A1 : a ∈ A2 and then f1(a) ≤ f2(a).
An execution R is a sequence of transitions whereas a path

R is a multiset of transitions. A path R from m reaching
m′, written R ` m ; m′, is a multiset representation of an
execution R such that R ` m→ m′.

Lemma 1. All executions R of R starting at m reach the
same final marking.

Proof. An execution R of R starting at m reaches m′

where
∀p ∈ P : m′(p) = m(p) +

P
t∈R f(t, p) −

P
t∈R f(p, t).

m′ is independent of the order of transitions in R becauseP
t∈R f(t, p) and

P
t∈R f(p, t) are independent of the order

of the transitions in R.

Avoids: An avoid set A is a set of places A ⊆ P to be
avoided. A transition t satisfies the avoid constraint, written
t |= A, if the transition does not have a pre- or post-place
in the avoid set, (•t ∪ t•) ∩ A = ∅. A path R from m to
m′ satisfies the avoid constraint, written R `A m ; m′, if
∀t ∈ R : t |= A.

Goals: A goal set G is a set of places G ⊆ P that we wish
to have marked. A marking m satisfies the goal constraint,
written m |= G, if ∀g ∈ G : m(g) ≥ 1. A path R from m
to m′ satisfies the goal constraint, written R `G m ; m′, if
m′ |= G.

A goal/avoid path is a path from the initial marking in
a model satisfying both the goal and the avoid constraints,
written R `G

A m0 ; m′. A goal/avoid path R is reaction
minimal if there is no goal/avoid path R′ that is a proper
submultiset R′ ⊂ R. Clearly no path can have a place as
both a goal and an avoid. Thus we require that the sets of
goals and avoids are disjoint: G ∩A = ∅.

4.1 Algorithm
We present an algorithm for computing all reaction mini-

mal goal/avoid paths in a marked Petri netM = (T, P, f,m0)
that is k-bounded. We use multiset semantics as we are not
concerned with the order of the firing of transitions. The

reaction minimal property ensures that all transitions in the
path are required to reach the goal set.

The set of reaction minimal goal/avoid paths from m0

reaching G without using A can be found by generating pairs
of markings and paths. The pairs are generated in stages
following a breadth first search such that Stage(n) contains
pairs (m,R) where |R| = n and R ` m0 ; m.

Given (m,R) reached by an executionR in Stage(n), (m,R)
could be reached again by following a different execution
R′ 6= R. We ignore subsequent (m,R) as these represent
different interleavings of the same multiset of transitions.

We say that (m,R) is subsumed by (m′, R′) relative to G
if R′ is a proper submultiset of R, R′ ⊂ R, and
(1) m′ = m (R′ reaches the same marking)

or
(2) m′ |= G (R′ satisfies the goal constraint)

Definition 1. Stage(0) contains one pair, the initial mark-
ing and the empty path (m0, ∅). Stage(n) for n ≥ 1 contains
all pairs (m,R) with R ` m0 ; m and |R| = n such that
(m,R) is not subsumed by a member of Stage(j) for j < n.
This ensures that all goal/avoid paths are reaction minimal.

We use breadth first search because checking whether (m,R)
in Stage(n) is subsumed by some (m′, R′) requires check-
ing (m′, R′) in Stage(j), j < n. Hence, R′ ⊂ R requires
|R′| < |R|.

Lemma 2. Termination: there exists an n such that
Stage(n) is empty.

Proof. The set of possible markings in a k-bounded Petri
net is finite. The set of paths to each marking such that there
is no proper submultiset that reaches the same marking is
finite because the set of transitions is finite. Therefore, the
set of (marking, path) pairs is finite and hence there must
be some n such that Stage(n) is empty.

Lemma 3. Completeness: if there exists a reaction min-
imal goal/avoid path R `G

A m0 ; m then (m,R) is in
Stage(n) where n = |R|.

Proof. Definition 1 ensures that all goal/avoid paths found
in the stages are reaction minimal. The set of stages con-
tains all markings except those markings reachable only by
a non reaction minimal goal/avoid path. Therefore if there
exists a reaction minimal goal/avoid path R `G

A m0 ; m
then (m,R) is in Stage(n) where n = |R|.

Theorem 1. For any k-bounded Petri net, all executions
to a goal set avoiding an avoid set are found by generating
the set of stages.

Proof. Multiset semantics are sufficient to describe an
execution (Lemma 1). The set of stages is finite for any
k-bounded Petri net (Lemma 2). If there exists a reaction
minimal goal/avoid path then it is in some Stage(n) (Lemma
3). Therefore, all executions to a goal set avoiding an avoid
set are found by generating the set of stages.

Pre-processs: To make all paths satisfy the avoid con-
straint, we remove any transition that has a pre- or post-
place in the avoid set: T∗ = {t ∈ T (•t ∪ t•) ∩A = ∅}.

The algorithm for computing stages assuming a pre-processed
network works as follows:

Stage 0:

(m0, ∅)
Stage n: Given Stage(n-1)

for (m,R) ∈ Stage(n-1) do
for ti ∈ Enabled(T∗,m) do
m′ such that m→ti m

′

R′ = Add(R, ti)
Add (m′, R′) to Stage(n) if it is not subsumed by a
pair in Stage(j) for some j < n

end for
end for
if Stage(n) is Empty then

Exit
end if

Reaction Minimal Paths: The set of reaction minimal
goal/avoid paths reaching G without using A in a k-bounded
Petri net M is given by:
RMP (M, G,A) = {R | ∃n : (m,R) ∈ Stage(n) and m |= G}

Algorithm correctness. In the algorithm above, paths are
multisets, stages are generated as per Definition 1 (due to
the breadth first search and subsumption rule) and the set
of stages is finite for any k-bounded Petri net. Therefore,
Theorem 1 holds for this algorithm.

Relevant Subnet Optimisation. To optimise the computa-
tion we can apply the relevant subnet function with respect
to G and A, Subnet(T,m0, G,A), as discussed in Section 1.
This function removes any transition that has a pre- or post-
place in the avoid set and transitions that do not contribute
to reaching the goal set.

Approximation. An unbounded Petri net is a Petri net
where there does not exist a k such that all places have
at most k tokens in any reachable marking. An unbounded
Petri net has an infinite set of reachable markings and there-
fore the algorithm in the previous section may not terminate.
To obtain approximate results, we can compute the set of
reaction minimal goal/avoid paths with an upper bound on
the number of Stages used, N . Hence the algorithm will ter-
minate after Stage(N) and the paths will have a maximum
cardinality of N . Note that this is the same approach taken
by bounded model checking.

4.2 Example 1
Consider the model in Figure 6 with a goal set {G} and

avoid set ∅. The algorithm produces 3 stages as below:
Stage 0: (AXF, ∅)
Stage 1: (BXF, {r1}) (AYF, {r2})
Stage 2: (BXG, {r1, r3}) (BYF, {r1, r2}) (AYG, {r2, r4})
The set of reaction minimal goal/avoid paths is:
{{r1, r3}, {r2, r4}}

Stage 3 is empty because all (marking, path) pairs are sub-
sumed by some pair in a previous Stage. (BYG, {r1, r2, r3})
is subsumed by (BXG, {r1, r3}) because BXG satisfies the
goal constraint. Likewise, (BYG, {r1, r2, r4}) is subsumed
by (AYG, {r2, r4}) because AYG satisfies the goal constraint.

4.3 Example 2
Consider the model in Figure 7 with a goal set {G} and

avoid set ∅. The algorithm produces 3 stages as below:

A X

YB

F G

r1 r2

r3

r4

r1

r1

r2

r2 r3 r4

r3 r4

A X F

B X G

B X F A Y F

A Y G B Y F

B Y G
r2 r1

Figure 6: An example model (left) and related
statespace (right). States that satisfy the goal con-
straint are marked with a thick line.

A

G

B

r2

r1

r3

A

B G

r1 r2

r3

Figure 7: An example model (left) and related
statespace (right). States that satisfy the goal con-
straint are marked with a thick line.

Stage 0: (A, ∅)
Stage 1: (G, {r1}) (B, {r2})
Stage 2: (G, {r2, r3})
The set of reaction minimal goal/avoid paths is:
{{r1}, {r2, r3}}.

Although {r2, r3} is a longer path to marking G than
{r1}, it is distinct and all transitions are required to reach
G, therefore it is reaction minimal.

4.4 Example 3
Consider the model in Figure 8 with a goal set {G} and

avoid set ∅. The algorithm produces 7 stages as below:
Stage 0: (A B C, ∅)
Stage 1: (A1 B C, {r1})
Stage 2: (A B1 C, {r1, r2}) (A B C1, {r1, r3})
Stage 3: (A1 B1 C, {2 ∗ r1, r2}) (A1 B C1, {2 ∗ r1, r3})
Stage 4: (A B1 C1, {2 ∗ r1, r2, r3})
Stage 5: (A1 B1 C1, {3 ∗ r1, r2, r3})

(A G, {2 ∗ r1, r2, r3, r4})
Stage 6: (A1 G, {3 ∗ r1, r2, r3, r4})
The set of reaction minimal goal/avoid paths is:
{{2 ∗ r1, r2, r3, r4}}

Even though this is a 1-bounded Petri net, the transition
r1 must fire more than once to reach {G}. This is the ra-
tionale for using multiset representations of executions even
in models with only presence/absence of biochemical species
(e.g. Petri nets from Pathway Logic).

A A1

B B1 C C1

G

r2 r3

r1

r4

r2

r3

A1
B1
C

r1
r3

A
B1
C

A1
B
C

A
B
C1

A1
B
C1

r1 r2

A
B1
C1

A
B
C

r1
r1

r4

A1
B1
C1

A
G

r4

r1

A1
G

Figure 8: An example model (top) and related
statespace (bottom). States that satisfy the goal
constraint are marked with a thick line.

5. RESULTS
We have used the algorithm presented in Section 4.1 to

compute reaction minimal goal/avoid paths for two Petri
net models generated from the Pathway Logic knowledge
base of cellular signalling response: activation of Erk and
activation of Rela. These results are summarised in Table
1 and show that T invariant analysis does not compute the
set of pathways in one of the models.

For the Erk activation model the initial event is Egf (Epi-
dermal Growth Factor) binding to its receptor, EgfR, and
the goal is activation of Erk1 and Erk2 (Erks) in the EgfR
complex (EgfRC): G=Erks–act–EgfRC. We first generated
the relevant subnet for G using the Pathway Logic Assistant
(using the relevant subnet algorithm in [20]). The relevant
subnet for this goal contains none of the problematic network
structures discussed in Section 3, and in this case, the set
of T invariants corresponds exactly to the set of pathways
activating Erks. It is interesting to note that T invariant
analysis had a significantly quicker execution time of less
than 1s.

For the Rela activation model there are two potential stim-
uli IL1 (Interleukin 1) and Tnf (Tumor Necrosis Factor) and
the goal is activation of Rela in the nucleus: G=Rela–act–
Nuc. The relevant subnet for this goal contains several place
traps due to the ubiquitination reactions, for example the
E2 ubiquitin ligase Traf5 causes phosphorylated Irak1 to
become ubiquitinated. The standard set of transformations
required for T invariant analysis results in consumption con-
flicts, hence no T invariants are found. We have also applied
the alternative T invariant approach outlined in Section 3.4.
This resulted in a large number of small T invariants and the
set of T invariants did not fully cover the relevant subnet,
therefore it was not possible to compose T invariants to find
the pathways.

We now proceed with an analysis of what reaction minimal
paths tell us about these models. In the following we assume

Erks–act– Rela–act–
EgfRC Nuc

Places 54 92
Transitions 38 57
Reachable Markings 149,014 95,096
Explored (marking, path)

618,861 171,237
Pairs
Number of Stages 24 34
Execution Time (s) 217 23
Reaction Minimal Paths 144 39

T Invariants 144 0

Table 1: The result of computing the reaction min-
imal goal/avoid paths for G=Erks–act–EgfRC and
G=Rela–act–Nuc contrasted with T invariants.

a marked Petri net M = (P, T, f,m0), a set of goals G and
a set of avoids A. Let RMP = RMP (M, G,A) be the set
of reaction minimal goal/avoid paths which can be easily
computed using the algorithm presented in Section 4.

5.1 Essential Transitions
A transition t is essential, written ess[M, G,A](t), if there

is no path R using only transitions in T ′ = T − t such
that R `G

A m0 → m′ for some m′. We can compute the
set of essential transitions using the set of reaction minimal
goal/avoid paths RMP as follows:

ess[M, G,A] = {t ∀R ∈ RMP : t ∈ R}

More generally, a set of transitions T ′ is essential,
ess[M, G,A](T ′), if every path satisfying G and A contains
a member of T ′, and no proper subset of T ′ has this prop-
erty. This can be checked using the set of reaction minimal
paths for G,A as follows:

ess[M, G,A](T ′) ⇔

∀R ∈ RMP ∃t ∈ T ′ : t ∈ R ∧

∀T ′′ ⊂ T ′ ∃R ∈ RMP : T ′′ ∩R = ∅

5.2 Used Places
A path R `G

A m0 ; m′ uses a place p,
uses[M, G,A](R, p), if there is no path R′′ `G

A m0 ; m′

where R′′ ⊆ R′ and R′ is the result of removing from R any
transition t with p as a pre-place, p∩ •t 6= ∅. This holds just
if ∃R ∈ RMP ∃t ∈ R : p∩•t 6= ∅. The reduction to reaction
minimal paths is valid because if uses[M, G,A](R, p) then
uses[M, G,A](R′, p) for every reaction minimal path R′ ⊆
R. Furthermore, if R is reaction minimal then
uses[M, G,A](R, p) iff ∃t ∈ R : p ∩ •t 6= ∅.

The set of all used places in a path R is:

uses[M, G,A](R) = {p ∈ P uses[M, G,A](R, p)}

5.3 Knockouts
A place p is called a (single) knockout for G, A, written

KO[M, G,A](p), if there is no path R `G
A m0 ; m using

only transitions that do not use p, hence only transitions in
T ′ = {t ∈ T p ∩ •t = ∅}. To check if p is a knockout, we
need only check that all reaction minimal paths use p:

KO[M, G,A](p) ⇔ ∀R ∈ RMP : uses[M, G,A](R, p)

Erks–act– Rela–act–
EgfRC Nuc

Signals 1 2
Essential Transitions 8 0
Essential Transition Pairs 11 183
Used Places 53 84
Single Knockouts 26 9
Double Knockouts 20 674

Table 2: The results of computing essential transi-
tions, used places and knockouts for G=Erks–act–
EgfRC and G=Rela–act–Nuc.

More generally, P ′ ⊆ P is called a knockout set,
KO[M, G,A](P ′), if every path R `G

A m0 ; m uses some
element of P ′ and there is no proper subset of P ′ with this
property. This can be checked using RMP as follows:

KO[M, G,A](P ′) ⇔

∀R ∈ RMP ∃p ∈ P ′ : uses[M, G,A](R, p) ∧

∀P ′′ ⊂ P ′ ∃R ∈ RMP ∀p ∈ P ′′ : ¬uses[M, G,A](R, p)

5.4 Multi-signal Cellular Responses
Often cellular response requires more than one signal/

stimulus to be present. Activation of effector cells of the
immune system is one example. Thus it is interesting to
ask:

“Are there paths reaching G from m0 that require more
than one stimulus?”

Let S ⊆ P be the places considered stimuli. Then R uses
more than one stimulus if S ∩ uses[M, G,A] (R) has more
than one element. Again, this can be checked using only the
paths in RMP .

5.5 Analysis of Erks and Rela Activation
As seen in Table 1 the relevant subnet for activation of

Erks has many more reaction minimal paths than the rele-
vant subnet for activation of Rela. This can be partly ex-
plained by the presence of multiple GTP-binding proteins
each of which has several associated Guanine Nucleotide Ex-
change Factors (GEFs) that can serve to exchange GTP for
GDP. This also partly explains why the computation for
Erks involved exploring over four times as many (marking,
path) pairs than reachable markings, whereas the computa-
tion for Rela involved less than two times.

From Table 2 we see that Rela has no essential transitions
while Erks has several. This is consistent with the fact that
the Rela relevant subnet has two possible stimuli, which give
rise to mostly different pathways, while the Erks relevant
subnet has a single stimulus. In contrast, the Rela relevant
subnet has many more essential transition pairs than the
Erks relevant subnet. The essential pairs for Rela are formed
by taking one from a Tnf initiated pathway and one from
an IL1 stimulated pathway. The same block of 18 IL1 path-
way transitions is repeated with several Tnf pathway tran-
sitions, leading to a modest combinatorial explosion. Using
the Pathway Logic Assistant we compared the IL1 and Tnf
pathways activating Rela, and noticed that the proteins that
occur in both pathways correspond to the single knockouts
computed using reaction minimal paths. In the Erks case
single knockouts correspond closely to the essential transi-

tion while the single knockouts in the Rela case are used in
different transitions in response to the different stimuli. As
with pairs of essential transitions, there are many more dou-
ble knockouts for Rela than for Erks. Again this is partly
due to combinatorial pairing of groups of stimulus specific
knockouts.

The enumeration of essential transition and knockout sets
has “discovered” difference in structure of the two relevant
subnets. For example the Rela relevant subnet is composed
of two“über pathways”one for each stimulus, while the Erks
relevant subnet is basically one pathway with many local
variations.

6. RELATED WORK
We discuss two alternative approaches to finding all path-

ways: model checking, which treats pathways as processes,
and steady state analysis, which treats pathways as struc-
tures.

6.1 Model Checking Techniques
The notion of error traces in model checking is similar to

reaction minimal goal/avoid paths, however there are some
important differences. Given an LTL property φ, an error
state SE is a state that violates φ. An error trace is a se-
quence of transitions t1, . . . , tj from the initial state S0 to
an error state SE such that S0 →t1 S1 . . . →tj Sj where
Sj = SE and S1, . . . , Sj−1 6= SE . To compute error traces
to the goal set G, we use a temporal logic property that as-
serts that the goal set is not reachable. For example, in LTL
the property would be:
φ = ¬3(g1 ≥ 1 ∧ . . . ∧ gv ≥ 1)
with g1 . . . gv ∈ G. This property states that it is not

possible ¬ to reach a state 3 where g1, . . . , gv are all marked.
An error state for φ is a state where g1, . . . , gv are all marked.

The Pathway Logic Assistant [20] allows the user to gener-
ate a single pathway to a goal set without using an avoid set
in a model. Avoids are implemented by the relevant subnet
transformation as before. The LoLA (Low Level Analyzer)
Petri net analysis tool [16] is used to generate paths to the
goal set. LoLA, using stubborn set reduction (a partial or-
der reduction technique), can efficiently answer reachability
queries such as φ. If φ is reachable, then LoLA will return
an error trace for φ. The error trace is not guaranteed to
be reaction minimal, however transitions in the error trace
that are not required to reach the goal state can be removed
automatically. Unfortunately, LoLA returns only one path
(an error trace) to the goal set. Subsequent paths can be
found by manually removing transitions in the path from the
network, however this can be time consuming and inefficient.

The SPIN model checker [10] can return all state error
traces in a model for φ. A state error trace is a sequence
of states S0 → S1 . . . → Sj where Sj = SE , S1, . . . , Sj−1 6=
SE . We map a state error trace to the set of error traces
that could generate the state error trace. SPIN permits
breadth first search of the state space, which produces min-
imal length error traces. However, consider example 1 in
Figure 6. The error states in the model are BXG, AYG
and BYG and the minimal length error traces are r1, r3,
r2, r4 and r1, r2, r3/r1, r2, r4 respectively. Because minimal
length error traces are produced for all error states, there
is no guarantee that all transitions are required to reach G.
Hence error traces r1, r2, r3 and r1, r2, r4 for BYG contains
a redundant transition r2 and r1 respectively. Furthermore,

consider example 2 in Figure 7. There is one error state G
and the minimal length error trace is r1. Because only one
error trace is returned for each error state, the algorithm
misses an error trace to G that is reaction minimal, r2, r3.

Stories [3] are the most closely related work to reaction
minimal paths. A story in a rule-based language captures
the events that are required to reach an event of interest.
A story as a sequence of events that; starting from the ini-
tial state, reaches an event of interest called the observable;
consists only of events that are required to reach the ob-
servable; and, contains no event subsequence that has the
same property. The authors however do not discuss in detail
the method used to compute stories. Though not strictly a
model checking technique, stories are generated from paths
through the state space (stochastic simulations) [2]. The
story sampler converts a stochastic simulation into a story.
To compute subsequent stories, more stochastic simulations
are required, however there is no guarantee that all stories
are generated. Only by exploring (at least parts of) the state
space can we guarantee to find all stories.

6.2 Steady State Analysis
T invariants (discussed above) and flux balance analysis

(FBA) [13] are forms of steady state analysis, both being
concerned with solving steady state equations. FBA is con-
cerned with steady state behaviour of a metabolic system,
analysing solutions V to
S · V = 0 where V ≥ O (i.e. vi ≥ 0 for at least one i,

1 ≤ i ≤ r)
where S is a m × r matrix and V is r × 1 vector of flux

levels. vi ≥ 0 says that reaction i can “use reactants and
create products”, but cannot “use products and create reac-
tants”. Bidirectional reactions must be replaced by pairs of
reactions. Some reactions represent metabolic uptake (in-
put) or secretion (output). Additional constraints may be
added corresponding to bounds on these and other metabolic
fluxes: vi ≤ c, where c is some constant.

Cycles in a metabolic network cause problems for flux
balance analysis, leading to unrealisable or non-robust so-
lutions. The usual approach is to selectively break the cy-
cles (by hand). An alternative solution is to relax the steady
state constraint and allow increase in some metabolites. This
can be automated but the result requires solution of boolean
combinations of inequality constraints, a more complex prob-
lem. In contrast, cycles are not a problem for dynamic path-
way analysis such as our algorithm proposed above.

Finite descriptions of the solution space are important for
analysis [14]. An example is the set of elementary modes:
M = {V1, ..., Vk}. This set has the following properties:

1. Any solution V is a positive linear combination of vec-
tors in M .

2. Each Vi in M is a maximally zero solution (as for min-
imal T invariants).

3. Every maximally zero solution is in M .

Elementary modes can be used for analyses including [14,
17]:

• Predictions of minimal nutrient sets (media) by com-
puting the inputs (nutrients) required for given out-
puts (biomass precursors).

• Finding unutilised reactions that can point to gaps in
the model.

• Pathway redundancy – a measure of how many in-
dependent pathways have equivalent input and out-
put fluxes. This is related to tolerance to single-gene
knockouts or drug inhibition.

• Finding correlated reaction sets, reactions that are al-
ways “on” and “off” together; suggesting that the cor-
responding enzyme sets may reside on the same operon
(regulon) and thus be co-regulated.

Steady state analysis answers different questions than dy-
namic pathway analysis. They are complementary methods
to study process networks. Steady state analysis concerns
“flows/firing rates” that maintain a given state. Dynamic
pathway analysis, such as the algorithm introduced in this
paper, is concerned with changing state and how informa-
tion (local state change) propagates through a network, to
control other processes, for example metabolism or gene ex-
pression.

Steady state techniques have been applied to signalling
networks. FBA has been used to modularise the Toll-like
receptor signalling network into “distinct input/output sig-
nalling (DIOS) pathways” [11]. The network was decom-
posed into 10 DIOS pathways and resulted in the identifi-
cation of novel inhibition targets. Also, T Invariants were
used to analyse the Pheromone response pathway in Yeast
[6]. Clustering of the T invariants revealed functional mod-
ules that allowed a better understanding of the pathway.
Finally, T invariant analysis of the apoptosis network in [9]
discovered that some T invariants describe basic pathways
and some describe cross-talk between pathways.

7. CONCLUSION & FUTURE WORK
In this paper we have explored understanding the be-

haviour of a signalling network by considering signal trans-
duction pathways in which the flow of the “signal” is indi-
cated by transitory local changes of state. We are interested
in pathways that satisfy certain properties on start, final and
intermediate states, for example to compute pathways from
a signal to the activation of some transcription factor.

The notion of signal transduction, of concern to this pa-
per, was compared to the steady state view in which con-
stant information is studied, often applied to metabolic pro-
cesses. We have characterised three network structures in
which the steady state view is insufficient to characterise
signal transduction. In each case we have demonstrated the
network structure with T invariant analysis of a small Petri
net model.

We have introduced our method to compute all pathways
in a network that satisfy given constraints on initial, final
and intermediate states. The method is then applied to the
Pathway Logic knowledge base of cellular signalling response
to stimuli. The pathway set is used to find knockout targets
and common signalling events for an output as well as to
identify those outputs which require/use multiple signals.

Several future directions have been identified which will
allow us to better understand and formalise the interaction
between pathways in a signalling network. We aim to iden-
tify key targets to control cellular signalling for therapeutic
advance by applying these techniques to the Pathway Logic
knowledge base.

A significant number of states in our Pathway Logic mod-
els are due to the independent firing of transitions. We can
reduce the computational expense of our method to com-
pute pathways by reducing the number of these states using
a partial order reduction technique. However, such a tech-
nique must not compromise the correctness of the algorithm.
We will explore this idea in future research.

Of additional interest is the interactions among differ-
ent relevant subnets/pathways. For example, what are the
knockouts for one relevant subnet/pathway that do not oc-
cur in or are not knockouts for another relevant subnet/
pathway. Hence, can we find knockout targets for a cellular
output that minimise the effect on other cellular outputs?
We wish to extend the idea of relevant subnet/pathway in-
teraction using graphical patterns. We aim to develop a
set of patterns that formalise common types of interaction
in signalling networks, for example using the categories of
interaction in [4]. This will allow us to better understand
the interacting nature of signal transduction in signalling
networks to identify better knockout/inhibition targets.

An open-source Java program that computes all reac-
tion minimal goal/avoid paths in Pathway Logic models
as well as the models used in this paper can be found at:
www.dcs.gla.ac.uk/~radonald/cmsb2010/. The Pathway
Logic Assistant, knowledge bases, and documentation can
be found at pl.csl.sri.com.

Acknowledgments.
This research was performed while Robin Donaldson was

an international fellow at SRI International. The authors
wish to thank the Jim Gatheral travel scholarship, with-
out which this research would not be possible. This re-
search is also supported by the project The Molecular Nose,
funded by the Engineering and Physical Sciences Research
Council (EPSRC), the Biologica project funded by National
Science Foundation grant IIS-0513857, and the A Compu-
tational Model of Aberrant Signaling Networks in Cancer
project funded by National Institutes of Health National
Cancer Institute Integrative Cancer Biology program grant
CA-112970.

8. REFERENCES
[1] M. Clavel, F. Durán, S. Eker, P. Lincoln,

N. Mart́ı-Oliet, J. Meseguer, and C. Talcott. All About
Maude: A High-Performance Logical Framework.
Springer, 2007.

[2] V. Danos, J. Feret, W. Fontana, R. Harmer, and
J. Krivine. Rule-based modelling and model
perturbation. T. Comp. Sys. Biology, 11:116–137,
2009.

[3] V. Danos, J. Feret, W. Fontana, R. Harmer,
J. Krivine, P. Biosystems, E. N. Supérieure, and
E. Polytechnique. Rule-based modelling of cellular
signalling. In Proceedings of CONCUR’07, LNCS,
volume 4703, pages 17–41, 2007.

[4] R. Donaldson and M. Calder. Modelling and Analysis
of Biochemical Signalling Pathway Cross-talk. In
EPTCS 19, pages 40–54, 2010.

[5] D. Gilbert, M. Heiner, and S. Lehrack. A Unifying
Framework for Modelling and Analysing Biochemical
Pathways Using Petri Nets. In Proc. CMSB 2007,
pages 200–216. LNCS/LNBI 4695, Springer, 2007.

[6] E. Grafahrend-Belau, F. Schreiber, M. Heiner,
A. Sackmann, B. H. Junker, S. Grunwald, A. Speer,
K. Winder, and I. Koch. Modularization of
biochemical networks based on classification of Petri
net t-invariants. BMC Bioinformatics, 9, 2008.

[7] M. Heiner, D. Gilbert, and R. Donaldson. Petri Nets
in Systems and Synthetic Biology. In Schools on
Formal Methods (SFM), pages 215–264. Springer
LNCS 5016, 2008.

[8] M. Heiner and I. Koch. Petri Net Based Model
Validation in Systems Biology. In J. Cortadella and
W. Reisig, editors, ICATPN, volume 3099 of LNCS,
pages 216–237. Springer, 2004.

[9] M. Heiner, I. Koch, and J. Will. Model Validation of
Biological Pathways Using Petri Nets – Demonstrated
for Apoptosis. In Proceedings of CMSB ’03, page 173,
London, UK, 2003. Springer-Verlag.

[10] G. J. Holzmann. The SPIN Model Checker : Primer
and Reference Manual. Addison-Wesley Professional,
September 2003.

[11] F. Li, I. Thiele, N. Jamshidi, and B. Palsson.
Identification of Potential Pathway Mediation Targets
in Toll-like Receptor Signaling. PLoS Comput Biol,
5(2):e1000292+, February 2009.

[12] J. Meseguer. Conditional Rewriting Logic as a Unified
Model of Concurrency. Theoretical Computer Science,
96(1):73–155, 1992.

[13] J. D. Orth, I. Thiele, and B. O. Palsson. What is flux
balance analysis? Nat Biotech, 28(3):245–248, 2010.

[14] J. A. Papin, N. D. Price, S. J. Wiback, D. Fell, and
B. O. Palsson. Metabolic pathways in the post-genome
era. Trends in Biochemical Sciences, 28(5):250–258,
2003.

[15] C. A. Petri. Introduction to general net theory. In
W. Brauer, editor, Net Theory and Applications,
Proceedings of the Advanced Course on General Net
Theory of Processes and Systems, Hamburg, 1979,
volume 84 of LNCS, pages 1–19, Berlin, Heidelberg,
New York, 1980. Springer-Verlag.

[16] K. Schmidt. LoLA: A Low Level Analyser. In
M. Nielsen and D. Simpson, editors, Application and
Theory of Petri Nets, 21st International Conference
(ICATPN 2000), volume 1825 of LNCS, pages
465–474. Springer-Verlag, 2000.

[17] S. Schuster, T. Dandekar, and D. A. Fell. Detection of
elementary flux modes in biochemical networks: a
promising tool for pathway analysis and metabolic
engineering. Trends in Biotechnology, 17(2):53–60,
1999.

[18] Snoopy Website. A Tool to Design and
Animate/Simulate Graphs. BTU Cottbus,
http://www-dssz.informatik.tu-cottbus.de/

software/snoopy.html, 2008.

[19] C. Talcott. Pathway logic. In Formal Methods for
Computational Systems Biology, volume 5016 of
LNCS, pages 21–53. Springer, 2008. 8th International
School on Formal Methods for the Design of
Computer, Communication, and Software Systems.

[20] C. Talcott and D. L. Dill. Multiple Representations of
Biological Processes. Transactions on Computational
Systems Biology, 2006.

