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We are witnessing the growing menace of both increas-
ing cases of drug-sensitive and drug-resistant Mycobac-
terium tuberculosis strains and the challenge to produce
the first new tuberculosis (TB) drug in well over 40 years.
The TB community, having invested in extensive high-
throughput screening efforts, is faced with the question
of how to optimally leverage these data to move from a
hit to a lead to a clinical candidate and potentially, a new
drug. Complementing this approach, yet conducted on a
much smaller scale, cheminformatic techniques have
been leveraged and are examined in this review. We
suggest that these computational approaches should
be optimally integrated within a workflow with experi-
mental approaches to accelerate TB drug discovery.

New drugs for tuberculosis
Mycobacterium tuberculosis (Mtb), the causative agent of
tuberculosis (TB), infects approximately one-third of the
world’s population and annually 1.7–1.8 million people die
from this disease [1]. The past decade has witnessed the
growing menace of both increasing numbers of cases of
drug-sensitive and drug-resistant strains and the recogni-
tion that fighting this global health pandemic requires a
multifaceted research effort from both academia and in-
dustry. Infection with drug-sensitive TB can be handled
with an existing frontline arsenal of four drugs. However,
the lengthy treatment regimen (6–9 months typically),
insufficient healthcare infrastructure especially in devel-
oping nations and co-infection, with HIV/AIDS for exam-
ple, often complicate the clinical scenario. Because of the
relatively low numbers of cases in the western hemisphere,
TB is not a billion dollar blockbuster market in which
pharmaceutical companies are likely to see large profits,
and hence involvement of such companies in research and
development has to date been miniscule in TB compared

Review

Glossary

Classification models: this technique enables analysis of very large

structurally diverse training sets that learn to discriminate between

active and inactive compounds.

Comparative Molecular Field Analysis (CoMFA): this modeling meth-

od uses 3D descriptors or fields and their position to describe

antitubercular activity.

Docking: this is the computational determination of the most ener-

getically feasible poses of a small molecule in a protein binding site.

When used in virtual screening, a list of top ranked compounds is

queried to identify putative interactions that could explain the

rankings.

Global model: this usually describes a QSAR model composed of a

structurally diverse training set, and might represent larger, more

general models useful for predicting across different structures. These

models are generally better at extrapolation and cover a wider chemi-

cal space.

Lipophilicity: this is most typically quantified as an estimated logP

such as AlogP [24] or clogP, where logP is defined as the log (Poctanol/

Pwater) and P is a partition coefficient for a given compound in a specific

solvent.

Local model: this generally describes a QSAR model composed of a

structurally similar training set, representing a smaller model for lead

optimization. These models generally cannot extrapolate outside of a

single chemical series, and cover a narrow chemical space.

Machine learning: this represents various computational methods

that can understand patterns in large datasets and are able to

learn, to enable decision making. Examples include classification

models (e.g. decision trees, support vector machines, Bayesian

methods etc).

Pharmacophore: this is frequently a type of 3D-QSAR or arrange-

ment of key molecular features important for biological activity

(e.g. hydrogen bonding, hydrophobic, charged regions or fields).

Some pharmacophores represent the key features without any

quantitative calculation, and can be used for virtual screening of

3D databases [11].

Quantitative structure–activity relation (QSAR): relates antitubercu-

lar activity to molecular descriptors using an algorithm.

3D-QSAR: is a model that relates antitubercular activity to molecular

descriptors or fields.
Systems biology: this is an emerging, crossdisciplinary field that
endeavors to comprehend how the molecular components of life

function together to create complex biological systems. It is usually

represented by computational integration of very large quantities of
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genomic, proteomic and metabolomic information captured from

underlying pre-existing databases (Box 2). A wide spectrum of

approaches to systems modeling exists including: (i) statistical anal-

ysis of large datasets, (ii) models of system kinetics, (iii) flux balance

techniques, (iv) evolutionary models of drug resistance, and (v)

symbolic models of processes.
with other conditions such as cardiovascular disease, on-
cology and metabolic diseases. This is especially important
because the pipeline for TB therapeutics has not produced
a new approved drug in over 40 years. Recently, phenotypic
screening has been used to search for compounds that
inhibit the growth of Mtb or its surrogate organisms such
as Mycobacterium smegmatis and Mycobacterium bovis
(BCG strain) [2]. These compounds broadly derive from
chemically diverse libraries of small molecules, potentially
providing the seeds for novel therapies. The TB community
must now decide how to mine this growing database effi-
ciently to provide new drug candidates, in the face of
complications such as latency and persistence [3].

To help answer this question, we will turn to cheminfor-
matics methods, which occupy an important place in the
pharmaceutical industry drug discovery workflow. In gen-
eral, these computational approaches manage, mine and/or
simulate complex systems or processes, whether they are
related to chemical, genomic, proteomic or clinical data.
Ligand- and protein-basedmethods, for example, have been
used for the virtual screening of compound libraries as a
complement tohigh-throughput screening in vitro [4].Other
researchers have described the different levels at which
computational approaches are used in drug discovery [5].
Box 1. TB-related databases

BioHealthBase [51] is now incorporated into PATRIC (http://patri-

cbrc.vbi.vt.edu/portal/portal/patric/IncumbentBRCs?page=bhb) and in-

cludes rapid annotation using subsystem technology annotations for

approximately 1850 of the 2000 complete bacterial genomes (including

Mtb) currently available in PATRIC. The website provides a genome

browser, protein family sorter, metabolic pathways (using KEGG

pathway maps), phylogenetic trees, pathway and BLAST searches,

feature cart, PubMed integration and Google search.

The Collaborative Drug Discovery Tuberculosis Database (CDD TB,

www.collaborativedrug.com) [52] software (Collaborative Drug Dis-

covery Inc. Burlingame, CA) is focused on small molecule libraries of

compounds tested against Mtb [11]. CDD have collated over 15 public

datasets on Mtb specific datasets representing well over 300 000

compounds derived from patents, literature, and high-throughput

screening data shared by academic and pharmaceutical laboratories.

In addition, this web based database system [52] can facilitate storing

and sharing of private data. The CDD database has been used to find

compounds with molecular similarity to known Mtb drugs and to

build novel computational machine learning and pharmacophore

models to rapidly identify potential inhibitors [11]. To date, CDD, with

funding from the Bill and Melinda Gates Foundation (BMGF), has

developed a unique community with over 20 pilot groups in the TB

field, including groups in the EU funded New Medicines 4 Tubercu-

losis (NM4TB) initiative [53] and groups funded by the BMGF

Tuberculosis accelerator project.

GenoMycDB [54] is a database for the large-scale comparative

analyses of completely sequenced mycobacterial genomes (http://

157.86.176.108/�catanho/genomycdb/). It provides tools for func-

tional classification and analysis of genome structure organization

and evolution.

Tbrowse [55] is a resource for the integrative analysis of the TB

genome, a genome browser across various online resources and
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In this review, we examine recently implemented
computational approaches and resources in the area of
TB drug discovery that could be used to provide a roadmap
for future efforts. Integration of thesemethodsmight guide
the selection of compounds for additional in vitro screens,
and improve the odds of identifying new compounds as
antitubercular hits or leads. Although there have been
several reviews on the current status of TB drugs and
those in development [6], and on isolated computational
[7] and informatics-based [8]methods for drug discovery, to
the best of our knowledge there have been no reviews
discussing the various computational tools [9] used in
TB research. Other authors have suggested pipelines for
bioinformatics processes such as target identification in TB
(e.g. targetTB [10]) but there have been no suggested
optimized and integrative cheminformatics workflows for
antitubercular drug discovery.

Databases for TB
We are aware of over 300 000 compounds screened against
Mtb in one laboratory alone, so it is likely that several
million compounds have been examined cumulatively to
date by all groups. It was not until recently that a central
location for these screening results was developed. The
advantage of collating such data is that it might prevent
repetition of screening by different groups, while also
allowing large scale analysis of molecular properties of
compounds with antitubercular whole cell activity [11].

With so much data being generated for different aspects
of TB research, it is essential to have well curated data-
bases. In Box 1, we summarize the range of some of the
datasets with over half a million data points (http://tbbrowse.osdd.net)

and is a part of the Open Source Drug Discovery Initiative (http://

www.osdd.net/).

TDR targets database (http://tdrtargets.org) brings together genome

sequencing and functional genomics projects, protein structural data,

etc. [56]. Key features include computational assessment of target

druggability and integration of large scale screening data with

manually curated data, enabling the assembly of candidate targets

to pursue.

Tuberculosis Drug Resistance Mutation Database [57] is a database

listing mutations associated with TB drug resistance and the

frequency of the most common mutations associated with resistance

to specific drugs (http://www.tbdreamdb.com/).

TubercuList is widely recognized as the premier database for TB

researchers. The TubercuList server [58] (http://genolist.pasteur.fr/

TubercuList/help/about.html) represents a database focused on the

analysis of the Mtb genomes and on collating and integrating various

aspects of the genomic information. TubercuList provides a complete

dataset of DNA and protein sequences derived from Mtb H37Rv,

linked to annotations and functional assignments.

The Tuberculosis Database (TBDB [59] http://www.tbdb.org/) provides

genomic data (for 28 annotated genomes) and resources including

several thousand microarray datasets from in vitro experiments and

Mtb infected tissues. Researchers can freely deposit data before

publication, browse gene detail pages, and perform genome

visualization and comparative analysis using the genome map tool,

the genomes synteny map or operon map browser.

WebTB.org is provided by the TB structural genomics consortium

[60–62]. It contains tools to search and browse the TB genome,

structure summary pages on all known TB proteins, the MTBreg

database of proteins upregulated or downregulated in TB, top 100

persistence targets in TB and many more tools.

http://patricbrc.vbi.vt.edu/portal/portal/patric/IncumbentBRCs%3Fpage=bhb
http://patricbrc.vbi.vt.edu/portal/portal/patric/IncumbentBRCs%3Fpage=bhb
http://www.collaborativedrug.com/
http://157.86.176.108/~<?A3B2 show $126#?><?A3B2 show $126#?>catanho/genomycdb/
http://157.86.176.108/~<?A3B2 show $126#?><?A3B2 show $126#?>catanho/genomycdb/
http://157.86.176.108/~<?A3B2 show $126#?><?A3B2 show $126#?>catanho/genomycdb/
http://tbbrowse.osdd.net/
http://www.osdd.net/
http://www.osdd.net/
http://tdrtargets.org/
http://www.tbdreamdb.com/
http://genolist.pasteur.fr/TubercuList/help/about.html
http://genolist.pasteur.fr/TubercuList/help/about.html
http://www.tbdb.org/
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major databases for TB from diverse areas such as genome
databases to databases of active compounds, and refer the
reader to the primary references and websites for further
detail. Very few of the databases are linked to allow
seamless navigation from one to another. We call for
greater levels of database connectivity or integration; a
repository to point users to all the tools described in Box 1
is essential. These databases should be part of a workflow
for TB drug discovery to allow the data to be made avail-
able to the community once they are generated (Figure 1).

Pathway tools and technologies
It has been suggested that an integrated analysis of meta-
bolic pathways, small molecule screening and structural
databases will facilitate anti-TB screening efforts [12],
which reflects more of a systems biology (see Glossary)
and computer aided drug discovery approach. Systems
biology approaches based on predictive networks will be
increasingly developed at the interface of cheminformatics
and bioinformatics, with applications for target selection

[()TD$FIG]

Figure 1. Workflows for target-based and phenotypic screening using several integrat

compounds that inhibit an enzyme or protein–protein interaction using tightly integr

databases and pathways. Phenotypic screening data are used with integrated computatio

and then verify in vitro. Target-based screening computational methods might inclu

compound source pools; design or selection for final screening collection; diversity, sim

or chemical substructure). Target-based screening could use structure-based metho

descriptor and pharmacophore based activity models; binding site assessment and map

fragment-based drug discovery. In both target-based screening and phenotypic screeni

tools for: ‘hit picking’ and filtering, clustering and prioritizing; isostere selection; identif

and properties, for example 2D or 3D descriptors. Phenotypic screening might require co

by similarity searching in commercial data bases) and target fishing [20] to identify the

identifying, tracking and optimizing structure–activity relations and ADME trends within

inhibit a target using tightly integrated computational methods, then the data are optim

target based screening workflow can be pursued. (c) Phenotypic data are used with int

properties in parallel, then verify in vitro.
and discovery [13,14] alongside other target selection
methods [15], areas of crucial importance to TB drug
discovery. A translational systems biology approach to
TB that integrates experimental and mathematical meth-
ods has also been proposed to bridge the isolated groups
and create collaborative groups of experimentalists and
theoreticians [16].

Applications of systems biology to TB
Oneexample ofTBsystemsbiology research is a studyusing
gene expression data to identify stress response networks
before and after treatment with different drugs [17]. The
research combined the Kyoto Encyclopedia of Genes and
Genomes (KEGG) andBioCycmetabolic pathwaydatabases
with previously published gene expression data and a
k-shortestpathalgorithm. Itwas foundthatgeneexpression
networks for isoniazid treatment indicated a generic stress
response. This type of approach could create an expression
signature related to the drug used and its mechanism of
action [17].
ed computational components. Illustration of target based screening to find new

ated computational methods, followed by optimization and feed back of data to

nal methods to suggest potential targets and optimize ADME properties in parallel,

de identification of target family interaction motifs; filtering and prioritization of

ilarity and coverage calculation; and 2D or 3D descriptors (pharmacophore, shape

ds, which could incorporate the following computational methods: 2D and 3D

ping; ligand docking or virtual library screening; protein homology modeling; and

ng, hit to lead screening data analysis and follow up might require computational

ying structure–activity relationship trends; and calculating chemical substructures

mputational methods for hit explosion (such as the creation of a pharmacophore or

target for a hit. Lead optimization requires the use of computational methods for

data sets. (a) For chemical probe selection, a search is made new compounds that

ized and fed back to databases and pathways. (b) When a target is identified, the

egrated computational methods to suggest potential target(s) and optimize ADME
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Box 2. Systems biology databases

BioCyc, MetaCyc (SRI) [63,64]: BioCyc (http://biocyc.org/MTBRV/) is a

database collection together with a suite of tools supporting the

generation of pathways and querying of them. The BioCyc database

consists of organism specific Pathway/Genome Databases (PGDBs),

including tier 2 (derived computationally using the PathoLogic

program, and partially curated) PGDBs for two strains of Mtb, both

virulent and drug susceptible, namely CDC1551 and H37Rv. The

PGDBs for Mtb are being adopted by the Tuberculosis Database

(TBDB) [59] consortium (www.tbdb.org). This is expected to lead to

more frequent updates reflecting the latest knowledge. The BioCyc

collection also includes MetaCyc, a database of non-redundant,

experimentally elucidated metabolic pathways curated from the

experimental literature. MetaCyc (http://metacyc.org/) contains more

than 1200 pathways from more than 1600 different organisms [65]. A

PGDB describes the genome of an organism and the product of each

gene; its metabolic network/pathways, reactions, enzymes, metabo-

lites and transporter complement; and the genetic network of the

organism, including its operons, transcription factors and the

interactions between transcription factors and their small molecule

ligands and DNA binding sites. The BioCyc Pathway Tools suite has

three components. PathoLogic is used to create a new PGDB

containing the predicted metabolic pathways of an organism, given

an annotated genome (e.g. a GenBank entry and MetaCyc) as input.

PathoLogic can predict metabolic pathways, genes coding for missing

enzymes in metabolic pathways and operons. The Pathway/Genome

Navigator supports query, visualization and analysis of PGDBs. The

Pathway/Genome Editors also allow interactive editing of PGDBs. In

addition, there is a computational interface to facilitate integration

with external analysis tools such as the Pathway Tools Omics Viewer

[66].

KEGG [67] is a major academic resource consisting of 16 databases

covering genomic and chemical information and is a widely used

reference resource (http://www.genome.jp/kegg/) valuable for linking

compounds and metabolites to biological pathways [68,69].

LipidMaps [70] LIPID Metabolites And Pathways Strategy (LIPID

MAPS) (http://www.lipidmaps.org/data/structure/LMSDSearch.php?

Mode=SetupTextOntologySearch) was created in 2003 to identify

and quantify all of the major and many minor lipid species in

mammalian cells and the changes in these species in response to

perturbation.
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A reaction influence network was created forMtb using
reactions as nodes, enabling protein–protein interaction
mapping and identification of the putative consequences
for global metabolism. For example, inhibition of Rv1653
(ArgJ) and Rv1131 (GltA1) could in turn maximally in-
hibit as much as 75% of metabolism [18]. A Boolean host–
Mtb network model was also developed, with 75 nodes
representing molecules, cells and processes, which was
used to simulate single and double in silico deletions [19].
KEGG and BioCYC pathway data (Box 2) were used as
part of a domain fishing approach (using predominantly
eukaryotic ligand binding data) to generate compound–

target networks as a means to deconvolute targets for 19
antitubercular agents without known target information
[20].

A chemical systems biology approach can compare bind-
ing sites for known drugs and identified off targets with
similar binding sites. The FDA approved drugs entacapone
and tolcapone, which target catechol-O-methyltransferase,
were predicted to inhibit the enzyme enoyl-ACP reductase
(InhA). Experimental data for entacapone showed that it
has an minimum inhibitory concentration (MIC)99 versus
Mtb of 262 mmol/l and inhibited InhA with an IC50 of
80 mmol/l [21]. Although these are very low potency hits,
perhaps some distance from a starting point for drug
discovery, they offer an intriguing path towards thinking
about molecules that differ significantly from those previ-
ously known to target InhA.

Recently, the National Institute for Allergy and Infec-
tious Diseases (NIAID) initiated a systems biology pro-
gram (http://www.broadinstitute.org/annotation/tbsysbio/
index.html), which aims to map the regulatory and meta-
bolic networks of Mtb and the relevant state of these
networks under conditions synonymouswith TB pathogen-
esis. This will involve integration of profiling (multiple ‘-
omics-), high-throughput promotermapping, bioinformatic
and comparative sequence analysis, and computational
modeling. Although to date there have been relatively
few applications of systems biology to TB, there is now
an opportunity to combine it with the field of cheminfor-
matics, which has a far longer history in TB research.
68
Computational cheminformatic tools and their uses
Computational approaches applied to TB have predomi-
nantly implemented standard commercially available che-
minformatic methods, as will be described in the following
section. These methods have been generally used by spe-
cialists focused on a single target or series of compounds,
and rarely in combination with other computational tools.
Owing to space limitations, we have focused our analysis of
cheminformatics tools used in TB research within the past
5 years.

Quantitative structure–activity relation and molecular

properties analysis

Ligand-based approaches towards TB drug discovery pri-
marily have used similar strategies over well over a decade.
These approaches consist of the quantitative structure–

activity relation (QSAR), 3D-QSAR and pharmacophores.
Once a model is generated using the appropriate (usually
commercial) software, testing is typically carried out by
leaving out one or more groups of compounds at random.
This is a very preliminary form of validation. Only rarely is
anexternal test setgeneratedaftermodel building (Table1).

These established ‘local’ models might help optimize
antitubercular activity for a specific target or starting
hit or lead (Table 1). By contrast, several analyses have
used large datasets of active and inactive compounds
tested against Mtb to calculate molecular descriptors or
properties, and analyzed these for differences between the
two groups (active and inactive compounds). Becausemany
chemists and biologists are familiar with Lipinski’s ‘Rule of
Five’ [22] as amethod for selecting ‘drug-like’ compounds, a
significant question is whether anti-TB compounds obey
Lipinski’s rules. This is often not the case. When 112
compounds known to have antitubercular activities [23]
were filtered with the Rule of Five, 40 (35.7%) failed,
including the known clinical candidates OPC-67683 and
TMC-207, because of their lipophilicity and molecular
weight. These clearly do not all represent approved drugs,
and it remains to be seen if new TB drugs will fail this rule
in the future. Analysis of several datasets representing
many thousands of active compounds suggested that the

http://www.broadinstitute.org/annotation/tbsysbio/index.html
http://www.broadinstitute.org/annotation/tbsysbio/index.html
http://biocyc.org/MTBRV/
http://www.tbdb.org/
http://metacyc.org/
http://www.genome.jp/kegg/
http://www.lipidmaps.org/data/structure/LMSDSearch.php?Mode=SetupTextOntologySearch
http://www.lipidmaps.org/data/structure/LMSDSearch.php?Mode=SetupTextOntologySearch


Table 1. Descriptor based QSAR studies

Compound types Number of

molecules in

training set

Number of

descriptors used

Algorithm used and testing Refs

Pyrazinoate esters 32 43 Genetic function approximation models. clogP

was a key descriptor, and the model

was tested with 11 external compounds

[71]

N-benzylsalicylthioamides 29 177 Two MLR models for TB with the STATOO

program. clogP was a key descriptor, and

there was no external testing

[72]

Ring-substituted-2/4-

quinolinecarbaldehyde derivatives

24 PCAa analysis, inclusion of logP did not improve

model statistics. Actives appeared

clustered in a small region of PCA plot

[73]

5-Aryl-2-thio1-3,4-oxadiazoles 41 Topological descriptors Neural networks (q2=0.8), not tested externally [74]

Hydrazides 173 Abraham’s descriptors,

electronic, geometrical

or steric descriptors

MLRb subsets were used for modeling.

Hydrophobicity could not explain the biological

response. For small subsets there were good

correlations with test sets (R2 > 0.77)

[75]

Isoniazid derivatives 91 HQSARc and Dragon

descriptors

HQSAR and generated a test set (R2=0.87) for

24 compounds. The results were better

than for PLS-QSARd with 2D descriptors

from Dragon (R2=0.72)

[76]

Chalcones and flavonoids 9-33 48 Genetic function approximation, internally

cross validated (q2= 0.79–0.94)

[77]

aPCA, principal component analysis.
bMLR, multiple linear regression.
cHQSAR, hologram quantitative structure–activity relation.
dPLS-QSAR, partial least squares quantitative structure–activity relation.

Review Trends in Microbiology February 2011, Vol. 19, No. 2
mean value for various simple molecular descriptors, such
as polar surface area (PSA), is significantly different from
that of FDA approved drugs [11]. This analysis followed
studies on molecular property values for antibiotics in gen-
eral [25], including those that have evaluated logP and
molecular mass [26], as well as earlier studies on antituber-
cular compounds [27]. Generally, FDA approved TB drugs
are more similar to inhaled drugs [molecular weight mean
370, PSA 89.2 Å2, logP of the compound (clogP) 1.7] [28]. An
initial analysis of the largest public screening sets (over
300 000 compounds) produced to date using the MLSMR
dataset [29] and the TAACF-NIAID-CB2 dataset [30] sug-
gested that the molecular weight, logP and Rule of Five
alerts were significantly higher in the most active com-
pounds of the MLSMR screening data, whereas the PSA
was slightly lower compared with the inactive compounds.
The active compounds in this TAACF-NIAID-CB2 set have
significantlyhighermean logPandRule ofFive alerts,while
also having lower hydrogen bond donor count, atom count,
and PSA than inactive compounds [31]. These results help
definean ‘Mtbactive compound’, and canbeused todesignor
select small molecule libraries for whole cell phenotypic
screens and to efficiently guidemedicinal chemistry optimi-
zation efforts.

Comparative molecular field analysis and 3D-QSAR

Asmolecules interact with proteins in three dimensions, an
understanding of molecular conformations for multiple
molecules binding the same target provides useful informa-
tion that can aid drug design. Thesemethods could generate
fields around the molecules and molecular descriptors,
based on conformation or a representation of a molecular
feature that can then be related to bioactivity, termed 3D-
QSAR.3D-QSARmodels (Table2)havebeengeneratedwith
anywhere from 21 to approximately 100 molecules for nar-
row series of structurally related compounds. Inmost cases,
thesestudieshaveperformedexternal testing on<10 to<30
compounds, with generally good results. Thesemodels have
rarely been used for anything other than data explanation,
with few virtual screening studies. There seem to be scant
examples of global models generated using these methods,
which probably stems from the limitations of comparative
molecular field analysis (CoMFA) requiring rigid structural
alignments [32], although other pharmacophore methods
are generally alignment independent and can be used for
rapid database searching [11]. Limitations of 3D-QSAR
methods include the dependency on themolecule conforma-
tion, force fields and the active compounds selected to build
the model.

Classification machine learning methods

Machine learning and classification methods have been
used sparingly for TB drug discovery. For example, the
collation of 847 literature compounds and use of hologram
QSAR allowed generation of fingerprint descriptors and
clustering to identify features different between active
and inactive compounds [33]. Such methods are valuable
in the rapidvirtual screeningof compound libraries fornovel
actives. Models built with 60 or 71 molecules and up to 74
molecular descriptors were used to screen a library of 5000
compounds, resulting in the discovery of 18 active com-
pounds [34]. Planche and coworkers used 122 compounds
with fragment and topological substructural molecular de-
sign approach descriptors and linear discriminant analysis
or k-means cluster analysis algorithms to predict the activi-
ty of a 2,4,5-trisubstituted imidazole class [35].

Classification methods can also be used as local models
for lead optimization with smaller datasets. In one study,
23 2,3-dideoxy hexenopyranosides were used with align-
ment free descriptors to generate combinatorial protocol
multiple linear regression models that were tested by
leaving out eight compounds (r2=0.64–0.74) [36].
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Table 2. CoMFA and other 3D-QSAR models

Compound types Number of

molecules in

training set

Algorithm

used

Statistics Refs

1,4-Dihydropyridines 35 CoMFA and

CoMSIAa

Cross validated (R2 of 0.56 and 0.62) and external

validation (R2 0.74 and 0.69)

[78]

Diaryloxymethano-phenanthrene

derivatives

37 CoMFA and

CoMSIA

CoMFA (q2=0.625) and CoMSIA (q2=0.486) models and

seven compound external test set with very good

predictive value

[79]

Deoxythymidine monophosphate

derivatives that inhibit thymidine

monophosphate kinase

36 Molecular

field analysis

Alignments performed with least squares

(predictive R2=0.70), pharmacophore (0.56) or

docked conformations (0.72). Receptor

based alignment performed best

[80]

Nitrofuranyl derivatives 95 CoMFA and

CoMSIA

Tested with a set of 15 molecules. CoMFA (R2=0.78)

outperformed CoMSIA. cLogP and polar surface

area or steric bulk did not improve the models

[81]

4-Adamantan-1-yl-quinoline-

2-carboxylic acid alkylidene

hydrazides

30 CoMFA and

CoMSIA

Models tested with 14 molecules CoMFA

(R2 0.49) and CoMSIA (R2 0.49)

[82]

Ring-substituted quinolines 70 CoMFA and

CoMSIA

Tested with 24 molecules. The CoMFA model (R2=0.42).

18 molecules were suggested for synthesis based on

the CoMFA predictions.

[83]

Nitroimidazoles 21 Catalyst

pharmacophore

Tested with 22 molecules. No test set

correlation value reported, but correlation looked similar

to the training set (R=0.96)

[84]

1,5-Diarylpyrrole derivatives Catalyst

pharmacophore

Had difficulty predicting N-methylpiperazine and

thiomorpholine derivatives. No numerical prediction

data were presented.

[85]

aCoMSIA, comparative molecular similarity indices analysis.
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The power of classification models has been demon-
strated in several recent studies using much larger data-
sets. A group of 3770 compounds collated by NIAID was
used to build Bayesian classification models (cut-off
MIC=5 mmol/l) with extended class fingerprints. Themod-
elwas tested on adataset of 2880 compounds (with activity
againstMtb) from the GVKBio database with an accuracy
of >70%, and was also used to screen the ZINC database,
suggesting four compounds to be prioritized for future
testing [37].

Bayesian models were built with the previously de-
scribed MLSMR library of 220 463 molecules (4096 active
compounds) [30] and dose–response data using 2273 mole-
cules (475 active compounds). In addition, these models
implemented molecular function class fingerprints
(FCFPs), with a maximum diameter of 6 (FCFP_6) [38]
and interpretable descriptors, and were tested [30] with
the NIAID data and GVKBio datasets used by Prathipati
et al. [37]. The models were further evaluated against the
TAACF-NIAID-CB2 dataset of 102 634 molecules, result-
ing in a tenfold enrichment in compounds active against
Mtb [31].These results indicate that classification methods
could be used as computational filters before experimental
testing. However, what is apparent from all the above
studies is that prospective use and follow-up testing of
suggested compounds is limited or nonexistent to date.

Docking, virtual screening and hybrid approaches

Although many reports display images of Mtb protein
binding sites to highlight interactions between ligand
and protein, few have used them for computer-aided ligand
design [39]. Docking is one such tool that can positively
affect ligand or inhibitor design. Despite potential weak-
nesses from undersampling poses and the methods of
calculating energetics through a scoring function, docking
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as a form of virtual screening has proved to be a useful tool
outside the TB field [40].

Analysis of recent publications (2007–2010) for this
review indicated that docking has been used to identify
small molecules with potency against a given Mtb target
to find hits, begin to build structure–activity relations
around early hits, and probe their metabolic stability.
Docking has also been used as part of an integrated
part of virtual screening processes, and represents a
complementary technology to biochemical high-through-
put screening. Many reports use docking methods pre-
ceded by some form of computational filtering of
screening libraries using pharmacophores or QSAR mod-
els (Table 3).

Several of these studies have suggested compounds for
testing that have been validated, although in several cases
this validation is yet to be achieved. These hybrid methods
can confirm the pharmacophore or QSAR model, with
recent examples including thymidine analogs as inhibitors
of thymidine monophosphate kinase (TMPK) [41]. Fur-
thermore, in a search for InhA inhibitors, a 3D-QSAR
derived pharmacophore model was used to narrow down
a set of 230 000 compounds to 299 top scoring hits and
ultimately to 30 compounds whose lowest energy docked
conformations showed significant interactions with key
active site residues, (i.e. Tyr158), in addition to the 20-
hydroxyl of bound cofactor [42]. The predicted half maxi-
mal inhibitory concentration (IC50) values were similar to
the experimental values, although some of the molecules
might be promiscuous binders.

Another study of TMPK inhibitors used a 3D-pharmaco-
phore model derived from four X-ray structures of the
enzyme with bound substrate or three inhibitors to screen
a 60 000-compound vendor library [43]. Five of the eight
virtual hits demonstrated whole-cell efficacy versus Mtb,



Table 3. Hybrid methods combining docking and QSAR or pharmacophore methods

Method Results Refs

Homology models of DevR and pharmacophore used to

screen 2.5 million compounds, followed by docking with MOE

and Gold.

Resulted in 11 compounds screened and 4 hits including a

phenylcoumarin derivative.

[86]

Thirty-seven enoyl acyl carrier protein reductase carboxamide

inhibitors were used to build CoMFA model (tested with

10 compounds R2=0.88) followed by the de novo molecule

design software LEAPFROG.

Suggested 13 molecules with improved binding energy

values; however, these have not been synthesized or tested.

[87]

Twenty-nine enoyl acyl carrier protein reductase arylamide

inhibitors were used to build CoMFA and CoMSIA models

(tested with eight molecules R2> 0.87). A pharmacophore was

also used to screen the Maybridge database to retrieve 996

hits, which were then docked with FlexX.

The CoMFA and CoMSIA scores were used to suggest 20

molecules for future testing.

[88]

Docking and pharmacophore approach used to suggest type II

dehydroquinase inhibitors, starting from 45 published

inhibitors used to test docking approach and generate GA-

MLR QSAR model (35 train, ten test) using MOE QuaSAR

Evolution (q2 test and train > 0.95). The most active was used

for FlexX pharmacophore generation. Also looked at

interaction fingerprints.

Predicted 42 active compounds. No test data. [89]

Combined experimental and computational approach with 12

new imidazoles and triazole derivatives using AUTODOCK to

dock molecules in sterol 14a-demethylase followed by free

energy of binding calculations.

Good agreement between calculated DGbind and

experimental data for MIC.

[90]

Thirty 50-thiourea-substituted a-thymidines analogues used to

develop receptor independent 4D-QSAR models (q2=0.83) for

thymidine monophosphate kinase inhibitors. The model was

also put into the context of reported crystallographically

characterized inhibitor:enzyme interactions.

The model was tested with four compounds and three were

predicted within the SD of the assay. Activity also increased

with logP.

[91]

Thirty-one 50-O-[N–[(salicyl)sulfamoyl]adenosine inhibitors of

MbtA (a salicyl AMP ligase) used with molecular dynamics

simulations in a homology model to calculate linear

interaction energy (R2=0.70).

A single validation molecule was predicted with the LIE

models to have a Ki of 1.6 nmol/l and the actual value was 0.7

nmol/l.

[92]

Docking and molecular dynamics were used to study the

binding of the isoniazid metabolite INH-NAD to the enoyl-acyl

carrier protein reductase.

Suggested the role of a water molecule in binding. The

modeling supported the role of KatG before InhA binding.

[93]

FlexX and GOLD were used to virtually screen the Chembridge

and NCI databases (covering over half a million compounds)

against the ATP phosphoribosyl transferase (HisG). Filtering

for drug-likeness also used.

Fifty compounds were tested in vitro. and seven were active

at 10 mmol/l. Nitrobenzothiazoles were identified as active

and co-crystallized, and 19 follow up compounds found in

the ChemBridge database (two of which showed inhibition

in the target and whole cell assays).

[94]

UNITY pharmacophore, FlexX docking and structure

interaction fingerprint approaches were used to identify

compounds in the Maybridge database (59,275 compounds)

as potential thymidine monophosphate kinase inhibitors.

Ten compounds were ultimately selected and five showed

MIC < 12.5 mg/ml in whole -cell assays with no cytotoxicity,

although the binding of these compounds to enzyme remain

to be demonstrated.

[43]

CDOCKER used to dock tripeptides into the TB dihydrofolate

reductase crystal structure. Molecular dynamics simulation

was also performed.

WYY was predicted as potent and selective versus human

DHFR. This prediction has yet to be verified.

[95]

FlexX used for docking a library of over 19 000 Vichem

compounds and Tripos Leadquest compounds into NAD

synthetase PknB.

Nine sub-micromolar inhibitors were found. Additional

further docking for NAD kinase inhibitors found that 22

showed activity versus NAD synthetase and one against

NAD kinase, out of 100 compounds tested.

[96]

Catalyst Hypogen pharmacophore and GOLD docking were

used to develop the composite model for screening potential

thymidine monophosphate kinase inhibitors.

Screened an in-house database of �500 000 compounds,

subsequently providing 186 virtual hits that do not appear to

have been tested in vitro.

[97]

ICM and DOCK were used to virtually screen the University of

California, Irvine, ChemDB database and NCI databases to

identify AccD5 inhibitors.

One ligand NCI-65828 was found to inhibit AccD5 (an

essential acyl-CoA carboxylase carboxyltransferase

domain) competitively with an experimental Ki of 13.1 mM.

[98]

AutoDock used for docking inhibitors to MshB (a GlcNAc-Ins

deacetylase).

Docking used to explain mode of binding for inhibitors only. [99]

AutoDock and GOLD were used to find inhibitors for the

adenylation domain of the NAD+-dependent ligase with bound

AMP (LigA).

A novel class of inhibitors, glycosyl ureides, were identified

to compete with the NAD+. Five compounds with docking

scores were tested in vitro versus LigA, no assessment of

correlation.

[100]

aDevR, dormancy regulon.
bMOE, molecular operating environment.
cDHFR, dihydrofolate reductase.
dAccD5, acyl-CoA carboxylases domain 5.
eGA-MLR, genetic algorithm-multiple linear regression.
fKatG, catalase-peroxidase-peroxynitritase.
gWYY, H-tryptophan-tyrosine-tyrosine-OH.
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but no TMPK inhibition data was presented. In a separate
study, Nordqvist and colleagues searched for glutamine
synthetase inhibitors using a combination of approaches
[44]. A commercially available library of small molecules,
chemically similar to the substrate, the product or the
known inhibitor L-methionine-(S)-sulfoximine, was virtual-
ly screened with scoring via a rigid pharmacophore model.
After visual inspection, four of the 29 virtual hits had IC50

values of �1 mmol/l, which are very weak hits, but they
facilitated design of a 15-member analog library as a start-
ing point for future efforts.

All of these docking examples used a crystallographi-
cally characterized Mtb enzyme; others have used a ho-
mology model based on a closely related protein when a
crystal structure is unavailable [e.g. work with UDP-N-
acetylenolpyruvoylglucosamine reductase (MurB) [45]
and fatty-acyl-coenzyme (Co)A synthetase (FadD13)
[46], which are involved in the biosynthesis of peptidogly-
can and fatty acids, respectively]. These efforts are depen-
dent on the quality of the homologymodel and the extent of
similarity to the starting protein. Docking has also been
used to investigate the metabolism of promising antitu-
bercular small molecules. For example, Manina et al.
studied the bioreduction of a nitro moiety in the
BTZ043 family of inhibitors, which appears to target
mycobacterial arabinogalactan and lipoarabinomannan
polysaccharide biosynthesis [47]. Docking suggested po-
tential BTZ043-M. smegmatis FMN dependent nitrore-
ductase NfnB interactions and proposed modifications
to the BTZ043 scaffold to avoid metabolism via NfnB
and other nitroreductases [47].

Docking, virtual screening and hybrid approaches have
resulted in some promising results and yet, as discussed
below, these methods and strategies require further sig-
nificant refinements to be able to deliver on the promise of
novel antitubercular therapeutics.

Gap analysis for computational methods in TB drug
discovery
The computationalmethodspreviouslydescribedarewidely
used in workflows by many project teams in the pharma-
ceutical industry. We found several gaps when we looked at
how computational methods could be used in TB drug
discovery (Figure 1) compared with the various reported
efforts to date. Beginningwith the recent popularity of high-
throughput, whole-cell phenotypic screening of large com-
mercial libraries, we noted limited use of filtering of the
library input or resulting hit lists for drug likeness or lead
likeness [11]. Target deconvolution of the screening hits
could clearly benefit from industry-derived computational
methods [20].When a follow-up screen is performed against
a knownbiological target, virtual and biochemical screening
could be performed sequentially. In seeking an eventual
clinical candidate, we found only one mention of computa-
tional approaches for lead optimization to tackle issueswith
absorption, distribution, metabolism, excretion and toxicity
(ADME/Tox) [47]. This could be the result of limited avail-
ability of global ADME/Tox models in academia compared
with the pharmaceutical industry [32], and clearly repre-
sents an opportunity for influencing the quality of anti-TB
compounds reaching the clinic in the future.
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Successful use of computational approaches including
virtual screening, docking and structure-based design are
becomingmore widespread in the pharmaceutical industry
[48]. An example is raltegravir (IsentressTM), the first
clinically approved HIV integrase inhibitor marketed by
Merck, which was discovered using docking methods
(AutoDock) and the relaxed complex method to accommo-
date receptor flexibility [49]. Although we do not yet have a
similar success story in TB drug development, it is hoped
that computational technologies will have some visible
effect and that this might be achieved by a greater reali-
zation of what is possible with readily available tools today.

Conclusions and future perspectives
In the TB community, there appears to be a disparity
between the generation and utilization of computational
models and the entire drug discovery process. TB models
are not well disseminated, shared or even reused, and
serve an isolated purpose for publication or comprehending
a very limited structure–activity relation. At present, these
computational models are in the hands of cheminformatics
experts, and insufficient efforts have been made in their
dissemination on publicly accessible websites (in much the
same way that databases are available and constantly
accessible). For example, it could be feasible to use open
technologies such as molecular descriptors and toolkits to
generate TB or ADME/Tox models (perhaps derived from
large pharmaceutical company datasets [50]) that could be
shared with researchers regardless of affiliation. The link-
ing of these tools to TB databases could begin to resolve
this issue, analogous to the integration of technologies in
systems biology.

With regard to integration, many examples are apparent
in the TB literature of the use of combinations of computa-
tional approaches to improve potency. However, these still
require integration within the drug discovery workflow
(Figure 1), in which several iterations of many techniques
areessential tomove fromhit to leadandbeyond. It iswidely
accepted that enzyme inhibition (IC50< 1 mmol/l), whole cell
activity (MIC < 10 mmol/l vs. Mtb H37Rv) and acceptable
pharmacokinetic and toxicity profiles are necessary to facil-
itate study in animal models of infection, even before
approaching clinical trials in humans.

The TB community is motivated to deliver novel thera-
peutics as rapidly as possible. We suggest that computa-
tional workflows (Figure 1) could facilitate this, and enable
scientists to leverage these techniques at all stages of drug
discovery, as is common in the pharmaceutical industry.
We hope this article promotes such an integrated use of
computational techniques and collaborations across spe-
cialties within the TB field.
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