
Toward Distributed Declarative Control
of Networked Cyber-Physical Systems?

Mark-Oliver Stehr, Minyoung Kim, and Carolyn Talcott

SRI International
stehr,mkim,clt@csl.sri.com

Abstract. Networked Cyber-Physical Systems (NCPS) present many
challenges that are not suitably addressed by existing distributed com-
puting paradigms. They must be reactive and maintain an overall situ-
ation awareness that emerges from partial distributed knowledge. They
must achieve system goals through local, asynchronous actions, using
(distributed) control loops through which the environment provides es-
sential feedback. Typical NCPS are open, dynamic, and heterogeneous in
many dimensions, and often need to be rapidly instantiated and deployed
for a given mission. To address these challenges, we pursue a declarative
approach to provide an abstraction from the high complexity of NCPS
and avoid error-prone and time-consuming low-level programming. A
longer-term goal is to develop a distributed computational and logical
foundation that supports a wide spectrum of system operation between
autonomy and cooperation to adapt to resource constraints, in particular
to limitations of computational, energy, and networking resources. Here,
we present first steps toward a logical framework for NCPS that com-
bines distributed reasoning and asynchronous control in space and time.
The logical framework is based on partially ordered knowledge sharing,
a distributed computing paradigm for loosely coupled systems that does
not require continuous network connectivity. We illustrate our approach
with a simulation prototype of our logical framework in the context of
networked mobile robot teams that operate in an abstract instrumented
cyber-physical space with sensors.

1 Introduction

A growing number and variety of devices can sense and affect their environ-
ment. Some are fairly simple, such as radio-frequency identification (RFID) ac-
cess control, some quite sophisticated, such as mobile robots with localization
and sensing capabilities. This opens up an opportunity for a new generation of
Networked Cyber-Physical Systems (NCPS). Such systems can provide complex,
situation-aware, and often critical services in applications such as distributed
? Support from National Science Foundation Grant 0932397 (A Logical Framework for

Self-Optimizing Networked Cyber-Physical Systems) and Office of Naval Research
Grant N00014-10-1-0365 (Principles and Foundations for Fractionated Networked
Cyber-Physcial Systems) is gratefully acknowledged. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of NSF or ONR.



surveillance, crisis response, medical systems, self-assembling structures or sys-
tems, networked space/satellite missions, or distributed critical infrastructure
monitoring and control. General principles and tools are urgently needed for
building robust, effective NCPS using individual cyber-physical devices as build-
ing blocks. In this paper, we present a declarative approach to NCPS based on a
logical framework that supports distributed reasoning and can interact with the
physical world asynchronously through observations and goal-oriented control.

Cyber-physical systems are often deployed in challenging environments with
a wide spectrum of networking characteristics. They should be able to take ad-
vantage of opportunities for communication as they arise and must be robust in
spite of delays and disruptions due to, for example, mobility, failures, or nodes
entering and leaving the system. Topology changes (network partitioning in the
extreme case) can happen continuously, so that even the common assumption of
globally stable periods, which is crucial for many distributed algorithms, is not
realistic. Hence, the logical framework is developed on top of a loosely coupled
distributed computing model based on the partially ordered knowledge-sharing
paradigm that has been used in our earlier work on disruption-tolerant network-
ing [16]. Knowledge (as opposed to, say, a packet) is a semantically meaningful
unit of information that can be stored, processed, aggregated, and communi-
cated to other nodes. A unique feature of the knowledge-sharing model is that
it is parameterized by an application-dependent partial order on knowledge that
is available to all nodes and provides an abstraction of the knowledge semantics.
In this model, the network topology can change continuously, communication
can be unreliable, and no bounds are assumed on communication delays. As a
consequence, any form of communication between nodes is acceptable. Similar to
data mules for sensor networks [5] or message ferrying in delay- and disruption-
tolerant networks [7], each node can cache knowledge for extended periods of
time and hence can exploit the (possibly mobile) network dynamics to share
knowledge without relying on an end-to-end path at any point in time.

The declarative view of NCPS enables us to recast information collection,
control, and decision problems as logical problems that are primarily centered
around the duality of two kinds of knowledge: facts and goals. Facts can repre-
sent sensor readings at specific locations and other information that is derived
by possibly distributed computation. Goals can represent queries for information
or requests to the system or individual components to perform certain actions.
Although there are cases where a goal can be directly satisfied by a single action,
it is more often the case that distributed actions are needed, sometimes in a co-
ordinated manner that requires cooperation across multiple nodes. In our logical
framework, both facts and goals will be treated on an equal footing together with
corresponding reasoning rules. The distributed, dynamic, and interactive nature
of the underlying systems is rarely considered in logical frameworks, which are
traditionally designed as closed systems. Our framework is flexible enough to
take into account the heterogeneous resources and capabilities at each node.
Each node cooperates with its neighbors and interacts with its environment by
sensing and affecting, driven by facts and goals. Overall system goals are refined



to goals achievable by an individual node or device. Reasoning takes place lo-
cally at each node in the network as well as in cooperation (and competition)
with other nodes. Seamless integration of cooperation and autonomy ensures
that there is no need to rely on the existence or connectivity of other nodes, so
that the local operation can always proceed, although possibly in a less optimal
fashion. Solutions can be shared and composed oportunistically without being
subject to any rigid or hierarchical flow constraints.

Recent applications of cognitive and more specifically declarative techniques
in communication and networking, [4] being a noteworthy example, have at-
tracted a lot of interest, but a declarative treatment of NCPS still remains a
challenge. To study this problem we use self-organizing mobile robots as an ex-
ample capturing many of the challenges of NCPS [5]. This example is inspired by
previous work at SRI, in particular the Centibots project [14] that has developed
a team-based hierarchical planning approach to accomplish a mission such as col-
laborative mapping, and the Commbots project [8], where the mission objective
is to improve network connectivity by distributed control of robotic routers.

After presenting a simplified version of our distributed logical framework in
Section 2, we illustrate in Section 3 the key ideas and a prototypical implemen-
tation by means of an abstract simulation of a networked mobile robot team
operating in an instrumented cyber-physical space. Some related work will be
summarized in Section 4.

2 Distributed Logic and Cyber-Inference

Declarative control aims at providing the user with a logical view of the cyber-
physical system so that user objectives can be conveyed to the system, which
then will make its best effort to realize those objectives. Such objectives are
given in the context of the current system state (which is only approximately
and partially observable). Furthermore, the user objectives can be part of a larger
set of objectives (e.g., including system policies and objectives from other users),
which we simply refer to as the system goal. Declarative control is the process
of continuous adaptation of the system to transition to a state that satisfies the
system goal, which in turn can continue to change based on feedback from the
environment or because of new user requests.

The purpose of logic in this context is many-fold. First of all, it provides a
language to express and communicate system goals. Dually, it allows expressing
and communicating facts about the current system state. In both cases, commu-
nication includes communication with the users but also communication among
the components of the system. At the level of an individual cyber-physical com-
ponent, the logic provides a declarative interface for goal-oriented control and
feedback through observations that are represented as logical facts. Finally, it
provides a framework for inference and computation, which allows facts and
goals to interact with each other and form new facts or goals.

Aiming at a solution to declarative control that covers the entire spectrum
between cooperation and autonomy and makes opportunistic use of networking



resources, it is clear that the logic needs to be inherently distributed. The oppor-
tunity to exchange knowledge with other nodes should lead to cooperation, and
the absence of such opportunities should lead to more autonomous behavior. In
the following we present a simple distributed inference system that accomplishes
this goal. We use Horn clause logic to illustrate our approach, which we expect
to generalize to more expressive logics.

For the following abstract logical treatment, we assume a networked cyber-
physical system S with a finite set of cyber-nodesN . We assume a time-dependent
network and environment model, in which two cyber-nodes have the capability
to communicate (uni- or bidirectionally) whenever the network conditions admit
it and where each cyber-node can have (not necessarily the same) sensors and
actuators. The sensors can generate observations at arbitrary time points. The
actuators are driven by goals, which they can either attempt to satisfy immedi-
ately or in a continuous asynchronous process with (partial) feedback provided
through observations. Instead of imposing restrictive conditions on S we gener-
ally allow S to operate under arbitrary conditions. In the following, we use x
and y to range over cyber-nodes and t to range over the time domain, for which
we use natural numbers in this paper. For the following, we also assume a fixed
signature Σ and a fixed finite theory Ω over Σ in Horn clause logic that is shared
by all nodes of the cyber-physical system. We assume that Σ contains built-in
constants for natural numbers and names of cyber-nodes. Additional built-in
functions, and built-in predicates can be included in Σ. To account for the tem-
poral and distributed character of cyber-physical systems, we assume that the
signature Σ contains a distinguished set of predicates (distinct from built-ins)
that we refer to as cyber-predicates, i.e., predicates that define the interface of
the logic with the outside world (i.e., cyber-physical devices and users).

Using P and Q to range over atoms, we furthermore assume that all clauses
in Ω are uniquely labeled and definite, i.e., of the form l :P1, . . . , Pn ⇒ Q with
a unique label l, where Q is not the application of a built-in predicate. For our
proof system, we assume that Ω = Ωf ∪Ωb, where Ωf and Ωb are sets of clauses
that we refer to as forward and backward clauses, respectively.

The set of facts is simply defined as the set of all ground atoms. Hence, all
predicates are allowed to occur in facts. The set of goal predicates is any set of
predicates that includes at least the built-in predicates and all predicates that
appear in the conclusion of a backward clause, i.e., a clause from Ωb. Certain
cyber-predicates can be included in this set if they are intended to form goals.
For the purpose of this paper, the set of goals is simply the set of (not necessarily
ground) atoms that are applications of goal predicates. A unit of knowledge can
be either a fact or a goal. To simplify the presentation in this paper we assume
that facts and goals can always be distinguished, even if they have the same
underlying atom. Occasional conversions between a fact and a goal with the
same atom should be clear from the context and will be left implicit. From now
on, we will use K to range over units of knowledge and F and G to range over
facts and goals, respectively.



A fact or goal that is the application of a built-in predicate is called a built-in
fact or built-in goal, respectively. Given a built-in goal G, we say that σ(G) is
a solution of G iff there is a substitution σ such that σ(G) is ground (hence
can be viewed as a fact) and satisfied. All cyber-predicates pc are explicitly
time dependent and form atoms pc(t, . . .), where t is a natural number denoting
its timestamp, i.e., its time of creation at the creating node. A cyber-fact or
cyber-goal is any fact or goal, respectively, of this form. Note that this does not
preclude cyber-facts and cyber-goals from having additional temporal attributes
or constraints that can be specified in the remaining arguments, e.g., the time of
obervation in the case of a cyber-fact, or a deadline in the case of a cyber-goal.

To utilize the partially ordered knowledge-sharing model, we assume that the
set of all knowledge units is equipped with a strict partial order <, called the
subsumption order,1 and a strict partial order ≺, called the replacement order,
that extends <. The intended meaning of K ≺ K ′ is that K ′ replaces K, because
K is semantically subsumed by K ′ (in this case we have K < K ′), or because
K is obsolete relative to K ′, e.g., out of date.

The logical state of a cyber-node is of the form Γ ` ∆ @ t, x, where x is
the unique name of the node, t is a natural number representing its local time,
Γ is a finite set of facts, and ∆ is a finite set of goals. It is worthwhile to point
out that the interpretation of Γ ` ∆ @ t, x is nonstandard, and quite different
from sequent calculus even without t, x. Intuitively, Γ is a set of facts that is
continuously growing through observations or by inference, while ∆ is a set of
goals that the system is trying to satisfy without necessarily aiming to satisfy all
of them. To reflect the reality of cyber-physical systems, inference is a continuous
typically nonterminating process, and goals and facts can change at any time
due to environment and user interaction. Since reasoning is a distributed process
in space and time and the world can change during this process, an approach
quite different from traditional work in formal specification, logic programming,
or automated deduction is needed. We will also see that a goal does not have
to be solved to be useful, but as a cyber-goal can still have an impact on the
environment, which may be observable through cyber-facts.

A configuration of a cyber-physical system S is a set of local states Γ `
∆ @ t, x, one for each cyber-node x of S. Given a configuration c containing
Γ ` ∆ @ t, x, we write Fx(c) and Gx(c) to denote Γ and ∆, respectively. The
proof system in Figure 1 defines a labeled transition relation→ on configurations
of the cyber-physical system S in the following sense: For configurations c and c′,
we have c→r c

′ iff there exists an instance r of a proof rule such that c contains
the premises of r, and c′ is obtained by an update of c with the conclusion, i.e.,
by replacing Γ ` ∆ @ t, x by the conclusion Γ ′ ` ∆′ @ t′, x.

For readability, we have omitted an implicit side condition t < t′ in all
proof rules (tx < t′x in the communication rules), meaning that time increases
monotonically at least by one unit in each step. Furthermore, we view each fact
or goal as a singleton set and use the comma operator to denote set union. If the

1 In the general model, the subsumption order is a quasi-order, but in this paper we
identify knowledge units that are related by the induced equivalence relation.



comma operator is used in the premise of a proof rule, we always assume that
it denotes the union of disjoint sets, i.e., Γ,K implies K /∈ Γ if it occurs in a
premise. For a set K of knowledge units, we write K ≺ K if there exist K ′ ∈ K
such that K ≺ K ′, respectively. In the context of a proof rule that has a premise
Γ ` ∆ @ t, x we say that K is fresh (at x) if neither K ∈ Γ,∆ nor K ≺ Γ,∆. In
the condition of proof rules we use σ to range over all (not necessarily ground)
substitutions that satisfy the condition of the proof rule. Some conditions in the
reasoning rules will further restrict σ to most general substitutions.

To give some intuitive explanation of the proof rules in Figure 1, the control
rule represents the addition of a new user-level objective to the set of system
goals. The observation rule captures the generation of information from the en-
vironment. This can happen spontaneously or can be triggered by a goal that a
cyber-device attempts to satisfy. The communication rules allow cyber-nodes to
exchange facts or goals by means of asynchronous communication. The nature
of communication, i.e., whether it is uni-/bidirectional, unicast, multicast, or
broadcast remains unspecified. The replacement rules are used to overwrite sub-
sumed and obsolete facts and goals. In this paper, we assume only a loose form of
logical time synchronization that satisfies the minimal monotonicity requirement
formulated in the communication rules. Of course, this does not preclude imple-
mentations with time synchronization that takes place even when no knowledge
is exchanged. The forward and backward rules implement forward and backward
reasoning. The first forward rule applies an instance of a Horn clause from the
underlying theory if all conditions are available as facts, generating a new fact
σ(Q) corresponding to the conclusion in this process. The second forward rule
covers the case where the available facts are not sufficient to apply the clause so
that a new subgoal σ(Pj) needs to be generated for a missing fact. The back-
ward rules are analogous to the two forward rules, but apply a Horn clause in a
goal-directed way, by first unifying the conclusion with an existing goal. Again,
if the present facts are not sufficient to cover all conditions of a clause, a new
subgoal is generated. In both forward and backward rules, the selection of facts,
goals, and rules is entirely nondeterministic, and many strategies are sensible as
long as they satisfy some local weak fairness requirements. Finally, the sleep rule
allows the system to wait and hence slow down the reasoning for an arbitrary
amount of time, e.g., to save energy, wait for new knowledge, or use the resources
for other purposes.

The proof system is specifically designed to enable a distributed implementa-
tion using randomization techniques that can be used to satisfy the local fairness
conditions with probability one. Facts and goals are represented as knowledge in
the partially ordered knowledge-sharing model, where knowledge can be oppor-
tunistically exchanged across multiple hops and cached in the network until it is
locally replaced by knowledge that is higher in the partial order. No global con-
sistency is assumed or needed in this approach. There are several places in the
proof system, where nondeterminism at a given node x can be implemented by
a randomized choice. First, there is the selection of clauses in the four reasoning
rules. Second, there is the selection of facts and/or goals to which the clause is



Γ ` ∆ @ t, x

Γ ` ∆,G @ t′, x
if G = pc(t, . . .) is a cyber-goal (Control)

Γ ` ∆ @ t, x

Γ, F ` ∆ @ t′, x
if F = pc(t, . . .) is a cyber-fact (Observation)

Γ, F ` ∆ @ t, x

Γ ` ∆ @ t′, x
if F ≺ Γ,∆ (Replacement1)

Γ ` ∆,G @ t, x

Γ ` ∆ @ t′, x
if G ≺ Γ,∆ (Replacement2)

Γx ` ∆x @ tx, x Γy, F ` ∆y @ ty, y

Γx, F ` ∆x @ t′x, x
(Communication1)

if x 6= y, t′x ≥ ty, and F is fresh at x.

Γx ` ∆x @ tx, x Γy ` ∆y, G @ ty, y

Γx ` ∆x, G @ t′x, x
(Communication2)

if x 6= y, t′x ≥ ty, and G is fresh at x

Γ ` ∆,G @ t, x

Γ, σ(G) ` ∆,G @ t′, x
(Built-in)

if G is a built-in goal with a solution σ(G) such that σ(G) is fresh.

Γ, σ(P1), . . . , σ(Pn) ` ∆ @ t, x

Γ, σ(P1), . . . , σ(Pn), σ(Q) ` ∆ @ t′, x
(Forward1)

if l :P1, . . . , Pn ⇒ Q is a clause from Ωf ,
and σ(Q) is a fresh fact.

Γ, σ(P1), . . . , σ(Pj−1) ` ∆ @ t, x

Γ, σ(P1), . . . , σ(Pj−1) ` ∆,σ(Pj) @ t′, x
(Forward2)

if l :P1, . . . , Pn ⇒ Q is a clause from Ωf ,
σ is a most general substitution, σ(Pj) is a goal, and σ(Pj) is fresh.

Γ, σ(P1), . . . , σ(Pn) ` ∆,G′ @ t, x

Γ, σ(P1), . . . , σ(Pn), σ(Q) ` ∆,G′ @ t′, x
(Backward1)

if l :P1, . . . , Pn ⇒ Q is a clause from Ωb,
σ(Q) = σ(G′) is a fresh fact.

Γ, σ(P1), . . . , σ(Pj−1) ` ∆,G′ @ t, x

Γ, σ(P1), . . . , σ(Pj−1) ` ∆,G′, σ(Pj) @ t′, x
(Backward2)

if l :P1, . . . , Pn ⇒ Q is a clause from Ωb,
σ(Pj) is a fresh goal, σ is a most general substitution such that σ(Q) = σ(G′).

Γ ` ∆ @ t, x

Γ ` ∆ @ t′, x
(Sleep)

Fig. 1. Proof Rules of our Distributed Logical Framework for NCPS

applied. Third, there is the choice of the substitution and hence solution in the
rule for built-ins. And finally, there is the sleep rule, which can be implemented
by random waiting using a suitable distribution to make the reasoning process
adaptive to resource constraints and network conditions.



3 Sample Application

To test our ideas we will focus on a specific application that we call self-organizing
mobile robots as a special case of controllable networks that captures many inter-
esting aspects of NCPS [5]. Consider a self-organizing network of mobile robots
deployed in a building, e.g., to achieve situation awareness during an emergency.
This is a challenging test case for various reasons. The network is highly dynamic,
and temporary disconnections or failures are part of the normal operation and
need to be compensated for by real-world actions. Parameters such as a robot’s
position can be controlled only indirectly via actions, and costs of changes (e.g.,
energy consumption) cannot be neglected.

As a concrete sample mission, we chose a primary goal such as delivery of the
collected information (e.g., images) from a particular area to a specific node with
some time constraints. We assume that each room in the building is equipped
with acoustic sensors or motion sensors and the goal is to collect information in
areas where noise or motion is detected. The mobile robots have camera devices
that can capture a fullsight (i.e., 360-degree view) snapshot of a target area. The
raw image may be directly sent to other nodes if the network supports it, or it
can be preprocessed, e.g., by applying some form of compression or abstraction,
and feature extraction (possibly at a different more powerful node), and then
communicated to other nodes.

For the specific example, we assume that the primary goal is injected into
the network by the user at a fixed root node around which initially the robots
are randomly clustered. Goals and facts are opportunistically shared whenever
connectivity exists. Each robot can compute its local solution based on its lo-
cal knowledge. The solution assigns an approximate target region as a subgoal
to each robot, which then starts to move in order to locally realize the goal.
The distributed reasoning continues so that the local solutions are continuously
recomputed and movements are adjusted correspondingly. In addition to the
randomness due to network and environment, randomization techniques, e.g.,
random selection of clauses and goals, and random waiting, are used to desyn-
chronize the robots. The movements are constrained by the floor plan, which
could be opportunistically updated and shared, but is simply assumed to be
given as part of the logical theory, which is available at all nodes, in our sim-
ple example. The network connectivity model can also be exploited to suppress
position changes that would lead to disconnections. Still, temporary disruptions
are possible due to system perturbations, failures, and uncertainty caused by
delayed/incomplete knowledge.

3.1 Simulation Setup

Figure 2 shows knowledge sharing between three cyber-nodes and their devices.
Each node is equipped with a knowledge manager, i.e., an implementation of
the distributed knowledge-sharing model, a reasoner, i.e., an implementation of
our logical framework, and attached devices that can be regarded as subnodes
exhibiting a declarative knowledge-based interface. The devices are using the



distributed knowledge-sharing model but are implemented using conventional
code (simulation code in our case), i.e., outside the logical framework. Figure 2
contains two mobile robots, each with a positioning device and a camera device.
It also contains a fixed sensor node, which can have attached noise or motion
sensors or both. In our simulation, we experimented with one to five robots and
used a root node that is similar to a robot but assumed to be at a fixed location
and serves as a user access point to the cyber-physical system.

Knowledge	
  
Manager	
  

Reasoner	
  

Knowledge	
  
Manager	
  

Knowledge	
  
Manager	
  

Reasoner	
  

Reasoner	
  

Opportunis4c	
  
Knowledge	
  
Sharing	
  

Cyber-­‐fact	
  

Cyber-­‐	
  
fact	
  

Cyber-­‐fact	
  

Fact	
  or	
  	
  
Subgoal	
  

Fact	
  or	
  Subgoal	
  

Fact	
  or	
  	
  
Subgoal	
  

Cyber-­‐goal	
  

Cyber-­‐goal	
  

Fact	
  or	
  	
  
Goal	
  

Cyber-­‐	
  
goal	
  

Fact	
  or	
  Goal	
  

Fact	
  or	
  	
  
Goal	
  

Devices	
  
(e.g.,	
  

Posi4oning,	
  
Camera)	
  

Sensors	
  
(e.g.,	
  
Noise,	
  
Mo4on)	
  

Devices	
  
(e.g.,	
  

Posi4oning,	
  
Camera)	
  

Fig. 2. Distributed Knowledge Sharing
between two Robots and a Sensor in an
Instrumented Cyber-Space

By definition, cyber-facts/goals
have a form pc(t, e1, ...en). However, in
our example we leave the creation time
t implicit in the case of cyber-goals, be-
cause it is not used in the theory.

To illustrate a simple operation,
assume now that a user injects a
goal such as TakeSnapshot(tT , tT +
∆tsd, a, I) with tT = 0.0 and ∆tsd =
20.0 into the root node. tT and ∆tsd

indicate the earliest time and the dead-
line to take the snapshot. The rea-
soner cannot solve this goal by means
of the logical theory, but the local cam-
era device may find that it can handle
TakeSnapshot(0.0, 20.0, a, I) by tak-
ing an image of the area a in the time interval 0.0, ..., 20.0. As a result it generates
a fact Snapshot(10.0, a, i), indicating that image i was taken at time 10.0 in area
a, which is added to the local knowledge base and can in turn lead to further
reasoning in the logical theory.

Knowledge (i.e., facts and goals) is opportunistically disseminated whenever
connectivity exists among robots. In our experiments, we use an abstract topo-
logical mobility model instead of a model with actual coordinates. We assume
that rooms in our scenario correspond to regions exhibiting similar connectivity,
and the network model is defined so that links are up between robots when they
reside in the same or adjacent rooms. For our experiments, we use a disruption-
tolerant networking simulator [16] that abstracts from the underlying networking
stack. It uses a simple graph-based dynamic network model, where each link has
a state, e.g., up or down, and is characterized by its abstract features such as
bandwidth, latency, and error rate. The floor plan restricts the mobility and will
be reflected by a collection of adjacency facts as part of the theory.

3.2 Declarative Problem Formulation

Figure 3 shows the logical theory that is used to declaratively represent our
sample application. The predicates are summarized in Table 1. Recall that a
user wants the system to take an image whenever some trigger condition occurs,
process it, and deliver it at the root node. The trigger conditions are specified as
forward clauses F1 and F2, which can be applied at any time when the condi-



Forward Clauses:

F1 :Noise(T,A)⇒ Trigger(T,A).
F2 :Motion(T,A)⇒ Trigger(T,A).
F3 :Adjacent(A,B)⇒ Adjacent(B,A).

Backward Clauses:

B1 : Interest(TI , I, R)⇐ Result(TI , TT , 0, I), Deliver(TI , TT , 1, I, R).

B2 :Deliver(TI , TT , ND, I, R)⇐ Delivered(TI , TT , ND, I, R).
B3 :Deliver(TI , TT , ND, I, R)⇐

Position(TP , R,A), Position(T ′P , R
′, A′), R′ 6= R,

MoveTo(TI , TT , ND, 0,∞, R′, A), Deliver(TI , TT , ND, I, R).

B4 :Result(TI , TT , ND, I
′)⇐ CompImage(TI , TT , ND, I), I ′ = Extract(I).

B5 :CompImage(TI , TT , ND, I
′)⇐ RawImage(TI , TT , ND, I), I ′ = Compress(I).

B6 :RawImage(TI , TT , ND, I)⇐ Trigger(TT , A), TI ≤ TT ,
MoveTo(TI , TT , ND, 0, TT +∆tsd, R,A),
TakeSnapshot(TI , TT , ND, TT +∆tsd, A, I).

B7 :TakeSnapshot(TI , TT , ND, D,A, I)⇐
Snapshot(TI , TT , ND, TS , A, I), TT ≤ TS , TS ≤ D.

B8 :MoveTo(TI , TT , ND,W
′, D,R,B)⇐ Position(TP , R,B), TP ≤ D.

B9 :MoveTo(TI , TT , ND,W
′, D,R,B)⇐ Adjacent(A,B),W ′ > −bw,W = W ′ − 1,

MoveTo(TI , TT , ND,W,D,R,A),Move(TI , TT , ND,W
′, D,R,A,B).

Replacement Ordering: (f denotes a fact and g a goal and x denotes either)

O1 : f :Position(tP , r, . . .) ≺ f :Position(t′P , r, . . .) if tP < t′P .
O2 :x :X(tI , . . .) ≺ g : Interest(t′I , . . .) if tI < t′I .
O3 :x :X(tI , tT , nD, . . .) ≺ f :Result(tI , tT , nD, . . .) if x :X 6= f :Result.
O4 :x :X(tI , tD, nD, . . .) ≺ f :Deliver(tI , tD, nD, . . .) if x :X 6= f :Deliver.

Variables: T : time, D: snapshot deadline, A and B: area, R: robot,
I: image or derived information, N : identifier, W : weight

Constants: ∆tsd: relative snapshot deadline (max. delay from trigger event),
bw: bound for weight (diameter of the floor plan)

Fig. 3. Logical Theory for Distributed Surveilance by a Team of Mobile Robots.

tions are met. Like all knowledge, facts are disseminated in the network, hence
compensating for heterogeneity in the node capabilities and other limitations,
e.g., due to resources and sensor failures.

Different from forward clauses, backward clauses are evaluated only when
a user or the reasoner injects a goal (or a new subgoal) that unifies with the
conclusion of the clause. For example, the backward clause B1 is triggered by an
Interest goal and generates a corresponding fact when successfully applied. In
the case of B2 and B3, the reasoner attempts to check if the required image is
delivered to the root node. If a corresponding Delivered fact is available, then
the Deliver goal is satisfied by applying B2. Otherwise, B3 needs to be used to
check the current position of the root node (via the Position fact) and to guide
the robot toward the area where the root node is positioned (via the MoveTo
subgoal). B4-B6 specify how we construct an image I. When one of trigger
conditions, F1 or F2, is met, a robot needs to be located at the specific area



Atom Type Realization Meaning

Adjacent(a, b) Fact Theory areas a and b are adjacent
(represents floorplan)

Noise(t, a) Cyber-Fact Sensor noise is detected
in the area a at time t

Motion(t, a) Cyber-Fact Sensor motion is detected
in the area a at time t

T rigger(t, a) Fact Theory triggering condition is met
in the area a at time t

Position(t, r, a) Cyber-Fact Positioning robot r is positioned
in the area a at time t

Interest(tI , I, r) Cyber-Goal Theory user at root node r is
interested in information I

Result(tI , tT , nD, I) Goal Theory an feature extraction I
needs to be computed

CompImage(tI , tT , nD, I) Goal Theory an abstract image I
needs to be computed

RawImage(tI , tT , nD, I) Goal Theory an image I
needs to be generated

MoveTo(tI , tT , nD, w, t, R, b) Goal Theory robot R needs to move to
the area b until time t

Move(tI , tT , nD, w, t, R, a, b) Cyber-Goal Positioning robot R needs to move
from area a to area b
until time t

TakeSnapshot(tI , tT , nD, t, a, I) Goal Theory a snapshot I needs to
be taken in area a
between time tT , ..., t

TakeSnapshot(tI , tT , nD, t, a, I) Cyber-Goal Camera a snapshot I needs to
be taken in area a
between time tT , ..., t

Snapshot(tI , tT , nD, ts, a, i) Cyber-Fact Camera a snapshot i is taken in
the area a at time ts

Deliver(tI , tT , nD, i, r) Cyber-Goal Root Node request information i
to be delivered to user
at root node r

Delivered(tI , tT , nD, i, r) Cyber-Fact Root Node information i has
been delivered to user
at root node r

Table 1. Interpretation of Cyber-Predicates and Theory Predicates

(the MoveTo predicate should be satisfied for this purpose) to take a snapshot.
Only after these two subgoals, Trigger and MoveTo in B6, are satisfied, the
TakeSnapshot goal can be realized by the device, which generates Snapshot as
a new fact. Now, a fact RawImage can be generated as specified by B6 and B7.

The clauses B4 and B5 show the processing of a captured image, namely,
compression and feature extraction. For example, in the condition of B5 the
Compress function takes an image I and assigns the compressed image to I ′.
Raw images are implemented as built-in objects with attributes such as time



and area information, and image processing functions such as Compress and
Extract do not alter that information.

The Adjacent predicate is used to represent the topological floor plan, which
in turn determines the network connectivity among robots. Adjacent(a, b) means
areas a and b are adjacent rooms. The forward clause F3 captures the assumption
that adjacency, and hence connectivity, is symmetric. The clause B9 also uses
the Adjacent predicate to plan the robot movement, since a Move goal can be
realized by the robot’s positioning device only if the room is adjacent.

The MoveTo goal will generate a new Position fact when it is realized. For
example, MoveTo(TI , TT , ND, 0, TT + ∆tsd, R,A) is used in the condition as a
subgoal of B6, and Position(0.0, r, a) is a fact that the local device of robot r
provides as its initial position. The clause B9 is of particular interest, since it
initiates the position change of a robot. As we see from B8, if the current position
of a robot is equal to its destination, then the MoveTo predicate is already
satisfied. Otherwise, a robot plans to move toward the destination as specified
in B9. We use W and the bound bw to limit the depth of the MoveTo subgoal
generation. The value W is also used to represent weighted goals to enable
locally weight-adaptive goal selection, a first step toward combining distributed
reasoning and optimization. When a positioning device has a local choice among
several possible MoveTo goals, it favors a MoveTo goal with a higher weight
W since higher weight indicates a goal closer to the final destination, 0 being
the maximum. Generally, other factors can influence the local goal selection of
cyber-physical devices, e.g., in this case, since R is unbound, robots closer to an
area with sufficient resources may be more likely to select a corresponding goal
if it is easier for them to realize.

In addition to forward and backward clauses, the replacement ordering is
specified in Figure 3. Under O1 we specify that an old Position fact of a robot
is replaced by a new Position fact based on their timestamps. In O2, an old
Interest goal becomes obsolete in view of a new Interest goal based on the time
tI associated with the Interest goal. Under O3 and O4, we specify orderings
so that a fact can cancel goals and facts (except itself) that have led to the
generation of such a fact. To avoid canceling goals and facts that are not related
to a specific fact, we assume that tI , tT , nD can serve as unique identifiers.
Specifically, tI and tT are intended to distinguish different interest goals and
trigger conditions, respectively. We define tI and tT as the time when an interest
goal is injected (B1) and when a trigger condition occurs (B6), respectively. The
number nD, which can be either 0 or 1, distinguishes betweenResult andDeliver
stages in B1, and their corresponding subgoals and related facts.

3.3 Sketch of a Distributed Execution

Figure 4 shows duality of two kinds of knowledge: facts and goals. Facts can be
derived from observations or by applying forward clauses. Goals can be injected
by a user or refined by applying backward clauses. Forward reasoning derives
facts from known facts. Backward reasoning refines a goal to a number of sub-
goals. Facts and goals are both disseminated in the network as shown in Figure



2. A goal can be matched with a fact anywhere in the network as illustrated with
dotted lines in Figure 4. For example, the goal Trigger(T,A) can be matched
with the fact Trigger(0.0, a) as illustrated in Figure 5.

Goal	
  

Fact	
  

Match	
  

Backward	
  
Reasoning	
  

Forward	
  
Reasoning	
  

Fig. 4. Matching between Goals and Facts

Interest(I,r)	
  

Noise(0.0,a)	
  

Result(I)	
  

CompImage(I)	
  

RawImage(I)	
  

Trigger(T,A)	
   MoveTo(0.0+Δt,R,A)	
  

TakeSnapshot(0.0+Δt,R,A)	
  

Deliver(I,r)	
  

Trigger(0.0,a)	
  

PosiDon(5.0,x,a)	
  

MoveTo(0.0+Δt,R,B)	
  

Snapshot(10.0,x,a)	
  

Move(0.0+Δt,R,B,A)	
  

Delivered(i,r)	
  

I’=Extract(I)	
  

I’=Compress(I)	
  

….	
  

PosiDon(0.0,x,b)	
  

Fig. 5. Example of Distributed Execution

Figure 5 shows a more detailed view of a possible execution of the theory
from Figure 3. For brevity, we have omitted some identifier arguments (e.g.,
TI ,TT ,ND) in the figure and in the following description unless they are needed.
At the top of Figure 5, the user injects a cyber-goal Interest(I, r) at the root
node r. At the bottom, a Noise cyber-fact (representing an observation) leads
to a fact Trigger(0.0, a) by forward reasoning. In our framework, conditions are
processed from left to right as we explained in Section 2. For example, the clause
B1 in Figure 3 applied to the goal Interest(I, r) attempts to solve Result(I) be-
fore Deliver(I, r), and Result(I) fails at first, since a fact Result(i) does not ex-
ist yet. The local reasoner feeds Result(I) as a new subgoal into the local knowl-
edge base. The knowledge base contains two goals at this point, Interest(I, r)
and Result(I). Assume that Result(I) is randomly selected from the local knowl-
edge base. Subsequently, CompImage(I) and then RawImage(I) are fed into
the knowledge base as new subgoals.

Clause B6 for RawImage(I) has three subgoals involving Trigger, MoveTo,
and TakeSnapshot. The leftmost subgoal can be finally matched with a fact
Trigger(0.0, a) that is derived from forward reasoning as depicted at the bottom
of Figure 5. Next, the MoveTo goal is further refined by applying B8 or B9. In
case the root node r is positioned in the area a, it is able to detect its position
and generate Position(0.0, r, a) as a fact. Otherwise, backward clause B9 is
used to plan for movement toward the desired area. The cyber-goal Move(w, t+
∆t,R, a, b) is realized by the local positioning device of a robot x when its current
position is a and current time is before the deadline t. As a result, a new cyber-
fact such as Position(5.0, x, a) will be generated if the robot x indeed manages
to move to a at the time 5.0 assuming a deadline t + ∆t = 20.0. In a similar
manner, the local camera device of robot x could take a snapshot of the area
and have Snapshot(10.0, a, i) generated to realize TakeSnapshot(t, a, I), which
eventually leads to the satisfaction of the RawImage(I) goal.

The goals CompImage(I) and Result(I) can in turn be solved by the robot
x, since it has a RawImage(i) available as a fact in its local knowledge base.
Alternatively, thanks to the fuly distributed nature of the reasoning process,



Compress or Extract can be solved at other nodes (e.g., depending on resource
availability) including the root node r, because RawImage(i), CompImage(i),
and Result(i) are facts and disseminated through the network. The backward
clause B3 is used to steer a robot toward the root node r unless backward clause
B2 can be applied because the delivery has already been accomplished by means
of other nodes or the robot can directly satisfy the delivery to the user (or to a
higher-layer application). In the end, Interest(I, r) is selected and satisfied by
generating a fact Delivered(i, r) at the root node r.

3.4 Discussion and Variations

The distributed nature of the framework improves the robustness of the system
under intended or unintended perturbations. For instance, the system continues
to operate correctly, i.e., within the scope of the logical theory, even after a
human disables or replaces a robot or moves it to a different location. Complete
failure of robots or some of their devices is covered as well. If the system is not
already heterogeneous from the beginning, partial failures or resource limitations
(e.g., battery charge of a robot) will eventually lead to a heterogeneous system
which is why any assumption of homogeneity is avoided.

We have also experimented with several variations of the running example.
For instance, the robot movement can be constrained by adding a condition
Movable(T,R,A) in B9 to check if a robot R can move away from an area A
at time T . Now coverage, connectivity, or energy constraints can be formulated
such as Energy(T,R,E), E ≥ e ⇒ Movable(T,R,A) to make sure that only
robots with a sufficient amount of energy participate in position changes.

Our simple example assumes that the floor plan is given in advance. However,
generalizing techniques such as SLAM (simultaneous localization and mapping)
[3], which are well established in robotics, models could continuously adapt to the
facts derived from observations, specifically the floor plan and the connectivity
model. In the case of the floor plan, observations could be simply added as facts
and SLAM could benefit from consequences generated based on a background
theory. In the case of connectivity, the model parameters could be adapted to
match the facts generated by neighbor discovery or even (distributed) signal
strength measurements if available. SLAM could be generalized to a distributed
mapping of signal strength or more generally the wireless spectrum for the pur-
pose of network optimization [10]. An interesting direction would be to explore
how such algorithms can be developed in a declarative framework.

4 Related Work

The idea of applying declarative techniques in communication and networking is
not new. A large body of work exists in the areas of specification, analysis, and
synthesis of networking policies and protocols, e.g., in the context of security,
routing, or dynamic spectrum access.

Declarative querying of sensor networks has been studied through several
approaches, for instance in [18], which composes services on the fly and in a



goal-driven fashion using a concept of semantic streams. Declarative techniques
to specify destinations have been used in disruption-tolerant networking [2]. A
variant of Datalog has been applied to the declarative specification of peer-to-
peer protocols in the P2 system [12]. Based on this work, [4] develops a very
interesting approach to declarative sensor networks that can transmit generated
facts to specific neighbors and can also utilize knowledge about neighbors to
specify, e.g., routing algorithms. The promising idea of providing an abstraction
that views a system as a single asset (an ensemble) rather then programming its
individual components has been explored in several papers. Most interesting, the
approach adapted in Meld [1] extends the ideas from declarative sensor networks
to modular robots, i.e., ensembles of robots with inter-robot communication lim-
ited to immediate neighbors. As an example, the movement of a composite robot
emerges as a result of the coordinated interaction between its homogeneous robot
modules. An earlier functional approach to programming sensor networks is the
Regiment macro-programming system [13], which uses a stream-based data-flow
language. Most of the work focuses not on the theoretical foundations, but on
the efficient compilation into a conventional programming language, which is
one possible approach for practical deployment. Another approach, which we
sometimes refer to as embedded formal methods, is the use of an effient reasoning
engine in embedded systems such as software-defined radios [6] or routers [16]
as explored in the context of disruption-tolerant networking.

In this paper, we have presented first steps toward combining forward and
backward reasoning in a fully distributed fashion with knowledge that is trans-
parently shared. A fixed or known neighborhood is not assumed in our more
abstract approach, and the use and dissemination of both facts and goals aims
at general cyber-physical systems with distributed actuation, and hence leads
us beyond sensor networks, in particular to dynamic sensor/actuator networks
that are, unlike ensembles, inherently heterogeneous.

5 Conclusions and Future Work

We have presented a distributed computational and logical foundation for declar-
ative control of NCPS. Our approach is based on distributed knowledge sharing
and supports a broad spectrum of operations between autonomy and cooperation
with minimum assumptions on network connectivity. Specifically, we developed
a distributed inference system based on Horn clause logic with built-ins and
cyber-predicates that can capture the interaction with the physical world. In
the underlying distributed computing model, facts and goals are represented
as knowledge that can be shared opportunistically and guide the distributed
reasoning process. The duality between facts and goals extends to the proof sys-
tem, which treats forward and backward reasoning on an equal footing. Essential
properties of our logical framework, such as soundness, completeness, and ter-
mination conditions, have been established under very general conditions, which
will be the subject of a future paper.

A key feature of our distributed logical framework is its dynamic and inter-
active nature, meaning that facts represent observations, and goals can lead to



changes in the environment that will manifest themselves as new facts flowing
into the system. Whether an original local goal can be solved is often secondary,
because the combined effect of a set of local goals on the cyber-physical system
and its nondeterministic dynamics can lead to solutions of higher-level goals even
without requiring solutions of all lower levels. To cope with system perturbations
and unexpected failures, it is essential that local goals are not eliminated as soon
as they are satisfied, because their main purpose, namely steering the system
toward the satisfaction of a high-level property, may not have been achieved yet.
Only after certain high-level goals are reached, auxiliary goals can be eliminated
so that they do not have to comptete with new goals that steer the system
toward the next high-level objective. Real-world systems are more complex, be-
cause such processes take place concurrently at multiple levels of abstraction
and at different time scales. Our combination of a logic with an underlying par-
tial order facilitates a new declarative specification style, which is particularly
suitable for open distributed systems that can interact with a cooperative or
uncooperative environment.

For experimentation, we have implemented a prototype of our logical frame-
work that heavily relies on randomization techniques to achieve decoupling and
implement locally fair nondeterminism that is used in our proof system to cover a
broad range of possible implementations with different reasoning strategies. Our
experiments with the simulation of an abstract networked multirobot system are
a snapshot of ongoing work, but illustrate the application and the features of our
framework in a simplified but nontrivial setting, and indicate possible directions
for future work.

For realistic experiments, we plan to make use of existing robotic abstraction
layers, such as the open-source Player/Stage/Gazebo Project [15]. Experiments
in a real-world multirobot testbed similar to that of SRI’s Centibots [14] and
Commbots [8] projects are another possible direction. Beyond multirobot teams,
we see opportunities to apply (extensions of) our framework to other unmanned
autonomous vehicles, networks of pico-satellites [17], instrumented smart spaces
[11], ad hoc social networking in a cyber-physical (instrumented) world, and
next-generation adaptive networks and cognitive radios [9], where the devices
exhibit a high degree of flexibility and the network can be morphed to adapt
to user objectives and policies. Clearly, a lot of work remains ahead, because
many of these applications require the combination of distributed reasoning with
distributed optimization, and the use of weighted goals in our example is only a
very first step in this direction.

References

1. Michael P. Ashley-Rollman, Seth Copen Goldstein, Peter Lee, Todd C. Mowry, and
Padmanabhan Pillai. Meld: A declarative approach to programming ensembles. In
Proc. of the IEEE International Conference on Intelligent Robots and Systems
(IROS ’07), October 2007.

2. P. Basu, R. Krishnan, and D. W. Brown. Persistent delivery with deferred binding
to descriptively named destinations. In Proc. of IEEE Military Communications
Conference, 2008.



3. Howie Choset and K. Nagatani. Topological simultaneous localization and mapping
(SLAM): Toward exact localization without explicit localization. IEEE Trans. on
Robotics and Automation, 17(1):125–137, April 2001.

4. David Chu, Lucian Popa, Arsalan Tavakoli, Joseph M. Hellerstein, Philip Levis,
Scott Shenker, and Ion Stoica. The design and implementation of a declarative
sensor network system. In SenSys ’07: Proc. of the 5th International Conference
on Embedded Networked Sensor Systems, pages 175–188, 2007.

5. Falko Dressler. Self-Organization in Sensor and Actor Networks. Wiley, 2008.
6. Daniel Elenius, Grit Denker, and Mark-Oliver Stehr. A semantic web reasoner for

rules, equations and constraints. In RR ’08: Proc. of the 2nd International Con-
ference on Web Reasoning and Rule Systems, pages 135–149, Berlin, Heidelberg,
2008. Springer-Verlag.

7. Stephen Farrell and V. Cahill. Delay- and Disruption-Tolerant Networking. Artech
House, Inc., Norwood, MA, USA, 2006.

8. Brian P. Gerkey, Roger Mailler, and Benoit Morisset. Commbots: Distributed con-
trol of mobile communication relays. In Proc. of the AAAI Workshop on Auction
Mechanisms for Robot Coordination (AuctionBots), pages 51–57, 2006.

9. Gregory D. Troxel et al. Enabling open-source cognitively-controlled collaboration
among software-defined radio nodes. Comput. Netw., 52(4):898–911, 2008.

10. Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Nonlinear constraint
network optimization for efficient map learning. Trans. Intell. Transport. Sys.,
10(3):428–439, 2009.

11. M. Kim, D. Massaguer, N. Dutt, S. Mehrotra, S. Ren, M.-O. Stehr, C. Talcott,
and N. Venkatasubramanian. A semantic framework for reconfiguration of instru-
mented cyber physical spaces. In Workshop on Event-based Semantics, CPS Week,
2008.

12. Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M.
Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion Sto-
ica. Declarative networking. Commun. ACM, 52(11):87–95, 2009.

13. Ryan Newton, Greg Morrisett, and Matt Welsh. The regiment macroprogramming
system. In IPSN ’07: Proc. of the 6th International Conference on Information
Processing in Sensor Networks, pages 489–498, New York, NY, USA, 2007. ACM.

14. Charles L. Ortiz, Régis Vincent, and Benoit Morisset. Task inference and dis-
tributed task management in the Centibots robotic system. In AAMAS ’05: Proc.
of the Fourth International Joint Conference on Autonomous Agents and Multia-
gent Systems, pages 860–867, 2005.

15. Radu Bogdan Rusu, Alexis Maldonado, Michael Beetz, and Brian Gerkey. Extend-
ing Player/Stage/Gazebo towards cognitive robots acting in ubiquitous sensor-
equipped environments. In ICRA ’07: Proc. of the IEEE International Conference
on Robotics and Automation Workshop for Network Robot Systems, 2007.

16. Mark-Oliver Stehr and Carolyn Talcott. Planning and learning algorithms for rout-
ing in disruption-tolerant networks. In Proc. of IEEE Military Communications
Conference, 2008.

17. S. Toorian, K. Diaz, and S. Lee. The CubeSet approach to space access. In
Aerospace Conference, IEEE, 2008.

18. Kamin Whitehouse, Feng Zhao, and Jie Liu. Semantic streams: A framework
for composable semantic interpretation of sensor data. In Proc. of the European
Workshop on Wireless Sensor Networks, pages 5–20. EWSN, 2006.


