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Abstract. Networked Cyber-Physical Systems (NCPS) present many
challenges that are not suitably addressed by existing distributed com-
puting paradigms. They must be reactive and maintain an overall situ-
ation awareness that emerges from partial distributed knowledge. They
must achieve system goals through local, asynchronous actions, using
(distributed) control loops through which the environment provides es-
sential feedback. Typical NCPS are open, dynamic, and heterogeneous in
many dimensions, and often need to be rapidly instantiated and deployed
for a given mission.
To address these challenges, we pursue a declarative approach to provide
an abstraction from the high complexity of NCPS and avoid error-prone
and time-consuming low-level programming. A longer-term goal is to de-
velop a distributed computational and logical foundation that supports a
wide spectrum of system operation between autonomy and cooperation
to adapt to resource constraints, in particular to limitations of compu-
tational, energy, and networking resources. Here, we present first steps
toward a logical framework for NCPS that combines distributed reason-
ing and asynchronous control in space and time. The logical framework
is based on partially ordered knowledge sharing, a distributed computing
paradigm for loosely coupled systems that does not require continuous
network connectivity. We present general theoretical results and also il-
lustrate our approach with a simulation prototype of our logical frame-
work in the context of networked mobile robot teams that operate in an
abstract instrumented cyber-physical space with sensors.

1 Introduction

A growing number and variety of devices can sense and affect their environ-
ment. Some are fairly simple, such as radio-frequency identification (RFID) ac-
cess control, some quite sophisticated, such as mobile robots with localization
and sensing capabilities. This opens up an opportunity for a new generation of
Networked Cyber-Physical Systems (NCPS). Such systems can provide complex,
situation-aware, and often critical services in applications such as distributed
surveillance, crisis response, medical systems, self-assembling structures or sys-
tems, networked space/satellite missions, or distributed critical infrastructure



monitoring and control. General principles and tools are urgently needed for
building robust, effective NCPS using individual cyber-physical devices as build-
ing blocks. In this paper, we present a declarative approach to NCPS based on a
logical framework that supports distributed reasoning and can interact with the
physical world asynchronously through observations and goal-oriented control.

Cyber-physical systems are often deployed in challenging environments with
a wide spectrum of networking characteristics. They should be able to take ad-
vantage of opportunities for communication as they arise and must be robust in
spite of delays and disruptions due to, for example, mobility, failures, or nodes
entering and leaving the system. Topology changes (network partitioning in the
extreme case) can happen continuously, so that even the common assumption of
globally stable periods, which is crucial for many distributed algorithms, is not
realistic. Hence, the logical framework is developed on top of a loosely coupled
distributed computing model based on the partially ordered knowledge-sharing
paradigm that has been used in our earlier work on disruption-tolerant network-
ing [20]. Knowledge (as opposed to, say, a packet) is a semantically meaningful
unit of information that can be stored, processed, aggregated, and communi-
cated to other nodes. A unique feature of the knowledge-sharing model is that
it is parameterized by an application-dependent partial order on knowledge that
is available to all nodes and provides an abstraction of the knowledge semantics.
In this model, the network topology can change continuously, communication
can be unreliable, and no bounds are assumed on communication delays. As a
consequence, any form of communication between nodes is acceptable. Similar to
data mules for sensor networks [7] or message ferrying in delay- and disruption-
tolerant networks [9], each node can cache knowledge for extended periods of
time and hence can exploit the (possibly mobile) network dynamics to share
knowledge without relying on an end-to-end path at any point in time.

The declarative view of NCPS enables us to recast information collection,
control, and decision problems as logical problems that are primarily centered
around the duality of two kinds of knowledge: facts and goals. Facts can repre-
sent sensor readings at specific locations and other information that is derived
by possibly distributed computation. Goals can represent queries for information
or requests to the system or individual components to perform certain actions.
Although there are cases where a goal can be directly satisfied by a single ac-
tion, it is more often the case that distributed actions are needed, sometimes in
a coordinated manner that requires cooperation across multiple nodes. In our
logical framework, both facts and goals will be treated on an equal footing to-
gether with corresponding communication and reasoning rules. The distributed,
dynamic, and interactive nature of the underlying systems is rarely considered
in logical frameworks, which are traditionally designed as closed systems. Our
framework is flexible enough to take into account the heterogeneous resources
and capabilities at each node. Each node cooperates with its neighbors and in-
teracts with its environment by sensing and affecting, driven by facts and goals.
Overall system goals are refined to goals achievable by an individual node or
device. Reasoning takes place locally at each node in the network as well as in
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cooperation (and competition) with other nodes. Seamless integration of coop-
eration and autonomy ensures that there is no need to rely on the existence
or connectivity of other nodes, so that the local operation can always proceed,
although possibly in a less optimal fashion. Solutions can be shared and com-
posed oportunistically without being subject to any rigid or hierarchical flow
constraints.

Recent applications of cognitive and more specifically declarative techniques
in communication and networking, [5] being a noteworthy example, have at-
tracted a lot of interest, but a declarative treatment of NCPS still remains a
challenge. To study this problem we use self-organizing mobile robots as an ex-
ample capturing many of the challenges of NCPS [7]. This example is inspired
by previous work at SRI, in particular the Centibots project [17] that has devel-
oped a team-based hierarchical planning approach to accomplish a mission such
as collaborative mapping, and the Commbots project [10], where the mission
objective is to improve network connectivity by distributed control of robotic
routers.

This paper contains the following contributions. In Section 2, we informally
introduce the knowledge-based distributed computing model with a partial-order
based knowlege semantics that is slightly more general than what we used in
previous work. More formally, we develop in Section 3 our distributed logical
framework for NCPS together with its key properties, such as soundness, com-
pleteness, and termination. Section 4 ilustrates the key ideas and a prototypical
implementation by means of an abstract simulation of a networked mobile robot
team operating in an instrumented cyber-physical space.

2 Knowledge Sharing as a Basis
for Distributed Computing

In this paper we use a refinement of a distributed computing model based on
asynchronous knowledge sharing that we have used in earlier work [20] as the
basis for disruption-tolerant networking. The knowledge-sharing model can make
explicit the structure of a distributed computation in space and time, and hence
is less abstract than many other models of distributed computing, e.g. those
abstracting from the network topology by assuming direct end-to-end channels.

In a nutshell, we assume a networked cyber-physical system with a finite
set of so called cyber-nodes that provide computing resources, can have volatile
and/or persistent storage, and are all equipped with networking capabilities.
Cybernodes can have additional devices such as sensors and actuators, through
which they can observe and control their environment, but only to a limited de-
gree (including possibly their own physical state, e.g. their orientation/position).
Cyber-nodes can be fixed or mobile, and for the general model no assumption
is made about the computing or storage resources or about the network and
the communication capabilities or opportunities that it provides. Hence this
model covers a broad range of heterogeneous technologies (e.g. wireless/wired,
unicast/broadcast) and potentially challenging environment conditions, where
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networking characteristics can range from high-quality persistent connectivity
to intermittent/episodic connectivity. The cyber-physical system is open in the
sense that new nodes can join and leave the network at any time. Permanent
or temporary communication or node failures are admitted by this model. As a
consequence, many forms of network dynamics including partitioning, merging,
message ferrying, group mobility, etc. are possible.

In the following, we give in informal characterization of an individual cyber-
node that will be sufficient for the our purposes. Each cyber-node has a unique
name and a local clock, which increases monotonically by at least one unit in
each instruction and is only loosely synchronized with other nodes in the network
if admitted by the networking conditions. We also assume that each node has
access to a source of randomness (e.g. a fair coin), with the idea that typical
applications of this model make heavy use of randomization techniques.

Locally, each cyber-node uses a sequential and universal computation model.
The model is based the dual notions of local events and distributed knowledge.
Two key services are provided by each node. First, timed events can be posted,
i.e. scheduled to be executed at any local time (possibly randomized) in the fu-
ture. Second, knowledge can be posted, i.e. submitted for dissemination in the
network. All local computation is event-based, where corresponding to the two
services above, events can be either timed events or knowledge events, with the
latter representing the reception of a new unit of knowledge. Similar to existing
middleware framworks for messaging or group communication, knowledge dis-
semination can take place independently in different logical cyber-spaces, but a
unit of knowledge is a more state-like entity that should not be confused with
the notion of a message. Furthermore, no reliability, delivery order, or atomicity
guarantees are provided to the applications, because they would serverely limit
the scalability of the model in terms of the network size.

Distributed knowledge sharing is asynchronous and each node can use some
of its storage as a cache, which we also refer to as a knowledge base. Network
caching allows the system to support communication even if no end-to-end path
exists at a single point in time. Different from a shared-memory model, dis-
tributed knowledge sharing allows each node to have its own (typically partial
and delayed) view of the distributed state of knowledge. Different from an asyn-
chronous message-passing model, knowledge is not directed towards a particular
destination. Instead each node decides based on the knowledge content (or its
embedded type) if it wants to use the unit of knowledge that it receives.

Epidemic and (spatial) gossiping techniques can be used to implement knowl-
edge sharing, but unlike gossiping, which is based on the exchange of cache sum-
maries, knowledge sharing can also be implemented by single-message protocols
based on unidirectional communication [20]. On the other hand, epidemic com-
puting covers a very broad class of algorithms, whereas distributed knowledge
sharing is a more restricted model that makes specific use of the abstract se-
mantics of knowledge that is given in a very specific way, namely in terms of
an equivalence relation and a partial order. The consideration of the partial-
order semantics of knowledge by intermediate nodes is of key importance for
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scalable implementations and also the reason why knowledge sharing is funda-
mentally different from asynchronous/unreliable or even epidemic/probabilistic
broadcast.

To partially capture the semantics of knowledge for the purpose of distributed
knowledge sharing, we assume an application-specific partial order ≤ on all
knowledge items together with its induced equivalence relation. We refer to ≤
as the subsumption order given that the intuitive meaning of K ≤ K ′ is that K ′

contains at least the information contained in K. With this interpretation the
induced equivalence K ≡ K ′, defined as K ≤ K ′ and K ≥ K ′, means that K
and K ′ have the same semantics, even if they are represented in different ways.
In this situation, the knowledge-sharing model may (but does not have to) dis-
card K ′ without delivering it to the application, if K has already been delivered
already. In addition to ≤, we assume an application-specific strict partial order
≺ that is compatible with ≤ and we refer to as replacement order, with the
intuition that K ≺ K ′ means that K ′ replaces/overwrites K, and hence if K
has not been delivered yet to the application, the knowledge-sharing model may
(but does not have to) discard it, if K ′ has already been received.

The distributed knowledge-sharing model can be specialized by imposing
local and global resource bounds as well by more specific environment (and
hence network) models. This paper, however, will not impose such restrictions,
because the logical framework that we are presenting here should be applicable
to a wide variety of cyber-physical systems.

3 Distributed Logic and Cyber-Inference

Declarative control aims at providing the user with a logical view of the cyber-
physical system so that user objectives can be conveyed to the system, which
then will make its best effort to realize those objectives. Such objectives are
given in the context of the current system state (which is only approximately
and partially observable). Furthermore, the user objectives can be part of a larger
set of objectives (e.g., including system policies and objectives from other users),
which we simply refer to as the system goal. Declarative control is the process
of continuous adaptation of the system to transition to a state that satisfies the
system goal, which in turn can continue to change based on feedback from the
environment.

The purpose of logic in this context is many-fold. First of all, it provides a
language to express and communicate system goals. Dually, it allows expressing
and communicating facts about the current system state. In both cases, commu-
nication includes communication with the users but also communication among
the components of the system themselves. At the level of an individual cyber-
physical component, the logic provides a declarative interface for goal-oriented
control and feedback through observations that are represented as logical facts.
Finally, it provides a framework for inference and computation, which allows
facts and goals to interact with each other and form new facts or goals.
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Aiming at a solution to declarative control that covers the entire spectrum
between cooperation and autonomy and makes opportunistic use of networking
resources, it is clear that the logic needs to be inherently distributed. The oppor-
tunity to exchange knowledge with other nodes should lead to cooperation, and
the absence of such opportunities should lead to more autonomous behavior. In
the following we present a simple distributed inference system that accomplishes
this goal. We use Horn clause logic [18] to illustrate our approach, which we
expect to generalize to more expressive logics.

For the following abstract logical treatment, we assume a networked cyber-
physical system S with a finite set of cyber-nodesN . We assume a time-dependent
network and environment model, in which two cyber-nodes have the capability
to communicate (uni- or bidirectionally) whenever the network conditions admit
it and where each cyber-node can have (not necessarily the same) sensors and
actuators. The sensors can generate observations at arbitrary time points. The
actuators are driven by goals, which they can either attempt to satisfy immedi-
ately or in a continuous asynchronous process with (partial) feedback provided
through observations. Instead of imposing restrictive conditions on S we gener-
ally allow S to operate under arbitrary conditions. As a consequence, a guarantee
that goals are achieved is not assumed in this model. In the following, we use x
and y to range over cyber-nodes and t to range over the time domain, for which
we use natural numbers in this paper.

For the following, we also assume a fixed signature Σ and a fixed finite theory
Ω over Σ in Horn clause logic that is shared by all nodes of the cyber-physical
system. We assume that Σ contains built-in constants for natural numbers and
names of cyber-nodes. Additional built-in functions, and built-in predicates can
be included in Σ. Nonpropositional and propositional constants are identified
with corresponding functions and predicates, respectively, of arity zero. To ac-
count for the temporal and distributed character of cyber-physical systems, we
assume that the signature Σ contains a distinguished set of predicates (distinct
from built-ins) that we refer to as cyber-predicates, i.e., predicates that define
the interface of the logic with the outside world (i.e., cyber-physical devices and
users), and we use pc to range over such predicates in the following.

Using standard terminology, we assume an countably infinite set of variables
V, a set of terms T (Σ,V), and a set of atoms A(Σ,V), i.e., atomic proposi-
tions, over these variables. Using e to range over terms, atoms are of the form
p(e1, . . . , en) if p is an n-ary predicate. As usual, we define ground terms T (Σ)
and ground atoms A(Σ) as terms and atoms without variables, respectively.
In the following, we use P and Q to range over atoms. We furthermore as-
sume that all clauses in Ω are uniquely labeled and definite, i.e., of the form
l :P1, . . . , Pn ⇒ Q with a unique label l, where Q is not the application of a
built-in predicate. As usual, an implicit universal quantification over all vari-
ables is assumed. We use ` to denote the standard derivability in Horn clause
logic with all the built-ins in Σ, i.e., if Φ is a set atoms, Φ ` Q means that Q can
be derived from Φ by means of the clauses in Ω. If in addition, Q is generated
by a forward or backward clause we write Φ `f Q or Φ `b Q, respectively.
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For our proof system, we assume that Ω = Ωf∪Ωb, where Ωf and Ωb are sets
of clauses that we refer to as forward and backward clauses, respectively. The set
of facts is simply defined as the set of all ground atoms. Hence, all predicates
are allowed to occur in facts. The set of goal predicates is any set of predicates
that includes at least the built-in predicates and all predicates that apear in the
conclusion of a backward clause, i.e., a clause from Ωb. Certain cyber-predicates
can be included in this set if they are intended to form goals. The set of goals
can be any set of (not necessarily ground) atoms that are applications of goal
predicates and satisfy the following closure properties: (1) If G is a goal then
σ(G) is a goal, i.e., we have closure under (not necessarily ground) substitutions.
(2) If there is a clause of the form l :P1, . . . , Pn ⇒ Q in Ωf , j ∈ 1, . . . , n, Pj is
the application of a goal predicate, σ(Pi) is a fact for each i ∈ 1, . . . , j − 1, then
σ(Pj) is a goal. (3) If there is a clause of the form l :P1, . . . , Pn ⇒ Q in Ωb, Pj
is the application of a goal predicate, σ(Pi) is a fact for each i ∈ 1, . . . , j − 1,
and σ(Q) is a goal, then σ(Pj) is a goal.

With this user-defined notion of goals, we now formulate our variable re-
striction that we generally assume in the following: (1) For each forward clause
l :P1, . . . , Pn ⇒ Q in Ωf , each variable in Q appears in at least one of the
atoms P1, . . . , Pn. (2) For each backward clause l :P1, . . . , Pn ⇒ Q in Ωb, if
σ(Q) is a goal, then each variable in σ(Q) appears in at least one of the atoms
σ(P1), . . . , σ(Pn). Generally, the idea is that the set of goals is defined for a given
application such that this variable restriction is satisfied.

Note that we neither require that every instance of the conclusion of a back-
ward clause is a goal, nor do we exclude the possibility that a goal appears as an
instance of the conclusion of a forward clause. From now on, we will use F and G
to range over facts and goals, respectively. It is important that we do not require
that every atom (in a clause) is a goal, because some atoms may only become
sufficiently constrained after some of their variables have been instantiated. This
remark particularly applies to built-in goals defined next.

A fact or goal that is the application of a built-in predicate is called a built-in
fact or built-in goal, respectively. Given a built-in goal G, we say that σ(G) is a
solution of G iff σ(G) is ground (hence becomes a fact) and ` σ(G). We generally
assume that all built-in goals G are finitary, where a goal G is said to be finitary
iff it has a finite set of solutions. Note that this condition implies that ` G can
only hold for a built-in goal G if G is also a fact. All cyber-predicates pc are
explicitly time dependent and form atoms pc(t, . . .), where t is a natural number
denoting its timestamp, i.e., its time of creation at the creating node. A cyber-
fact or cyber-goal is any fact or goal, respectively, of this form. Note that this
does not preclude cyber-facts and cyber-goals from having additional temporal
attributes or constraints that can be specified in the remaining arguments, e.g.,
the time of obervation in the case of a cyber-fact, or a deadline in the case of a
cyber-goal.

Next we assume that the set of atoms is equipped with two reflexive sub-
sumption relations ≤ff and ≤gg, and four irreflexive replacement relations ≺ff ,
≺gg, ≺gf , ≺fg, where the subscripts f and g indicate if the corresponding side
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is restricted to facts or goals, respectively. We assume that subsumption and
replacements relations do not relate built-in atoms and we assume that they are
linear and closed under renaming of variables. Here, we say that a relation R is
linear iff P R P ′ implies that each variable occurs at most once in (P, P ′), and we
say that R is closed under renaming of variables iff P R P ′ implies σ(P ) R σ(P ′)
for all variable renamings σ. Note that this implies that the name of a variable
is irrelevant on both sides of these relations. The replacement relations cannot
be arbitrary, and at a minimum must be extensible to a strict partial order, a
condition formulated below, when the replacement ordering is introduced.

The logical state of a cyber-node is of the form Γ ` ∆ @ t, x, where x
is the unique name of the node, t is a natural number representing its local
time, Γ is a finite set of derived facts, and ∆ is a finite set of derived goals,
where derived facts and goals are distinct objects with underlying facts and
goals (see below) and explicit information about how they are derived. With
an appropriate initial state, the logical state will satisfy the invariant that t is
larger than any timestamp (but not necessarily any time) that is contained in
Γ and ∆, meaning that t is always fresh and can be used as a timestamp for
new atoms. It is worthwhile to point out that the interpretation of Γ ` ∆ @ t, x
is nonstandard, and quite different from sequent calculus [3] even without t, x.
Intuitively, Γ is a set of facts that is continuously growing through observations
or by inference, while ∆ is a set of goals that the system is trying to satisfy
without necessarily aiming to satisfy all of them. To reflect the reality of cyber-
physical systems, inference is a continuous typically nonterminating process, and
goals and facts can change at any time due to environment and user interaction.
Since reasoning is a distributed process in space and time and the world can
change during this process, an approach quite different from traditional work in
formal specification, logic programming, or automated deduction is needed.

Derived atoms, i.e., derived facts or goals, are represented as knowledge in
the underlying knowledge-sharing model. Derived facts and derived goals are
defined subsequently as objects of the form f :F and g :G, respectively, where
f and g are refered to as fact derivations and goal derivations, respectively, that
will be used to keep track of how F and G were constructed. In the following,
we use f and g to range over fact and goal derivations, respectively, and d to
range over derivations of both kinds. Recall that F is always a ground atom,
but a goal G can contain variables, which are implicitly existentially quantified.
Different from standard approaches with explicit proof objects, we do not only
define explicit derivations for facts but also for goals, which may turn out not to
be solvable. We will also see that a goal does not have to be solved to be useful,
but as a cyber-goal can still have an impact on the environment, which may be
observable through cyber-facts.

A derived atom can be either a derived fact or a derived goal, where the set of
(atomic) derived facts and (atomic) derived goals together with their derivations
is defined by the following mutually inductive definition: (1) Bσ(G) :σ(G) is a
(atomic) derived fact for each built-in goal G with a solution σ(G), (2) O(F ) :F
is a (atomic) derived fact, also called an observation, for each cyber-fact F , (3)
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C(G) :G is a (atomic) derived goal, also called a control, for each cyber-goal
G; (4) lσ(f1, . . . , fn) :σ(Q) is a derived fact, if there is a clause of the form
l :P1, . . . , Pn ⇒ Q in Ωf , σ(Q) is a fact, and fi :σ(Pi) are derived facts; (5)
l−1
σ (f1, . . . , fj−1) :σ(Pj) is a derived goal, if j ∈ 1, . . . , n and there is a clause

of the form l :P1, . . . , Pn ⇒ Q in Ωf with goal σ(Pj) and fi :σ(Pi) are derived
facts; (6) lσ(f1, . . . , fn; g′) :σ(Q) is a derived fact, if there is a clause of the form
l :P1, . . . , Pn ⇒ Q in Ωb, σ(Q) is a fact, fi :σ(Pi) are derived facts, and g′ :G′

is a derived goal with σ(G′) = σ(Q); and (7) l−1
σ (f1, . . . , fj−1; g′) :σ(Pj) is a

derived goal, if j ∈ 1, . . . , n and there is a clause of the form l :P1, . . . , Pn ⇒ Q
in Ωb with goal σ(Pj) and fi :σ(Pi) are derived facts and g′ :G′ is a derived goal
with σ(G′) = σ(Q). In this definition and in the following, we identify derived
goals that are related by consistent renaming of their variables (recall that they
are implicitly bound). Different from facts and goals, derived facts and goals
are disjoint sets. Given a derived atom d :P , it is easy to see from the above
definition that P is uniquely determined by d. Hence, d uniquely determines
if d :P is a derived fact or a derived goal, respectively, something that is not
determined by P alone.

We say that d :P is an immediate subderivation of d′ :P ′, written d :P .
d′ :P ′, iff d′ is of the form L(. . . , d, . . .), where L any of the above constructors
of derivations. We also say that d :P is a proper subderivation or a subderivation
of d′ :P ′, written d :P .+ d′ :P ′ or d :P .∗ d′ :P ′, respectively, relations that are
defined as the transitive closure or the reflexive, transitive closure, respectively,
of .. Using K to range over derived atoms (i.e., units of knowledge) and K to
range over sets of derived atoms, we inductively define the knowledge derivation
relation ` by the following conditions: (1) K ` K ′ if K ′ ∈ K. (2) K ` K ′ if
K ` K for all K . K ′. (3) K ` Bσ(G) :σ(G) for each built-in goal G with a
solution σ(G).

Next we lift the subsumption and replacement relations to a quasi-order and a
strict partial order, respectively, on on derived facts and goals. The subsumption
order ≤ on derived atoms is a quasi-order that is inductively defined such that
the following conditions hold: (1) f :F ≤ f ′ :F ′ if F ≤ff F ′; (2) g :G ≤ g′ :G′

if G ≤gg G′. We also define the induced subsumption equivalence K ≡ K ′ as
K ≤ K ′ ∧K ≥ K ′, and the strict subsumption order K < K ′ as K ≤ K ′ ∧K 6≡
K ′. The replacement order ≺ is then a transitive relation on derived atoms
that is inductively defined such that: (1) K < K ′ implies K ≺ K ′, i.e., ≺
extends <; (2) K ≤ K ′, K ′ ≺ K ′′, and K ′′ ≤ K ′′′ implies K ≺ K ′′′, i.e.,
≺ is compatible with ≤; (3) f :F ≺ f ′ :F ′ if F ≺ff F ′; (4) g :G ≺ g′ :G′ if
G ≺gg G′; (5) g :G ≺ f ′ :F ′ if G ≺gf F ′; (6) f :F ≺ g′ :G′ if F ≺fg G′.
Note that in all these relations, derivations are only used to distinguish between
derived facts and goals, but no use is made of the structure of the derivation.
Derivations can be used for proof-theoretic purposes or for tracing in practice,
but are not generally required for an implementation of the logical framework.
We obviously require that the replacement order is a strict partial order, which
leads to corresponding restrictions on the user-defined replacement relations.
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We also require the following ordering consistency condition between the two
orderings: If K1 ≤ K ′1 ≺ K2 ≤ K ′2 and K1 ≤ K ′2 then K ′1 ≤ K2.

A configuration of a cyber-physical system S is a set of local states Γ `
∆ @ t, x, one for each cyber-node x of S. Given a configuration c containing
Γ ` ∆ @ t, x, we write Fx(c) and Gx(c) to denote Γ and ∆, respectively. The
proof system defines a labeled transition relation → on configurations of the
cyber-physical system S in the following sense: For configurations c and c′, we
have c→r c

′ iff there exist an instance r of a proof rule such that c contains the
premises of r, and c′ is obtained by an update of c with the conclusion, i.e., by
replacing Γ ` ∆ @ t, x by the conclusion Γ ′ ` ∆′ @ t′, x. In this case, we also
say that r is applicable in c.

For readability, we have omitted an implicit side condition t < t′ in all proof
rules (tx < t′x in the communication rules), meaning that time increases mono-
tonically at least by one unit in each step. Furthermore, we view each derived
fact or derived goal as a singleton set and use the comma operator to denote
set union. Derived goals and derived facts that are subsumption-equivalent are
identified. If the comma operator is used in the premise of a proof rule, we always
assume that it denotes the union of disjoint sets, i.e., Γ,K implies K /∈ Γ if it
occurs in a premise. For a set K of derived facts or goals, we write K ≺ K if
there exist K ′ ∈ K such that K ≺ K ′, respectively. In the context of a proof
rule that has a premise Γ ` ∆ @ t, x we say that K is fresh (at x) if neither
K ∈ Γ,∆ nor K ≺ Γ,∆. In the condition of proof rules we use σ to range
over all (not necessarily ground) substitutions that satisfy the condition of the
proof rule. Some conditions in the reasoning rules will further restrict σ to most
general substitutions (MGS).

To give some intuitive explanation of the proof rules in Figure 1, the control
rule represents the addition of a new user-level objective to the set of system
goals. The observation rule captures the generation of information from the en-
vironment. This can happen spontaneously or can be triggered by a goal that a
cyber-device attempts to satisfy. The communication rules allow cyber-nodes to
exchange facts or goals by means of asynchronous communication. The nature
of communication, i.e., whether it is uni-/bidirectional, unicast, multicast, or
broadcast remains unspecified. The replacement rules are used to overwrite sub-
sumed and obsolete facts and goals. In this paper, we assume only a loose form of
logical time synchronization that satisfies the minimal monotonicity requirement
formulated in the communication rules. Of course, this does not preclude imple-
mentations with time synchronization that takes place even when no knowledge
is exchanged. The forward and backward rules implement forward and backward
reasoning. The first forward rule applies an instance of a Horn clause from the
underlying theory if all conditions are available as facts, generating a new fact
σ(Q) corresponding to the conclusion in this process. The second forward rule
covers the case where the available facts are not sufficient to apply the clause so
that a new subgoal σ(Pj) needs to be generated for a missing fact. The back-
ward rules are analogous to the two forward rules, but apply a Horn clause in a
goal-directed way, by first unifying the conclusion with an existing goal. Again,
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Γ ` ∆ @ t, x

Γ ` ∆, C(G) :G @ t′, x
if G = pc(t, . . .) is a cyber-goal (Control)

Γ ` ∆ @ t, x

Γ, O(F ) :F ` ∆ @ t′, x
if F = pc(t, . . .) is a cyber-fact (Observation)

Γ, f :F ` ∆ @ t, x

Γ ` ∆ @ t′, x
if f :F ≺ Γ,∆ (Replacement1)

Γ ` ∆, g :G @ t, x

Γ ` ∆ @ t′, x
if g :G ≺ Γ,∆ (Replacement2)

Γx ` ∆x @ tx, x Γy, f :F ` ∆y @ ty, y

Γx, f :F ` ∆x @ t′x, x
(Communication1)

if x 6= y, t′x ≥ ty, and f :F is fresh at x.

Γx ` ∆x @ tx, x Γy ` ∆y, g :G @ ty, y

Γx ` ∆x, g :G @ t′x, x
(Communication2)

if x 6= y, t′x ≥ ty, and g :G is fresh at x

Γ ` ∆, g :G @ t, x

Γ, Bσ(g) :σ(G) ` ∆, g :G @ t′, x
(Built-in)

if G is a built-in goal with a solution σ(G) such that Bσ(g) :σ(G) is fresh.

Γ, f1 :σ(P1), . . . , fn :σ(Pn) ` ∆ @ t, x

Γ, f1 :σ(P1), . . . , fn :σ(Pn), f :σ(Q) ` ∆ @ t′, x
(Forward1)

if l :P1, . . . , Pn ⇒ Q is a clause from Ωf ,
f = lσ(f1, . . . , fn), σ(Q) is a fact, and f :σ(Q) is fresh.

Γ, f1 :σ(P1), . . . , fj−1 :σ(Pj−1) ` ∆ @ t, x

Γ, f1 :σ(P1), . . . , fj−1 :σ(Pj−1) ` ∆, g :σ(Pj) @ t′, x
(Forward2)

if l :P1, . . . , Pn ⇒ Q is a clause from Ωf ,
g = l−1

σ (f1, . . . , fj−1), σ is a MGS, σ(Pj) is a goal, and g :σ(Pj) is fresh.

Γ, f1 :σ(P1), . . . , fn :σ(Pn) ` ∆, g′ :G′ @ t, x

Γ, f1 :σ(P1), . . . , fn :σ(Pn), f :σ(Q) ` ∆, g′ :G′ @ t′, x
(Backward1)

if l :P1, . . . , Pn ⇒ Q is a clause from Ωb,
f = lσ(f1, . . . , fn; g′), σ(Q) = σ(G′),
σ(Q) is a fact, and f :σ(Q) is fresh.

Γ, f1 :σ(P1), . . . , fj−1 :σ(Pj−1) ` ∆, g′ :G′ @ t, x

Γ, f1 :σ(P1), . . . , fj−1 :σ(Pj−1) ` ∆, g′ :G′, g :σ(Pj) @ t′, x
(Backward2)

if l :P1, . . . , Pn ⇒ Q is a clause from Ωb,
g = l−1

σ (f1, . . . , fj−1; g′), σ is a MGS such that σ(Q) = σ(G′),
σ(Pj) is a goal, and g :σ(Pj) is fresh.

Γ ` ∆ @ t, x

Γ ` ∆ @ t′, x
(Sleep)

Fig. 1. Proof Rules of our Distributed Logical Framework for NCPS
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if the present facts are not sufficient to cover all conditions of a clause, a new
subgoal is generated. In both forward and backward rules, the selection of facts,
goals, and rules is entirely nondeterministic, and many strategies are possible as
long as they satisfy some local weak fairness requirements (see below). Finally,
the sleep rule allows the system to wait and hence slow down the reasoning for
an arbitrary amount of time, e.g., to save energy, wait for new knowledge, or use
the resources for other purposes.

An execution of the networked cyber-physical system S is a finite sequence
π = c0, r0, c1, r1, c2, . . . , cn or an infinite sequence π = c0, r0, c1, r1, c2, . . . of
configurations such that ci →ri

ci+1 for all i. We say that i is a step of π iff
ri ∈ π. We say that a rule r is applied in π at j iff r = rj .

For the following definition and the subsequent weak fairness properties, we
identify instances of proof rules that only differ in Γ , ∆, t, t′ (or the correspond-
ing indexed variables). We say that r is permanently applicable in π at i iff r is
applicable in all steps j ≥ i of π.

An execution is logically fair iff each instance of a reasoning rule, i.e., either a
built-in, forward, or backward rule, that is permanently applicable at i is applied
at some j ≥ i. Similarly, an execution is replacement fair iff each instance of a
replacement rule that is permanently applicable at i is applied at some j ≥ i.
An execution is communication fair iff each instance of a communication rule
that is permanently applicable at i is applied at some j ≥ i. Note that an
applicable communication rule can lose applicability if the conclusion has been
reached already, which means that direct communication between each pair is
not required if the information can be exchanged over multiple hops by other
instantiations of the communication rules.

An execution π is locally fair iff it is logically fair and replacement fair. An
execution is globally fair iff it is locally fair and communication fair.

For a given execution π and node x, we denote by FOx (π) all derived facts
of the form O(F ) :F generated in π by the observation rule and by GCx (π) all
derived goals of the form C(G) :G generated in π by the control rule. We define
FO(π) as the union of FOx (π) over all nodes x, and define GC(π) correspondingly.

We now state some general properties of finite of infinite executions π =
c0, r0, c1, r1, c2, . . . that start with an initial configuration c0 where each node
has an empty set of facts and goals. Most of these properties are achieved inde-
pendent of the network conditions, i.e., independent of how much information
can be exchanged using the communication rules.

We first observe that the only source of non-monotonicity are the replacement
rules. It is particularly noteworthy that goals are not automatically removed once
they are solved, but they can remain active (until they are replaced), because
they may lead to further solutions (expressed as facts) due to additional reason-
ing and/or due to observed changes in the environment.
Monotonicity: If π does not apply any replacement rules then for all steps
i, j of π with i ≤ j we have Fx(ci) ⊆ Fx(cj) and Gx(ci) ⊆ Gx(cj) for every
cyber-node x.
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The distributed proof system maintains the following invariant property
which implies logical soundness relative to the underlying logic. Below we write
π|i to denote the prefix c0, r0, c1, r1, c2, . . . , ci of π. We also use K ` Q to denote
Φ(K) ` Q if Φ(K) is the set of atoms of K (i.e., ignoring derivations).
Soundness: For every step i of π, and for each f :F ∈ F(ci), we have FO(π|i),GC(π|i) `
f :F , which in turn implies FO(π|i) ` F .

Note that consistent with our intuitive interpretation of local state, nothing
is said about G(ci) here, which can (and typically will) include unsatisfiable and
contradictory goals.

With additonal assumptions we can also show logical completeness relative to
the underlying logic. These assumptions take the form of consistency conditions
between the theory and the subsumption and replacement orderings. First, we
say that subsumption is preserved iff Ki ≤ K ′i and K1, . . . ,Kn ` K implies that
there exists K ′ such that K ′1, . . . ,K

′
n ` K ′ and K ≤ K ′. We say that replacement

is restricted iff the following conditions hold: (1) if K ′1 .
+ K ′2 then K ′1 6� K ′2;

(2) if K ′1 .
+ K ′2 does not hold then K ′1 ≺ K ′2 and K ′1 6< K ′2 implies K1 ≺ K2

for some atomic K1,K2 with K1 .∗ K ′1 and K2 .∗ K ′2; (3) if K .+ K ′1,K
′
2

and K ≺ K ′2 and neither K ′1 .
+ K ′2 nor K ′2 .

+ K ′1 then K ′1 ≤ K ′2; and (4) if
K ′1 < K ′2 then K1 6� K2 for all atomic K1,K2 with K1 .

∗ K ′1 and K2 .
∗ K ′2.

To formulate that a computation has generated a derived fact, we say that
f :F is eventually covered in π iff there is an i such that there exists f ′ :F ′ ∈
F(ci) such that f :F ≤ f ′ :F ′. Note that we do not exclude the possibility that
the derived fact that is eventually covered is replaced by new facts or goals in
the future. For instance, this may be the case when a derived fact is not needed
any more (according to the replacement ordering) after it has been used in the
proof of a goal.
Completeness: Assume that subsumption is preserved, upwards well-founded,
and replacement is restricted. Let π be a logically fair and communication fair
execution, and let F ⊆ FO(π) and G ⊆ GC(π) such that each element in F ∪G is
maximal in FO(π)∪GC(π) w.r.t. the replacement ordering. If F `f F then there
exists a derived fact f :F such that F ` f :F , which in turn implies that f :F
is eventually covered in π. If G ∈ G and F `b σ(G) then there exists a derived
fact f :σ(G) such that F ,G ` f :σ(G), which in turn implies that f :σ(G) is
eventually covered in π.

If the network conditions are not sufficient to achieve communication fairness,
we can still achieve a local version of this property (see appendix), which could
also be formulated more realistically for subsets of cyber-physical nodes.

It is noteworthy that the completeness result is the only place where addi-
tional restrictions on the orderings are needed. In particular, soundness (and also
the following termination property) does not depend on any such conditions.

Since the reasoning rules are a possible source of nontermination, Ω must
be suitably restricted in practice. We define an execution π as terminating iff
it is finite or has a finite prefix after which only the sleep rule is applied. A
practically useful and sufficient condition for termination will be formulated
below. Different from facts, a goal can have variables and hence can potentially
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represent an infinite set of solutions. Hence, we define goal G as finitary w.r.t. a
set F of (derived) facts iff if has a finite set of solutions w.r.t. F , where a solution
w.r.t. F is any fact σ(G) such that F ` σ(G). We say that a set F ∪G of derived
facts and goals has the finite closure property iff there exists a set K of derived
atoms such that F ∪ G ⊆ K and (K,≤), defined subsequently, is a well-founded
quasi-order, and for each induced equivalence class K′ then projection on atoms
at(K′) is finite, where at(d :P ) is defined as P .

Identifying goals that are equivalent modulo consistent renaming of variables,
we inductively define the partial order (K,≤) such that for all (not necessarily
ground) substitutions σ the following conditions hold:
(0) If g :G ∈ K is a built-in goal then Bσ(g) :σ(G) ∈ K and Bσ(g) :σ(G) ≤ g :G.
(1) If l :P1, . . . , Pn ⇒ Q in Ωf and K ` f1 :σ(P1), . . . , fn :σ(Pn), then lσ(f1, . . . ,
fn) :σ(Q) ∈ K, and if n ≥ 1 we require that fi :σ(Pi) ∈ K implies lσ(f1, . . . , fn) :σ(Q) ≤
fi :σ(Pi).
(2) If l :P1, . . . , Pn ⇒ Q in Ωf with a goal σ(Pj) and K ` f1 :σ(P1), . . . , fj−1 :
σ(Pj−1), then l−1

σ (f1, . . . , fj−1) :σ(Pj) ∈ K, and if j ≥ 2 we require that fi :σ(Pi) ∈
K with i < j implies l−1

σ (f1, . . . , fj−1) :σ(Pj) ≤ fi :σ(Pi).
(3) If l :P1, . . . , Pn ⇒ Q in Ωb and K ` f1 :σ(P1), . . . , fn :σ(Pn), and g′ :G′ ∈
K with σ(Q) = σ(G′), then lσ(f1, . . . , fn; g′) :σ(Q) ∈ K, and we require that
fi :σ(Pi) ∈ K implies lσ(f1, . . . , fn; g′) :σ(Q) ≤ fi :σ(Pi).
(4) If l :P1, . . . , Pn ⇒ Q in Ωb with a goal σ(Pj) and K ` f1 :σ(P1), . . . , fj−1

:σ(Pj−1), and g′ :G′ ∈ K with σ(Q) = σ(G′), then l−1
σ (f1, . . . , fj−1; g′) :σ(Pj) ∈

K, and we require either that l−1
σ (f1, . . . , fj−1; g′) :σ(Pj) ≤ g′ :G′, or that fi :σ(Pi) ∈

K with i < j implies l−1
σ (f1, . . . , fj−1; g′) :σ(Pj) ≤ fi :σ(Pi).

Intuitively, the set K overapproximates the set of all derived facts and goals
that could be generated in response to an element from this set, where condi-
tion (0) corresponds to the built-in rule, conditions (1) and (2) correspond to
the forward rules (which can be applied to solutions of goals), and (3) and (4)
correspond to the backward rules. It is noteworthy that none of these conditions
requires a strict ordering to ensure termination, because the proof rules cannot
generate facts or goals that are already present. We should also note that K may
be infinite, but due to the use of most general substitutions σ in the proof rules,
only a finite subset of K will be generated in any actual execution.

We call an execution π closed iff no control or observation rules are applied
in π. We say that π is eventually closed iff a suffix of π is a closed execution.
This property formalizes a test that will enable us to observe the result of the
reasoning process, which normally could be interrupted by new facts and goals
from the environment or from the user.
Termination: If π is an eventually closed and FO(π) ∪ GC(π) has the finite
closure property then π is terminating.

It is noteworthy that global termination does not need any restictions on
the subsumption and replacement orderings, because the replacement rules can
never be a cause of nontermination. In fact, in a terminating system only finitely
many derived facts/goals can be generated, and hence replacement can only be
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applied finitely often. Furthermore, once a derived fact/goal is replaced it can
never be regenerated due to the freshness conditions in the proof rules.

In a globally fair and terminating system, the replacement and communica-
tion rules will eventually ensure that all cyber-nodes will reach the same logical
state (disregarding time and name). The same property can be formulated mod-
ulo subsumption equivalence, if we do not identify subsumption equivalent units
of knowledge.
Confluence: If π is a globally fair and terminating execution then π is confluent,
i.e., there exists a suffix π′ such that Fx(c) = Fy(c) and Gx(c) = Gy(c) for all
cyber-nodes x, y and c ∈ π′.

Global termination expresses an important logical termination condition that
excludes nontermination due to an illformed declarative specification for a given
set of potential facts and goals. Typical cyber-physical systems are however
nonterminating, because they are part of a dynamic environment with potentially
changing requirements.

The proof system is specifically designed to enable a distributed implementa-
tion using randomization techniques that can be used to satisfy the local fairness
conditions with probability one. Among other sources, our approach is inspired
by the use of randomized backtracking [13] that has been proposed for imple-
mentation of Prolog on a parallel architecture. At several places in the proof
system nondeterminism at a given node x can be implemented by a randomized
choice. First, there is the selection of clauses in the four reasoning rules. Second,
there is the selection of facts and/or goals to which the clause is applied. Third,
there is the choice of the substitution and hence solution in the rule for built-ins.
And finally, there is the sleep rule, which can be implemented by random waiting
using a suitable distribution to make the reasoning process adaptive to resource
constraints and network conditions.

The idea of applying declarative techniques in communication and network-
ing is not new. They have been, for instance, used for networking policies and
protocols in the context of security, routing, or dynamic spectrum access. Specif-
ically, [5] develops a very interesting approach to declarative sensor networks
based on Datalog that can transmit generated facts to specific neighbors and
can also utilize knowledge about neighbors to specify e.g., routing algorithms.
We have presented first steps toward combining forward and backward reason-
ing in a fully distributed fashion with knowledge that is transparently shared. A
fixed or known neighborhood is not assumed in our more abstract approach, and
the use and dissemination of both facts and goals aims at general cyber-physcial
systems with distributed actuation, and hence leads us beyond sensor networks.

The proof system that we have presented in this paper attempts to focus
on a few core ideas, but the work can be generalized in many directions. One
step is the generalization of the underlying logic, the incorporation of equational
features like in Maude [6] being one example. Furthermore, we have presented
proof rules with simplified forward and backward reasoning rules that proceed
according to the ordering of atoms in the conditions of a Horn clause, but more
general proof strategies are possible that can potentially lead to a higher degree
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of parallelism. There are also various optimizations that are conceivable. For
instance, solved or unsolved goals that cannot generate further solutions are not
removed in this paper. The use of an expiration time is a possible approach.
Furthermore, since several conflicting goals can be active at the same time,
strategies guided by priorization and more generally distributed optimization
techniques need to be developed. In fact, the logical framework may be thought
of a means of expressing the space of logically sound behaviours, which can be
further constrainted by more quantitative techniques. Finally, the semantics in
this paper is an interleaving semantics, whereas a true concurrency semantics,
where the concurrent application of proofs rules is represented explicitly, is more
appropriate.

4 Sample Application

To test our ideas we will focus on a specific application that we call self-organizing
mobile robots as a special case of controllable networks that captures many inter-
esting aspects of NCPS [7]. Consider a self-organizing network of mobile robots
deployed in a building, e.g., to achieve situation awareness during an emergency.
This is a challenging test case for various reasons. The network is highly dynamic,
and temporary disconnections or failures are part of the normal operation and
need to be compensated for by real-world actions. Parameters such as a robot’s
position can be controlled only indirectly via actions, and costs of changes (e.g.,
energy consumption) cannot be neglected.

As a concrete sample mission, we chose a primary goal such as delivery of the
collected information (e.g., images) from a particular area to a specific node with
some time constraints. We assume that each room in the building is equipped
with acoustic sensors or motion sensors and the goal is to collect information in
areas where noise or motion is detected. The mobile robots have camera devices
that can capture a fullsight (i.e., 360-degree view) snapshot of a target area. The
raw image may be directly sent to other nodes if the network supports it, or it
can be preprocessed, e.g., by applying some form of compression or abstraction,
and feature extraction (possibly at a different more powerful node), and then
communicated to other nodes.

For the specific example, we assume that the primary goal is injected into
the network by the user at a fixed root node around which initially the robots
are randomly clustered. Goals and facts are opportunistically shared whenever
connectivity exists. Each robot can compute its local solution based on its lo-
cal knowledge. The solution assigns an approximate target region as a subgoal
to each robot, which then starts to move in order to locally realize the goal.
The distributed reasoning continues so that the local solutions are continuously
recomputed and movements are adjusted correspondingly. In addition to the
randomness due to network and environment, randomization techniques, e.g.,
random selection of clauses and goals, and random waiting, are used to desyn-
chronize the robots. The movements are constrained by the floorplan, which
could be opportunistically updated and shared, but is simply assumed to be
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given as part of the logical theory, which is available at all nodes, in our sim-
ple example. The network connectivity model can also be exploited to suppress
position changes that would lead to disconnections. Still, temporary disruptions
are possible due to system perturbations, failures, and uncertainty caused by
delayed/incomplete knowledge.

4.1 Simulation Setup

Knowledge	  
Manager	  

Reasoner	  

Knowledge	  
Manager	  

Knowledge	  
Manager	  

Reasoner	  

Reasoner	  

Opportunis4c	  
Knowledge	  
Sharing	  

Cyber-‐fact	  

Cyber-‐	  
fact	  

Cyber-‐fact	  

Fact	  or	  	  
Subgoal	  

Fact	  or	  Subgoal	  

Fact	  or	  	  
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Cyber-‐goal	  

Cyber-‐goal	  
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goal	  

Fact	  or	  Goal	  

Fact	  or	  	  
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Camera)	  
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(e.g.,	  
Noise,	  
Mo4on)	  
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Posi4oning,	  
Camera)	  

Fig. 2. Distributed Knowledge Sharing
between two Robots and a Sensor in an
Instrumented Cyber-Space

Figure 2 shows knowledge sharing be-
tween three cyber-nodes and their de-
vices. Each node is equipped with a
knowledge manager, i.e., an implemen-
tation of the distributed knowledge-
sharing model, a reasoner, i.e., an
implementation of our logical frame-
work, and attached devices that can
be regarded as subnodes exhibiting
a declarative knowledge-based inter-
face. The devices are using the dis-
tributed knowledge-sharing model but
are implemented using conventional
code (simulation code in our case), i.e.,
outside the logical framework. Figure 2
contains two mobile robots, each with
a positioning device and a camera device. It also contains a fixed sensor node,
which can have attached noise or motion sensors or both. In our simulation, we
experimented with one to five robots and used a root node that is similar to a
robot but assumed to be at a fixed location and serves as a user access point to
the cyber-physical system.

By definition, cyber-facts/goals have a form pc(t, e1, ...en). However, in our
example we leave the creation time t implicit in the case of cyber-goals, because
it is not used in the theory.

To illustrate a simple operation, assume now that a user injects a goal such
as TakeSnapshot(tT , tT + ∆tsd, a, I) with tT = 0.0 and ∆tsd = 20.0 into the
root node. tT and ∆tsd indicate the earliest time and the deadline to take the
snapshot. The reasoner cannot solve this goal by means of the logical theory, but
the local camera device may find that it can handle TakeSnapshot(0.0, 20.0, a, I)
by taking an image of the area a in the time interval 0.0, ..., 20.0. As a result it
generates a fact Snapshot(10.0, a, i), indicating that image i was taken at time
10.0 in area a, which is added to the local knowledge base and can in turn lead
to further reasoning in the logical theory.

Knowledge (i.e., facts and goals) is opportunistically disseminated whenever
connectivity exists among robots. In our experiments, we use an abstract topo-
logical mobility model instead of a model with actual coordinates. We assume
that rooms in our scenario correspond to regions exhibiting similar connectivity,
and the network model is defined so that links are up between robots when they
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reside in the same or adjacent rooms. For our experiments, we use a disruption-
tolerant networking simulator [20] that abstracts from the underlying networking
stack. It uses a simple graph-based dynamic network model, where each link has
a state, e.g., up or down, and is characterized by its abstract features such as
bandwidth, latency, and error rate. The floor plan restricts the mobility and will
be reflected by a collection of adjacency facts as part of the theory.

4.2 Declarative Problem Formulation
Figure 3 shows the logical theory that is used to declaratively represent our
sample application. Recall that a user wants the system to take an image when-
ever some trigger condition occurs, process it, and deliver it at the root node.
The trigger conditions are specified as forward clauses F1 and F2, which can be
applied at any time when the conditions are met. Like all knowledge, facts are
disseminated in the network, hence compensating for heterogeneity in the node
capabilities and other limitations, e.g., due to resources and sensor failures.

Different from forward clauses, backward clauses are evaluated only when
a user or the reasoner injects a goal (or a new subgoal) that unifies with the
conclusion of the clause. For example, the backward clause B1 is triggered by an
Interest goal and generates a corresponding fact when successfully applied. In
the case of B2 and B3, the reasoner attempts to check if the required image is
delivered to the root node. If a corresponding Delivered fact is available, then
the Deliver goal is satisfied by applying B2. Otherwise, B3 needs to be used to
check the current position of the root node (via the Position fact) and to guide
the robot toward the area where the root node is positioned (via the MoveTo
subgoal). B4-B6 specify how we construct an image I. When one of trigger
conditions, F1 or F2, is met, a robot needs to be located at the specific area
(the MoveTo predicate should be satisfied for this purpose) to take a snapshot.
Only after these two subgoals, Trigger and MoveTo in B6, are satisfied, the
TakeSnapshot goal can be realized by the device, which generates Snapshot as
a new fact. Now, a fact RawImage can be generated as specified by B6 and B7.

The clauses B4 and B5 show the processing of a captured image, namely,
compression and feature extraction. For example, in the condition of B5 the
Compress function takes an image I and assigns the compressed image to I ′.
Raw images are implemented as built-in objects with attributes such as time
and area information, and image processing functions such as Compress and
Extract do not alter that information.

The Adjacent predicate is used to represent the topological floor plan, which
in turn determines the network connectivity among robots. Adjacent(a, b) means
areas a and b are adjacent rooms. In our simulation setup, communication is pos-
sible when robots are located in the same or in two adjacent areas. The forward
clause F3 captures the assumption that adjacency, and hence connectivity, is
symmetric. The clause B9 also uses the Adjacent predicate to plan the robot
movement, since a Move goal can be realized by the robot’s positioning device
only if the room is adjacent.

The MoveTo goal will generate a new Position fact when it is realized. For
example, MoveTo(TI , TT , ND, 0, TT + ∆tsd, R,A) is used in the condition as a
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Forward Clauses:

F1 :Noise(T,A)⇒ Trigger(T,A).
F2 :Motion(T,A)⇒ Trigger(T,A).
F3 :Adjacent(A,B)⇒ Adjacent(B,A).

Backward Clauses:

B1 : Interest(TI , I, R)⇐ Result(TI , TT , 0, I), Deliver(TI , TT , 1, I, R).

B2 :Deliver(TI , TT , ND, I, R)⇐ Delivered(TI , TT , ND, I, R).
B3 :Deliver(TI , TT , ND, I, R)⇐

Position(TP , R,A), Position(T ′P , R
′, A′), R′ 6= R,

MoveTo(TI , TT , ND, 0,∞, R′, A), Deliver(TI , TT , ND, I, R).

B4 :Result(TI , TT , ND, I
′)⇐ CompImage(TI , TT , ND, I), I ′ = Extract(I).

B5 :CompImage(TI , TT , ND, I
′)⇐ RawImage(TI , TT , ND, I), I ′ = Compress(I).

B6 :RawImage(TI , TT , ND, I)⇐ Trigger(TT , A), TI ≤ TT ,
MoveTo(TI , TT , ND, 0, TT +∆tsd, R,A),
TakeSnapshot(TI , TT , ND, TT +∆tsd, A, I).

B7 :TakeSnapshot(TI , TT , ND, D,A, I)⇐
Snapshot(TI , TT , ND, TS , A, I), TT ≤ TS , TS ≤ D.

B8 :MoveTo(TI , TT , ND,W
′, D,R,B)⇐ Position(TP , R,B), TP ≤ D.

B9 :MoveTo(TI , TT , ND,W
′, D,R,B)⇐ Adjacent(A,B),W ′ > −bw,W = W ′ − 1,

MoveTo(TI , TT , ND,W,D,R,A),Move(TI , TT , ND,W
′, D,R,A,B).

Replacement Ordering: (f denotes a fact and g a goal and x denotes either)

O1 : f :Position(tP , r, . . .) ≺ f :Position(t′P , r, . . .) if tP < t′P .
O2 :x :X(tI , . . .) ≺ g : Interest(t′I , . . .) if tI < t′I .
O3 :x :X(tI , tT , nD, . . .) ≺ f :Result(tI , tT , nD, . . .) if x :X 6= f :Result.
O4 :x :X(tI , tD, nD, . . .) ≺ f :Deliver(tI , tD, nD, . . .) if x :X 6= f :Deliver.

Variables: T : time, D: snapshot deadline, A and B: area, R: robot,
I: image or derived information, N : identifier, W : weight

Constants: ∆tsd: relative snapshot deadline (max. delay from trigger event),
bw: bound for weight (diameter of the floor plan)

Fig. 3. Logical Theory for Distributed Surveilance by a Team of Mobile Robots

subgoal of B6, and Position(0.0, r, a) is a fact that the local device of robot r
provides as its initial position. The clause B9 is of particular interest, since it
initiates the position change of a robot. As we see from B8, if the current position
of a robot is equal to its destination, then the MoveTo predicate is already
satisfied. Otherwise, a robot plans to move toward the destination as specified
in B9. We use W and the bound bw to limit the depth of the MoveTo subgoal
generation. The value W is also used to represent weighted goals to enable
locally weight-adaptive goal selection, a first step toward combining distributed
reasoning and optimization. When a positioning device has a local choice among
several possible MoveTo goals, it favors a MoveTo goal with a higher weight
W since higher weight indicates a goal closer to the final destination, 0 being
the maximum. Generally, other factors can influence the local goal selection of
cyber-physical devices, e.g., in this case, since R is unbound, robots closer to an
area with sufficient resources may be more likely to select a corresponding goal
if it is easier for them to realize.
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Atom Type Realization Meaning

Adjacent(a, b) Fact Theory areas a and b are adjacent
(represents floorplan)

Noise(t, a) Cyber-Fact Sensor noise is detected
in the area a at time t

Motion(t, a) Cyber-Fact Sensor motion is detected
in the area a at time t

T rigger(t, a) Fact Theory triggering condition is met
in the area a at time t

Position(t, r, a) Cyber-Fact Positioning robot r is positioned
in the area a at time t

Interest(tI , I, r) Cyber-Goal Theory user at root node r is
interested in information I

Result(tI , tT , nD, I) Goal Theory an feature extraction I
needs to be computed

CompImage(tI , tT , nD, I) Goal Theory an abstract image I
needs to be computed

RawImage(tI , tT , nD, I) Goal Theory an image I
needs to be generated

MoveTo(tI , tT , nD, w, t, R, b) Goal Theory robot R needs to move to
the area b until time t

Move(tI , tT , nD, w, t, R, a, b) Cyber-Goal Positioning robot R needs to move
from area a to area b
until time t

TakeSnapshot(tI , tT , nD, t, a, I) Goal Theory a snapshot I needs to
be taken in area a
between time tT , ..., t

TakeSnapshot(tI , tT , nD, t, a, I) Cyber-Goal Camera a snapshot I needs to
be taken in area a
between time tT , ..., t

Snapshot(tI , tT , nD, ts, a, i) Cyber-Fact Camera a snapshot i is taken in
the area a at time ts

Deliver(tI , tT , nD, i, r) Cyber-Goal Root Node request information i
to be delivered to user
at root node r

Delivered(tI , tT , nD, i, r) Cyber-Fact Root Node information i has
been delivered to user
at root node r

Table 1. Interpretation of Cyber-Predicates and Theory Predicates

In addition to forward and backward clauses, the replacement ordering is
specified in Figure 3. Under O1 we specify that an old Position fact of a robot
is replaced by a new Position fact based on their timestamps. In O2, an old
Interest goal becomes obsolete in view of a new Interest goal based on the time
tI associated with the Interest goal. Under O3 and O4, we specify orderings
so that a fact can cancel goals and facts (except itself) that have led to the
generation of such a fact. To avoid canceling goals and facts that are not related
to a specific fact, we assume that tI , tT , nD can serve as unique identifiers.
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Specifically, tI and tT are intended to distinguish different interest goals and
trigger conditions, respectively. We define tI and tT as the time when an interest
goal is injected (B1) and when a trigger condition occurs (B6), respectively. The
number nD, which can be either 0 or 1, distinguishes between Result andDeliver
stages in B1, and their corresponding subgoals and related facts.

4.3 Sketch of a Distributed Execution

Figure 4 shows duality of two kinds of knowledge: facts and goals. Facts can be
derived from observations or by applying forward clauses. Goals can be injected
by a user or refined by applying backward clauses. Forward reasoning derives
facts from known facts. Backward reasoning refines a goal to a number of sub-
goals. Facts and goals are both disseminated in the network as shown in Figure
2. A goal can be matched with a fact anywhere in the network as illustrated with
dotted lines in Figure 4. For example, the goal Trigger(T,A) can be matched
with the fact Trigger(0.0, a) as illustrated in Figure 5.

Goal	  

Fact	  

Match	  

Backward	  
Reasoning	  

Forward	  
Reasoning	  

Fig. 4. Matching between Goals and Facts

Interest(I,r)	  

Noise(0.0,a)	  

Result(I)	  

CompImage(I)	  

RawImage(I)	  

Trigger(T,A)	   MoveTo(0.0+Δt,R,A)	  

TakeSnapshot(0.0+Δt,R,A)	  

Deliver(I,r)	  

Trigger(0.0,a)	  

PosiDon(5.0,x,a)	  

MoveTo(0.0+Δt,R,B)	  

Snapshot(10.0,x,a)	  

Move(0.0+Δt,R,B,A)	  

Delivered(i,r)	  

I’=Extract(I)	  

I’=Compress(I)	  

….	  

PosiDon(0.0,x,b)	  

Fig. 5. Example of Distributed Execution

Figure 5 shows a more detailed view of a possible execution of the theory
from Figure 3. For brevity, we have omitted some identifier arguments (e.g.,
TI ,TT ,ND) in the figure and in the following description unless they are needed.
At the top of Figure 5, the user injects a cyber-goal Interest(I, r) at the root
node r. At the bottom, a Noise cyber-fact (representing an observation) leads
to a fact Trigger(0.0, a) by forward reasoning. In our framework, conditions are
processed from left to right as we explained in Section 3. For example, the clause
B1 in Figure 3 applied to the goal Interest(I, r) attempts to solve Result(I) be-
fore Deliver(I, r), and Result(I) fails at first, since a fact Result(i) does not ex-
ist yet. The local reasoner feeds Result(I) as a new subgoal into the local knowl-
edge base. The knowledge base contains two goals at this point, Interest(I, r)
and Result(I). Assume that Result(I) is randomly selected from the local knowl-
edge base. Subsequently, CompImage(I) and then RawImage(I) are fed into
the knowledge base as new subgoals.

Clause B6 for RawImage(I) has three subgoals involving Trigger, MoveTo,
and TakeSnapshot. The leftmost subgoal can be finally matched with a fact
Trigger(0.0, a) that is derived from forward reasoning as depicted at the bottom
of Figure 5. Next, the MoveTo goal is further refined by applying B8 or B9. In
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case the root node r is positioned in the area a, it is able to detect its position
and generate Position(0.0, r, a) as a fact. Otherwise, backward clause B9 is
used to plan for movement toward the desired area. The cyber-goal Move(w, t+
∆t,R, a, b) is realized by the local positioning device of a robot x when its current
position is a and current time is before the deadline t. As a result, a new cyber-
fact such as Position(5.0, x, a) will be generated if the robot x indeed manages
to move to a at the time 5.0 assuming a deadline t + ∆t = 20.0. In a similar
manner, the local camera device of robot x could take a snapshot of the area
and have Snapshot(10.0, a, i) generated to realize TakeSnapshot(t, a, I), which
eventually leads to the satisfaction of the RawImage(I) goal.

The goals CompImage(I) and Result(I) can in turn be solved by the robot
x, since it has a RawImage(i) available as a fact in its local knowledge base.
Alternatively, thanks to the fuly distributed nature of the reasoning process,
Compress or Extract can be solved at other nodes (e.g., depending on resource
availability) including the root node r, because RawImage(i), CompImage(i),
and Result(i) are facts and disseminated through the network. The backward
clause B3 is used to steer a robot toward the root node r unless backward clause
B2 can be applied because the delivery has already been accomplished by means
of other nodes or the robot can directly satisfy the delivery to the user (or to a
higher-layer application). In the end, Interest(I, r) is selected and satisfied by
generating a fact Delivered(i, r) at the root node r.

4.4 Discussion and Variations
The distributed nature of the framework improves the robustness of the system
under intended or unintended perturbations. For instance, the system continues
to operate correctly, i.e., within the scope of the logical theory, even after a
human disables or replaces a robot or moves it to a different location. Complete
failure of robots or some of their devices is covered as well. If the system is not
already heterogeneous from the beginning, partial failures or resource limitations
(e.g., battery charge of a robot) will eventually lead to a heterogeneous system
which is why any assumption of homogeneity is avoided.

We have also experimented with several variations of the running example.
For instance, the robot movement can be further constrained. To this end, we
can add one of the subgoals MovableFrom(T,R,A), MovableTo(T,R,B), or
Movable(T,R) in the backward clause B9 before the Move predicate to check
whether a robot R can move away from an area A at time T (MovableFrom),
to an area A at time T (MovableTo), or simply move at time T without refering
to an area (Movable).

Now, a coverage constraint can be specified as

Position(T,R,A), Position(T ′, R′, A), R 6= R′, T ′′ − T ≤ bp, T ′′ − T ′ ≤ bp
⇒MovableFrom(T ′′, R,A).

where bp is a sufficiently small delay bound for the position update from other
robots to ensure that the knowledge is not obsolete. With this clause, an ad-
ditional robot needs to exist within the same area to formulate that the area
should not be left uncovered.
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In a similar manner, a connectivity constraint can be specified as

Position(T ′, R′, B), R 6= R′, T ′′ − T ′ ≤ bp
⇒MovableTo(T ′′, R,B).

Position(T ′, R′, A), Adjacent(A,B), R 6= R′, T ′′ − T ′ ≤ bp
⇒MovableTo(T ′′, R,B).

With this clause, a robot only can move to certain area if the move is not
expected not break the robot’s connectivity to other robots. The robot R′ at the
area C will be connected with robot R at the area B after the move.

Another interesting example can be an energy constraint such as

Energy(T,R,E), E ≥ e⇒Movable(T,R)

that can check the residual an energy level of a robot to make sure it has a
sufficient amount of energy to change its position.

Our simple example assumes that the floor plan is given in advance. However,
generalizing techniques such as SLAM (simultaneous localization and mapping)
[4], which are well established in robotics, models could continuously adapt to the
facts derived from observations, specifically the floor plan and the connectivity
model. In the case of the floor plan, observations could be simply added as facts
and SLAM could benefit from consequences generated based on a background
theory. In the case of connectivity, the model parameters could be adapted to
match the facts generated by neighbor discovery or even (distributed) signal
strength measurements if available. SLAM could be generalized to a distributed
mapping of signal strength or more generally the wireless spectrum for the pur-
pose of network optimization [12]. An interesting direction would be to explore
how such algorithms can be developed in a declarative framework.

5 Related Work

The idea of applying declarative techniques in communication and networking is
not new. A large body of work exists in the areas of specification, analysis, and
synthesis of networking policies and protocols, e.g., in the context of security,
routing, or dynamic spectrum access.

Declarative querying of sensor networks has been studied through several
approaches, for instance in [22], which composes services on the fly and in a
goal-driven fashion using a concept of semantic streams. Declarative techniques
to specify destinations have been used in disruption-tolerant networking [2]. A
variant of Datalog has been applied to the declarative specification of peer-to-
peer protocols in the P2 system [15]. Based on this work, [5] develops a very
interesting approach to declarative sensor networks that can transmit generated
facts to specific neighbors and can also utilize knowledge about neighbors to
specify, e.g., routing algorithms. The promising idea of providing an abstraction
that views a system as a single asset (an ensemble) rather then programming its
individual components has been explored in several papers. Most interesting, the
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approach adapted in Meld [1] extends the ideas from declarative sensor networks
to modular robots, i.e., ensembles of robots with inter-robot communication lim-
ited to immediate neighbors. As an example, the movement of a composite robot
emerges as a result of the coordinated interaction between its homogeneous robot
modules. An earlier functional approach to programming sensor networks is the
Regiment macro-programming system [16], which uses a stream-based data-flow
language. Most of the work focuses not on the theoretical foundations, but on
the efficient compilation into a conventional programming language, which is
one possible approach for practical deployment. Another approach, which we
sometimes refer to as embedded formal methods, is the use of an effient reasoning
engine in embedded systems such as software-defined radios [8] or routers [20]
as explored in the context of disruption-tolerant networking.

In this paper, we have presented first steps toward combining forward and
backward reasoning in a fully distributed fashion with knowledge that is trans-
parently shared. A fixed or known neighborhood is not assumed in our more
abstract approach, and the use and dissemination of both facts and goals aims
at general cyber-physical systems with distributed actuation, and hence leads
us beyond sensor networks, in particular to dynamic sensor/actuator networks
that are, unlike ensembles, inherently heterogeneous.

6 Conclusions and Future Work

We have presented a distributed computational and logical foundation for declar-
ative control of NCPS. Our approach is based on distributed knowledge sharing
and supports a broad spectrum of operations between autonomy and cooperation
with minimum assumptions on network connectivity. Specifically, we developed
a distributed inference system based on Horn clause logic with built-ins and
cyber-predicates that can capture the interaction with the physical world. In
the underlying distributed computing model, facts and goals are represented
as knowledge that can be shared opportunistically and guide the distributed
reasoning process. The duality between facts and goals extends to the proof
system, which treats forward and backward reasoning on an equal footing. In
our logical framework, explicit derivations are maintained for both, facts and
goals, generalizing the concept of proof objects, which traditionally only serve
as witnesses for theorems. Essential properties of our logical framework, such
as soundness, completeness, and termination, have been established under very
general conditions.

A key feature of our distributed logical framework is its dynamic and inter-
active nature, meaning that facts represent observations, and goals can lead to
changes in the environment that will manifest themselves as new facts flowing
into the system. Whether an original local goal can be solved is often secondary,
because the combined effect of a set of local goals on the cyber-physical system
and its nondeterministic dynamics can lead to solutions of higher-level goals even
without requiring solutions of all lower levels. To cope with system perturbations
and unexpected failures, it is essential that local goals are not eliminated as soon

24



as they are satisfied, because their main purpose, namely steering the system
toward the satisfaction of a high-level property, may not have been achieved yet.
Only after certain high-level goals are reached, auxiliary goals can be eliminated
so that they do not have to comptete with new goals that steer the system
toward the next high-level objective. Real-world systems are more complex, be-
cause such processes take place concurrently at multiple levels of abstraction
and at different time scales. Our combination of a logic with an underlying par-
tial order facilitates a new declarative specification style, which is particularly
suitable for open distributed systems that can interact with a cooperative or
uncooperative environment.

For experimentation, we have implemented a prototype of our logical frame-
work that heavily relies on randomization techniques to achieve decoupling and
implement locally fair nondeterminism that is used in our proof system to cover a
broad range of possible implementations with different reasoning strategies. Our
experiments with the simulation of an abstract networked multirobot system are
a snapshot of ongoing work, but illustrate the application and the features of our
framework in a simplified but nontrivial setting, and indicate possible directions
for future work.

For realistic experiments, we plan to make use of existing robotic abstrac-
tion layers, such as the open-source Player/Stage/Gazebo Project [19]. Experi-
ments in a real-world multirobot testbed similar to that of SRI’s Centibots [17]
and Commbots [10] projects are another possible direction. Beyond multirobot
teams, we see opportunities to apply (extensions of) our framework to other
unmanned autonomous vehicles, networks of pico-satellites [21], instrumented
smart spaces [14], ad hoc social networking in a cyber-physical (instrumented)
world, and next-generation adaptive networks and cognitive radios [11], where
the devices exhibit a high degree of flexibility and the network can be morphed
to adapt to user objectives and policies. Clearly, a lot of work remains ahead, be-
cause many of these applications require the combination of distributed reasoning
with distributed optimization, and the use of weighted goals in our example is
only a very first step in this direction.
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A Proofs

Definition 1. Given a derived fact or goal, K, we define Base(K) as follows:
Base(K) = {K} if K is O(F ) :F or C(G) :G.
Base(Bσ(g) :G) is Base(g :G′) where G′ is uniquely determined by g.
Base(L(d1, ..., dk) :Q) = Base(d1 :P1) ∪ . . . ∪Base(dk :Pk),
where L is any one of the derivation constructors and P1, . . . , Pk are uniquely
determined by d1, . . . , dk.

Lemma 1. The following basic statements hold:
(1) Base(K) ` K (by induction on construction of K).
(2) K ` K implies K, K′ ` K.
(3) K ` K implies Base(K) ⊆ Base(K).

Lemma 2 (Subderivations). For any execution π, if K ∈ F(π) ∪ G(π) then
all subderivations of K are in F(π) ∪ G(π).

Proof. (1) Case K = f :F . (a) Case f = O(F ) ∈ F . K has no subderivations
(b) Case f = lσ(f1, ..., fn[, g]) (forward rule without g, backward rule with g).
Then f :F was introduced by Forward1 or Backward1 with l :P1, . . . , Pn ⇒ Q in
Ω, F = σ(Q) and σ(Q) = σ(G). Thus for 1 ≤ k ≤ n, fk :Fk ∈ F(π) at the point
of rule application and if l is a backward clause, then g :G ∈ G(π) at that point.
(c) Case f = Bσ(g) with F = σ(G). Then K was introduced by the Built-in rule
and g :G ∈ G(π) at the point of rule application.
(2) CaseK = g :G. (a) Case g = C(G). ThenK has not subderivations. (b) Case
g = l−1

σ (f1, . . . , fj−1[, g′]). Then K was introduced by Forward2 or Backward2 and
thus for 1 ≤ k < j, fk :Fk ∈ F(π) at the point of rule application, and if l is a
backward clause then g′ :G′ ∈ G(π) at that point (and σ(Q) = σ(G)).

Definition 2 (Horn clause proof and provability). Given a theory Ω, we
inductively define Horn clause proof objects p and the relation p proves F ` Q
as follows:
(1) ∗ proves F ` G if G is a solution to a builtin goal.
(2) O(F ) proves F ` F if F ∈ F .
(3) lσ(p1, . . . , pn) proves F ` σ(Q) if l :P1, . . . , Pn ⇒ Q in Ω and pi proves
F ` σ(Pi) for i ∈ 1, . . . , n.

For a Horn clause proof p, σ(p) is defined by composing σ with the substitution
used in each rule application. Clearly, if p proves F ` P , where P is any atom,
not necessarily ground, then σ(p)provesF ` σ(P ),

Note that Horn clause proofs are independent of the partition into forward
and backward clauses.

Lemma 3 (Derivability implies provability).
If f :F is a derived fact then Φ(Base(f :F )) ` F .

Proof. Let F = Φ(Base(f :F )). We construct the proof p.
(1) Case Bσ(g) :σ(G). Then p is ∗ by definition since σ must be a solution for
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G. (2) Case O(F ) :F . Then p is O(F ). (3) Case lσ(f1, . . . , fn, [g′]) :σ(Q), with
l :P1, . . . , Pn ⇒ Q in Ω By IH we have pi proves F ` fi :σ(Pi), 1 ≤ i ≤ n thus p
is lσ(p1, . . . , pn), applying clause l. ut

Definition 3 (Grounded proof). A Horn clause proof p of F ` F is grounded
if F is a fact (ground atom) and all clauses used in p are fully instantiated
(ground), i.e., if p = lσ(p1, . . . , pn), l :P1, . . . , Pn ⇒ Q in Ω, then σ(Pi) is a
ground atom for 1 ≤ i ≤ n and each pi proving F ` σ(Pi) is similarly grounded.

Lemma 4 (Horn clause proofs are groundable). If p is a Horn clause proof
of F ` F , as above then there is some grounded p! that is a Horn clause proof
of F ` F .

Proof. (1) If p is ∗ or O(F ) we are done. (2) If p is lσ(p1, . . . , pn) with l :P1, . . . , Pn ⇒
Q in Ω, (and σ(Q) = F ), let σ′ map the remaining variables of σ(Pi) to ground
terms (since variables are unptyped, 0 will do). By induction let pi! be grounded
proofs of F ` σ′(σ(Pi)). It follows that lσ′◦σ(p1!, . . . , pn!) ` F , where ◦ is com-
position of substitutions. ut

Lemma 5 (Provability implies derivability). Let F ,G be atomic derived
facts and goals, respectively. (1) Let p be any grounded Horn clause proof of
Φ(F) `f F . Then there exists a derived fact f :F such that F ` f :F .
(2) Let p be any grounded Horn clause proof of Φ(F) `b F where F = σ(G) for
some g such that g :G ∈ G. Then there exists a derived fact f :σ(G) such that
F ,G ` f :σ(G)

Proof. Note that, generally, if F ,G ` f :F and Base(G) is empty, then F `
f :F . We now prove the lemma by induction on the construction of p. (1) As-
sume p is lσ(p1, . . . , pn) where pk proves σ(Pk), 1 ≤ k ≤ n, F = σ(Q), and
l :P1, . . . , Pn ⇒ Q in Ωf . If pk is an atomic proof or the last rule is for-
ward then by induction there is fk such that F ` fk :σ(Pk). If pj ends with
l′σ′(p′1, . . . , p

′
k) where l′ :P ′1, . . . , P

′
k ⇒ Q′ in Ωb then, by inner induction we

have F ,G ` g′ :G′ = l−1σ(f1, . . . , fj−1) :σ(Pj) and so there is f : k such that
F ,G ` pk.

(2) Assume p is lσ′(p1, . . . , pn) where pk proves σ′(Pk), 1 ≤ k ≤ n, F = σ(G),
g :G ∈ G, and l :P1, . . . , Pn ⇒ Q in Ωb, and F = σ′(Q). Then by induction let fk
be such that G, F ` fk :σ′(Pk), 1 ≤ k ≤ n. It follows that f is lσ(f1, . . . , fn, g).
Note that by the fact that renaming variables in derived atoms does not change
the atom, if σ′(Q) = σ′′(G) then there is some σ such that σ(Q) = σ′(Q) =
σ′′(G) = σ(G). ut

Theorem 1 (Monotonicity). If π does not apply any replacement rules, then
for all steps i, j of π with i ≤ j we have Fx(ci) ⊆ Fx(cj) and Gx(ci) ⊆ Gx(cj)
for every cyber-node x.

Proof. By inspection of the inference rules, the only rules that remove a derived
fact or goal are the replacement rules. ut
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Note that if replacement rules are allowed we still have monotonicity modulo the
replacement relation. For example if K ∈ Fx(cj) ∪Fx(cj), j < i and K is not it
Fx(cj) ∪ Fx(cj) then there is K ′ such that K ≺ K ′ and K ′ ∩ Fx(cj) ∪ Fx(cj).

Theorem 2 (Soundness). For every step i of π, and for each f :F ∈ F(ci),
we have FO(π|i),GC(π|i) ` f :F , which in turn implies FO(π|i) ` f :F

Proof. Let π be an execution c0, r1, . . . , ri, ci, . . . , and f :F ∈ F(ci). By Lemma
3, we only need to show FO(π|i), GC(π|i) ` f :F We also show that FO(π|i),
GC(π|i) ` g :G for g :G ∈ G(ci).

We proceed by induction on i. We note that if FO(π|i−1), GC(π|i−1) ` f :F
then FO(π|i), GC(π|i) ` f :F (monotonicity of `).

We only need to consider rules ri that introduce a new derived fact f :F at
some cyber-node x. There are five cases for facts and four for goals:

(Observation) The new derived fact is O(F ) :F , which is in FO(π|i).

(Control) The new derived goal is C(G) :G, which is in GC(π|i).

(Communication1) The new derived fact f :F is in F(ci−1). By induction, FO(π|i−1),
GC(π|i−1) ` f :F and we are done since FO(π|i−1),GC(π|i−1) = FO(π|i),GC(π|i).

(Communication2) Analogous to (Communication1).

(Builtin) The new derived fact is Bσ(g) :σ(G), where g :G ∈ G(ci−1). By induc-
tion, FO(π|i−1), GC(π|i−1) ` g :G and thus FO(π|i), GC(π|i) ` f :F .

(Forward1) The new derived fact is f :F where F = σ(Q) and f = lσ(f1, . . . , fn),
l :P1, . . . , Pn ⇒ Q in Ωf . fj :σ(Pj) ∈ F(ci−1), 1 ≤ j ≤ n. By induction
FO(π|i−1), GC(π|i−1) ` fj :Fj for 1 ≤ j ≤ n and so FO(π|i), GC(π|i) ` f :F .

(Backward1) The new derived fact is f :F where F = σ(Q) and f = lσ(f1, . . . , fn, g
′),

l :P1, . . . , ..., Pn ⇒ Q in Ωb, fj :σ(Pj) ∈ F(ci−1) for 1 ≤ j ≤ n and g′ :G′ ∈
G(ci−1), σ(Q) = σ(G′), so by induction FO(π|i−1), GC(π|i−1) ` fj :Fj for
1 ≤ j ≤ n and thus FO(π|i), GC(π|i) ` f :F .

(Forward2) The new derived goal is g :G whereG = σ(Pj) and g = l−1
σ (f1, . . . , fj−1)

where l :P1, . . . , Pn ⇒ Q in Ωf . fk :σ(Pk) ∈ F(ci−1), 1 ≤ k < j. By induction
FO(π|i−1), GC(π|i−1) ` fk :Fk for 1 ≤ k ≤ j and thus FO(π|i), GC(π|i) ` g :G.

(Backward2) The new derived goal is g :G whereG = σ(Pj) and g = l−1
σ (f1, . . . , fj−1, g

′)
where l :P1, . . . , Pn ⇒ Q in Ωb, fk :σ(Pk) ∈ F(ci−1), 1 ≤ k < j, g′ :G′ ∈ G(ci−1)
and σ(G′) = σ(Q) so by induction FO(π|i−1), GC(π|i−1) ` fk :Fk for 1 ≤ k < j
FO(π|i−1), GC(π|i−1) ` g′ :G′ and thus FO(π|i), GC(π|i) ` g :G. ut

For the proof of completeness we restate the restrictions on replacement in a
slightly different form:

Definition 4 (Replacement Restrictions). Replacement is restricted iff the
following conditions hold: (1) If K1 ≺ K2, then K2 6.+ K1. (2) K1 ≺ K2 and
K1 6.+ K2 and K1 6< K2, then there exists atomic K ′1,K

′
2 such that K ′1 .∗
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K1 ∧K ′2 .∗ K2 ∧K ′1 ≺ K ′2. (3) If K1 ≺ K2, K1 .
+ K2, K1 .

+ K3, K3 6.+ K2,
and K2 6.+ K3, then K3 ≤ K2. (4) If K1 < K2 then for all atomic K ′1,K

′
2, if

K ′1 .
∗ K1 and K ′2 .

∗ K2, then K ′2 6≺ K ′1

Theorem 3 (Completeness). Assume that subsumption is preserved and is
upward well-founded and that replacement is restricted. Assume, furthermore,
that π is a logically fair and communication-fair execution. F ⊆ FO(π) and G ⊆
GC(π) such that each element of F ,G is replacement-maximal in FO(π)∪GC(π).
The the following two statements hold: (1) If F `f F then there exists a derived
fact f :F such that F ` f :F , which in turn implies that f :F is eventually
covered in π. (2) If G ∈ G and F `b σ(G) then there exists a derived fact f :σ(G)
such that F ,G ` f :σ(G), which in turn implies that f :σ(G) is eventually covered
in π.

Proof. We have lemmas that show: (i) F `f F implies F ` f :F . (ii) F `b σ(G)
for G ∈ G implies F ,G ` f :σ(G) for some f , i.e., proofs yield derivations if there
are sufficient goals.

Hence we only have to show the “in turn” part of (1) and (2). Let K(π)
denote F(π) ∪ G(π), all the knowledge (i.e. derived atoms) of π.

Instead of (1), we prove something slightly stronger: (a) If F ` f :F (not
atomic) there is some f ′ :F ′ ∈ F(π) such that f :F ≤ f ′ :F ′ and F ` f ′ :F ′. (b)
If f :F .+ K3 with F ` K3 then either there exists K3 such that K3 ≤ K ′3 ∈
K(π) or we can pick f ′ :F ′ replacement-maximal.

Abstracting to general derivations, covering (1) and (2), we will prove: (a)
If F ,G ` K1 (not atomic) there is some K2 ∈ K(π) such that K1 ≤ K2 and
F ,G ` K2. (b) Furthermore, if K1 .+ K3 with F ,G ` K3 then either there
exists K3 such that K3 ≤ K ′3 ∈ K(π) or we can pick K2 replacement-maximal
in π.

With slight shift of notation, assume if F ,G ` K3 (not atomic) and we want
to show there is some K ′3 ∈ K(π) such that K3 ≤ K ′3 and F ,G ` K ′3. Suppose
this is not the case.

Suppose that for each immediate subderivation K1 of K3 we find K ′1 ∈ K(π)
such that K1 ≤ K ′1, F ,G ` K ′1, and K ′1 is replacement-maximal in π. Then by
persistance we have K ′3 with K3 ≤ K ′3 such that K ′1, . . . ,K

′
m ` K ′3 (and hence

F ,G ` K ′3). If the Ki′ are immediate subderivations, the relevant reasoning rule
is enabled til it fires and we are done. It is possible that some subderivation K ′′ of
K ′3 is not one of the K ′i. Then we have to repeat the argument for F ,G ` K ′3 for
K ′′. Note we have to restart the induction asK ′3 may be larger thanK3. However,
we obtain K ′3 with K3 ≤ K ′3 and by upward wellfoundedness of subsumption,
we eventually find the desired subsumption of K3.

Now we are reduced to finding K ′1 ∈ K(π) such that K1 ≤ K ′1, F ,G ` K ′1,
and K ′1 is replacement-maximal in π for each immediate subderivation of K3.

Case analysis on K1 yields the following cases:
(Case 1) The subderivationK1 is atomic. (Case 1a)K1 is of the form O(F1) :F1
or C(G) :G. This is in F ,G and we are done with (a) and (b) by maximality of
F ,G. (Case 1b) K1 is of the form Bσ(g) :σ(G). So F ,G ` g :G by IH is persis-

31



tant by assumption that builtins are replacement-maximal thus the builtin rule
is enabled until it fires and we are done with (a) and (b).
(Case 2) The subderivationK1 is not atomic. By IH (a) we haveK ′1 ∈ K(π) with
K1 ≤ K ′1 and F ,G ` K ′1. Now we need to show that we can find a replacement-
maximal such K ′1.

So we have F ,G ` K3, F ,G ` K ′1, K ′1 ∈ K(π), K1 ≤ K ′1, K1 . K3, and we
have assumed that K3 is not eventually covered, i.e. K3 6≤ K ′3 for any K ′3 ∈ K(π).

Suppose K ′1 is not replacement-maximal so there is a K2 such that K ′1 ≺
K2 ∈ K(π). By compatibility, K1 ≺ K2.

Without loss of generality we can assume that K ′1 is subsumption-maximal
in K(π) (justification, see last paragraph below). Hence, K ′1 6< K2. Furthermore,
K1 ≤ K ′1 ≺ K2 yields K1 6< K2 by ordering consistency (between subsumption
and replacement).

Using K1 ≺ K2 and K1 6< K2, Condition 2 (replacement restrictions) tells
us that K1 6.+ K2 implies that there exists atomic K ′1,K

′
2 such that K ′1 .

∗ K1,
K ′2 .

∗ K2, K ′1 ≺ K ′2 which contradicts maximality of F ,G.
Thus we only need to deal with the case that K1 .+ K2. Since K1 is an

immediate subderivation of K3 we cannot have K2 .
+ K3. Also we cannot have

K3 .
+ K2, because this would imply K3 ∈ K(π).

Condition 3 (replacement restrictions) tells us that K3 ≤ K2. But K3 ≤ K2

contradicts our assumption that K3 is not eventually covered.
It remains to justify our assumption that K ′1 can be choosen subsumption-

maximal such that F ,G ` K ′1. By upward well-foundedness of subsumption we
can certainly find a K ′1 that is subsumption maximal in K(π). Now assume that
F ,G ` K ′1 does not hold. This clearly implies that K ′1 6= K1, hence K1 < K ′1.
Then there is an atomic K ′′1 in K(π) with K ′′1 .

∗ K ′1. By replacement-maximality
of F ,G there must be a K ′′ ∈ F ,G such that K ′′1 ≺ K ′′. Using K1 < K ′1 and
Condition 4 (replacement restrictions) we obtain a contrdiction. ut

Theorem 4 (Termination). Let π = c0, r1, c1, . . . , rk, ck, . . . be an eventually
closed execution. Let F = FO(π) and G = GC(π), be the observation facts and
control goals of π, respectively. If F ,G has the finite closure property. then π is
terminating.

In the following we assume the premisses of the Termination theorem and
let [K,l] be the derived atoms and transitive reduction of the partial ordering
defined inductively from F ,G by clauses (0)–(4) of the finite closure property
requirement. In fact, l is defined by omitting the transitive closure part of the
definition, and ≤ is the transitive reflexive closure of l. Then the finite closure
property implies there are no unbounded descending chains . . . ,Kn+1 lKn . . .l
K0.

We begin the Termination proof with some basic properties.

Lemma 6. F(π) ∪ G(π) ⊆ K

Proof. Show F(π|n) ∪ G(π|n) ⊆ K by induction on n. For n = 0 there are no
facts or goal in the initial configuration. For n > 0 consider cases on rule r that
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introduces a new fact or goal. Use the closure conditions on K and the fact that
K ∈ K implies K ` K. If r is Observation or Control, the new fact or goal is
in F ,G ⊂ K by definition. If r is Builtin use clause (0), if r is Forward1 use
clause (1), if r is Forward2 use clause (2), if r is Backward1 use clause (3), if r
is Backward2 use clause (4).

Lemma 7. If K lK ′ then K ′ .+ K.

Proof. By inspection of clauses defining l

Lemma 8. (∀i)(∃j > i)(F(π|i) ⊂ F(π|j))

Proof. Since π is non-terminating, by freshness requirements eventually a new
fact must be introduced.

Proof (Termination). We define the depth of a derived atom d(K) such that

(1) if π has a derived atom of depth d, there is a l chain in π of length d (from
the derived atom to a root atom of depth 0), and

(2) the set of derived atoms of depth d in π is finite.

Now by lemma 8, for any depth d, there is some i such that F(π|i)∪G(π|i) has an
element of depth greater than d. Thus a non-terminating execution must have
an unbounded decreasing l chain. ut

1

Definition 5 (Depth K). The depth d(K) of K ∈ F(π) ∪ G(π) is defined ac-
cording to the rule that introduces K. Since a derivation f or g uniquely deter-
mines the derived atom we will often use the derivation to stand for the derived
atom.
Goals.

(gc) d(C(G) :G) = 0 where c(G) :G ∈ GC(π)
(gf) d(l−() :P1) = 0 where l :P1 . . . Pn ⇒ Q ∈ Ωf

(gf+) K = l−σ (f1...fj−1) :σ(Pj), d(K) = 1 + max1≤i<jd(fi) where l :P1 . . . Pn ⇒
Q ∈ Ωf , k ≥ j > 1.
• Since K l fi for 1 ≤ i < j there is a l chain from K through some fi

to a root of length d(K).
(gb+) K = l−σ (f1...fj−1; g) :σ(Pj) d(K) = 1 + max(max1≤i<jd(fi), d(g)) where

l :P1 . . . Pn ⇒ Q ∈ Ωb,
• Since K l fi for 1 ≤ i < j and K l g there is a l chain from K to a

root of length d(K).

Facts.

(fo) d(O(F ) :F ) = 0 where O(F ) :F ∈ FO(π).

1 CAVEAT – to get some proof done, I am going to use ‘and’ rather than ‘or’ in clause
(4) of the definition of [K,l]. Later I will see if this can be relaxed.
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(fbi) K = Bσ(g) :σ(G), d(K) = 1 + d(g) where G is a builtin, g :G a derived goal
and ` σ(G).

• Since K l g there is a l chain of length d(K) from K to a root.

(ff0) d(l() :Q) = 0 where l :⇒ Q ∈ Ωf
(ff+) K = lσ(f1, . . . , fk) :σ(Q), d(K) = 1 + max1≤i<kd(fi) where l :P1...Pk ⇒

Q ∈ Ωf , k > 0,

• Since K l fi for 1 ≤ i ≤ k there is a l chain from K through fi to a
root of length d(K).

(fb0) d(l(g) :Q) = d(g :G) where l :⇒ Q ∈ Ωg g :G a derived goal, σ(G) = σ(Q).
(fb+) d(K) = lσ(f1, . . . , fk; g) :σ(Q), d(K) = 1+max1≤i<kd(fi) where l :P1...Pk ⇒

Q ∈ Ωb, k > 0, g :G a derived goal, σ(G) = σ(Q).

• Since K l fi for 1 ≤ i ≤ k there is a l chain from K through fi to a
root of length d(K).

Now we define depth n sets of facts and goals and show they are finite by
induction on n.

Lemma 9 (Depth n knowledge is finite).
The argument for finiteness is interleaved with the definition of the depth n
knowledge sets.
Goals GD(n).

GD(0) = {G (∃g)g :GinCG}
control– finite by eventually closed

∪
{P1 (∃l)(l :P1 . . . Pn ⇒ :Q ∈ Ωf )}

fwd2,j = 1– finite since Ω has finitely many clauses
GD(n > 0) ={σ(Pj) (∃l, f1 . . . fj−1 ∈ F(π))(l :P1 . . . Pk ⇒ Q ∈ Ωf ,

k ≥ j > 1, d(fi :σ(Pi))) < n}
fwd2, j > 1–finite because σ is determined by f1..fj−1

by max σ and finiteness of FD(< n)
∪
{σ(Pj) (∃l, f1 . . . fj−1 ∈ F(π), g ∈ G(π))

(l :P1 . . . Pk ⇒ Q ∈ Ωb,
d(fi :σ(Pi)) < n, d(g :G) < n,

σ mgu extending σ/vars(P1, . . . , Pj−1) s.t. σ(Q) = σ(G))}
bwd2– σ = σ1 ∗ σ0, σ0 = σ/vars(P1...Pj−1) and σ1 = mgu(σ0(Q), G)
[taking vars G fresh], finite by finiteness of FD(< n) and GD(< n)
and σ determined by the choice of fi and g.
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Facts FD(n).

FD(0) = {F O(F ) :F ∈ FO}
observation– finite by eventually closed

∪
{Q (∃l)(l :⇒ Q ∈ Ωf )}

fwd1, k = 0– finite since Ω has finitely many clauses
and Q ground by variable restriction

∪
{σ(Q) (∃l, g ∈ G(π))(l :⇒ Q ∈ Ωb, d(g :G) = 0, σ(Q) = σ(G))}

bwd1, k = 0– finite Ω, finite GD(< n) means finite l, g pairs.
σ = mgu(Q,G) since by variable constraint, unifier is ground

FD(n > 0) ={σ(G) g :G ∈ G(π), G builtin,` σ(G), d(g :G) < n}
builtin– finite solutions

∪
{σ(Q) (∃l, f1 . . . fk ∈ F(π))(l :P1 . . . Pk ⇒ Q ∈ Ωf , k > 0,

dom(σ) = vars(P1, . . . , Pk), d(fi :σ(Pi)) < n, 1 ≤ i ≤ k)}
fwd1, k > 0– finite Ω, finite FD(< n) means finite l, f1, ..., fk tuples

∪
{σ(Q) (∃l, g ∈ G(π))(l :⇒ Q ∈ Ωb, σ = mgu(Q,G), d(g :G) ≤ n)}

bwd1, k = 0– finite Ω, finite GD(≤ n) means finite l, g pairs,
σismgu(Q,G) since by variable constraint, unifier is ground

∪
{σ(Q) (∃l, f1 . . . fk ∈ F(π), g ∈ G(π))(l :P1 . . . Pk ⇒ Q ∈ Ωb,

k > 0, d(g :G) < n, d(fi :Pi) < n 1 ≤ i ≤ k, σ = mgu(Q,G))}
bwd1, k > 0– σ a mgu by variable constraint, finite Ω,
finite FD(< n), GD(< n) means finite l, f1, ..., fk, g tuples
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