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Abstract. The xTune framework employs iterative tuning using light-
weight formal verification at runtime with feedback for dynamic adapta-
tion of mobile real-time embedded systems. To enable trade-off analysis
across multiple layers of abstraction and predict the possible property
violations as the system evolves dynamically over time, an executable
formal specification is developed for each layer of the system under con-
sideration. The formal specification is then analyzed using statistical
analysis, to determine the impact of various policies for achieving a vari-
ety of end-to-end properties in a quantifiable manner. The integration of
formal analysis with dynamic behavior from system execution results in
a feedback loop that enables model refinement and further optimization
of policies and parameters. Finally, we propose a composition method
for coordinated interaction of optimizers at different abstraction layers.
The core idea of our approach is that each participating optimizer can
restrict its own parameters and exchange refined parameters with its as-
sociated layers. We also introduce sample application domains for future
research directions.

1 Vision

An overarching characteristic of next-generation mobile applications is that they
are often data intensive and rich in multimedia content with images, video,
and audio data that is fused together from disparate distributed information
sources. The content-rich data is expected to be obtained from, delivered to,
and processed on resource-constrained devices (sensors, PDAs, cellular handsets)
carried by users in highly dynamic environments (e.g., delay, jitter, erroneous
transmission). Clearly, in such a scenario, the dual goals of ensuring adequate
application QoS (Quality of Service) and optimizing resource utilization in the
network, devices, and content servers present significant challenges.
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Specific adaptations have been developed within each abstraction layer (ap-
plication, middleware, OS, hardware) to perform the QoS provision on resource
limited devices. For example, the OS adaptations typically change the allocation
and scheduling in response to application and resource variations [21,4]. We refer
to these individual adaptation techniques as policies. Next, we identify param-
eters to manipulate the behavior of a policy. For example, the OS layer policy
can be fine tuned by selecting the appropriate tolerance level of QoS in terms of
task completion that satisfies its deadline [4].

Understanding interactions across layers and exploiting them in such systems
is essential since policy/parameter settings at one layer can have a significant
impact on the behavior at other layers. A cross-layer approach is needed to deal
with complexity of such systems and the dynamic environment in which such
applications execute. Our prior experience (FORGE [3,13]) with developing algo-
rithms for cross-layer adaptation based on QoS/energy trade-offs in distributed
mobile multimedia applications has given us valuable insights into the issues to
be addressed. In particular, the middleware framework DYNAMO [14] performs
joint adaptation at the proxy server to drive on-device adaptation for end-to-
end adaptations such as dynamic video transcoding and traffic shaping. GRACE
[22] also aims to trade off multimedia quality against energy by introducing a
hierarchy of global (i.e., coordinating all layers) and internal (i.e., within the
individual layers) adaptation.

While existing work has shown the effectiveness of cross-layer adaptation,
many of these efforts try to address the average case behavior without verifiable
guarantees on their solutions. As the system evolves dynamically over time, the
applications need a mechanism that can be used to formally prove various prop-
erties pertaining to energy usage, delays, and so on for any given configuration
of policies/parameters to derive, analyze, and validate cross-layer adaptation.
Our hypothesis is that a comprehensive design methodology based on a formal
reasoning framework will provide an effective basis for tuning mobile embedded
systems under a multitude of constraints.

To illustrate the challenges introduced by the cross-layer nature of mobile
real-time embedded applications, consider the scenario of a mobile device exe-
cuting a video conferencing application carried by a user moving from Zone0 to
Zone4 in Figure 1. The objective is to support QoS needs by instantiation and
tuning of the appropriate policy at each layer with its parameter values (com-
plexity). In particular, we strive to achieve quantifiable guarantees with regard
to the quality of selected policies and parameters (verification). Last, when a
user moves to a different zone, we need a way of reflecting it for iterative tun-
ing as well as static instantiation of policies and parameters (dynamicity). We
elaborate these challenges below.

– Complexity: Given a set of application needs and a system configuration,
we need to choose appropriate operating points, through selection of both
the policy and the parameter settings at each layer as depicted in Figure 1.
Considering the composite effect of multiple policies at each layer demands
a cross-layer approach. A holistic approach to understanding cross-layer in-
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Fig. 1. Challenges: Instantiation and tuning of the appropriate polices and correspond-
ing parameter values (complexity) with quantifiable guarantee (verification) while re-
flecting changes in the system and environment (dynamicity)

teraction in such systems is essential, since policies made at one layer can
(sometimes adversely) affect behavior at other layers.

– Verification: During this process, we need to generate a set of candidate
policies with possible parameter settings based on the trade-off analysis to
determine the best feasible choice among these candidates. If no policy can
satisfy the requirements, we must determine how to relax the constraints and
may need to repeat policy selection. For such informed selection, it is essential
to perform bound/sensitivity analysis on the impact of the policy/parameter
that can provide some notion of guarantee on the solution.

– Dynamicity: The system and environment may keep evolving as a user
moves from one zone to another as depicted in Figure 1, requiring dy-
namic policy/parameter analysis and tuning. During operation, policy se-
lection and parameter tuning requires the procedure to determine (i) which
changes demand our attention, (ii) if it has a significant impact on tim-
ing/QoS/performance, and (iii) how the policy/parameter should be recom-
puted.

To ensure adequate application QoS and resource utilization with timing and
reliability concerns, the ability to compensate on the fly for property violations
at different layers of abstraction is of paramount importance since there are
several sources of unpredictability (e.g., delay, packet drop, user mobility) in a
mobile embedded system that introduce nondeterminism. Furthermore, system-
level optimizations for effective utilization of distributed resources can interfere
with the properties of executing applications. For instance, dynamic voltage
scaling (DVS) mechanisms slow down processors to achieve power savings, but
at the cost of increased execution times for tasks. Many applications have flexible
QoS needs that dictate how tolerant they are to delays and errors — the lack of
stringent timing needs can be adaptively exploited for better end-to-end resource
utilization.



We enumerate sample questions we would like to answer:

1. How does one decide what policies and parameters to assign to each ab-
straction layer to minimize the overall energy consumption while providing
a sufficient level of QoS with verifiable/quantifiable solution quality? This
must be achieved for an energy-constrained mobile embedded device dealing
with displaying delay-sensitive multimedia data over a lossy network.

2. How can we exploit system state for dynamic adaptations? When the system
evolves over time, how can we accommodate it? We need a way of reflecting
dynamics. Specifically, this requires determining which attribute can be a
trigger for adaptations and how to refine our model.

3. How can we support cross-layer adaptation while individual policies perform
their own optimization? Unlike existing research literature that relies on a
global coordinator at a certain layer, we address the issue of how to support
cross-layer adaptation while allowing autonomy of individual layers’ policies.

To lend focus, we (i) choose mobile multimedia as an application domain, and
(ii) select performance criteria that require adaptations such as device residual
energy, application QoS/timing needs, and reliable content delivery. A prelim-
inary study [5] demonstrated the need for integration of formal methods with
experimentally based cross-layer optimization techniques [3,13] for such applica-
tion domain and performance criterion. Within the xTune framework, we support
compositional online optimization of individual policies at each layer [10]. xTune
employs statistical formal methods to analyze given cross-layered optimization
policies with a quantifiable guarantee on the solution quality [9].

2 Overview of Technical Approach

Our approach starts with a formal specification of the abstraction layers and
subsequent statistical evaluation to verify probabilistic properties. We propose
a lightweight formal methodology in the sense that we exploit statistical tech-
niques on a system model represented in an executable formal specification. The
proposed approach provides statistically meaningful answers from on-demand
trace generation rather than keeping the entire spectrum of possible traces.

Our approach supports iterative tuning and compositional cross-layer opti-
mization and can deal with quantifiable guarantees, dynamicity, and complexity
issues:

– Quantifiable Solution Quality: Our work examines the impact of vari-
ous resource management techniques on end-to-end timing/QoS properties
based on statistical evaluation for verifiable/quantifiable solutions, and en-
ables informed selection of resource management policies along with rules
for instantiation of parameters that derive the policies.

– Iterative Tuning: We enhance such lightweight formal modeling and anal-
ysis by integrating it with observations of system execution behavior to
achieve adaptive reasoning by providing more precise information on cur-
rent execution and future state.
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Fig. 2. xTune Cross-layer System Tuning Framework

– Compositional Cross-Layer Optimization: We propose a compositional
approach for the cross-layer optimization that avoids high overhead intro-
duced by traditional global approaches; our compositional approach allows
sublayers’ optimization results to be used by the other sublayer optimizers
as constraints.

Our work is validated and tested in the context of distributed mobile mul-
timedia applications that have wide consumer interest. Using multimedia as a
demonstrator, we have developed general principles and a framework. In many
contexts, enabling verifiable adaptation in terms of timing/QoS guarantees pro-
vides an additional degree of confidence to improve other cross-layer reliability
measures in the context of multimedia applications.

3 Supporting Model-Based Composition with xTune

The xTune framework uses iterative system tuning to support adaptations. In
particular, our approach tunes the parameters in a compositional manner allow-
ing coordinated interaction among sublayer optimizers. The xTune framework
initially performs property checking and quantitative analysis of candidate pol-
icy/parameter settings via formal executable specifications followed by statistical
techniques. Iterative tuning allows model refinement from up-to-date and contin-
uous observations of system execution behavior. Furthermore, the results can be
used to improve adaptation by verifying given system properties or by relaxing
constraints.

Figure 2 presents the overall flow of our approach. Box A represents the for-
mal modeling. The core of our formal modeling approach is to develop formal
executable models of system components at each layer of interest. These models
express functionality, timing, and other resource considerations at the appro-
priate level of detail and using appropriate interaction mechanisms (clock ticks,



synchronous or asynchronous messages). Models of different layers are analyzed
in isolation and composed to form cross-layer specifications. We use the Maude
system for developing and analyzing formal specifications. One advantage of
formal executable models is that they can be subjected to a wide range of for-
mal analysis, including single execution scenarios, search for executions leading
to states of interest, and model checking to understand properties of execution
paths.

Box B in Figure 2 shows the evaluation phase of given specifications to gener-
ate statistics for properties and values of interest. Specifically, we have developed
new analysis techniques (statistical model checking and statistical quantitative
analysis) that combine statistical and formal methods, and applied them to a
case study of a videophone application [9]. We have developed a compositional
cross-layer optimization by coordinated interaction among local (sublayer) opti-
mizers through constraint refinement. The constraint refinement allows encapsu-
lation of detailed system state information. In compositional optimization, each
local optimizer uses refinement results of other optimizers as its constraints. The
constraint representation can be used as the generic interface among different
local optimizers, leading to substantial improvement of solution quality at low
complexity.

Using such models and analysis, tools can be developed to achieve adaptive
refinement of an end-to-end system specification into appropriate policy/parameter
settings. We use an iterative tuning strategy that combines formal methods (veri-
fication) with dynamic system execution behavior (obtained by either simulation
or implementation). The execution behavior from system realization (Box C in
Figure 2) is fed back into the formal modeling to refine the executable spec-
ification (model refinement). In addition, we can assure the quality of a new
policy/parameter constructed by the controller. In Figure 2, pre-testing on a
system realization can lead to improvements because typically the formal model
cannot cover all the possible implementation details of a real system.

4 Model-based Compositional Cross-Layer Optimization

4.1 Understanding the Issue of Cross-Layer Optimization

To enhance system utility capturing the effectiveness of the settings relative to
the user and system objectives in the context of mobile applications, researchers
have proposed a wide variety of techniques at different system layers. Note that
one key performance metric for such techniques is how well they manage utility
under a multitude of constraints in a dynamic situation. Since utility comes
with cost in terms of performance, energy consumption, storage requirements,
and bandwidth used, one needs to optimize utility in the context of the operating
conditions. However, most optimization techniques consider only a single system
layer, remaining unaware of the strategies employed in the other layers. A cross-
layer approach that is cognizant of features, limitations, and dynamic changes
at each layer enables better optimization than a straightforward composition
of individual layers, because solutions for each individual layer can be globally



suboptimal. To coordinate the individual techniques in a cross-layer manner
based on the operating condition, one needs to

– Quantify the effect of various optimization policies at each layer on system
properties

– Explore methods of taking the impact of each policy into account and com-
pensating for it at other layers

Abstraction and Model Refinement We develop a formal methodology to
specify and analyze features/constraints/needs at each layer and to correlate
them across layers to realize cross-layer tuning. Our approach is to start with an
executable formal model based on rewriting logic specifying a space of possible
behaviors. In [9,8,10], we use the Maude [2] rewriting logic formalism to develop
executable specifications of each layer in isolation and in composition as well as
representing their timed behavior.

In most cases, the model cannot be fully characterized in advance and can
change while the system is in operation, which is why model refinement is an
essential component of our architecture. To reflect execution dynamics, we per-
form model refinement from observed system execution behavior by equipping
the controller with a feedback loop to experiment with the system realization [8].
The system can start with a default model (e.g., a model with default parame-
ters about execution times), which is incrementally refined during the operation
of the system. Models can be passively refined by observations — e.g., from
CPU usage, while the system is executing its primary function or mission — or
it can be actively pursued by exploration, which may require physical actions.
Often, combinations of the passive and active modes of model refinement will be
needed for acceptable performance with low exploration overhead. Within our
framework, there are at least two roles for feedback from observation of system
execution behavior: it can be used to improve the model (to make it more accu-
rately match the real environment) and it can be used to directly improve the
policy. We define the former as long-term tuning, and the latter as short-term
tuning. In the xTune framework, we support long-term tuning through model
refinement without active exploration.

Statistical Analysis To analyze the behavior of the system (e.g., in terms of
discrete or continuous observable properties) in a probabilistic sense, we have im-
plemented two lightweight formal analysis techniques: statistical model checking
and statistical quantitative analysis. To formally verify certain properties, tradi-
tional approaches maintain tree-like structures of the entire spectrum of possible
traces with probability measures and exhaustively evaluate the system, which
leads to excessive memory requirements that limit scalability of the solution.
In contrast, the xTune approach is a lightweight formal method, since the opti-
mization problem for adaptation does not require an exact solution. This allows
us to generate traces on demand and provide statistically meaningful answers,
unlike exhaustive numerical methods, which aim at exact solutions.



In [9], we extended the quantitative approach of [1] by an on-demand sample
generation that can compute the sample size sufficient to reach confidence in the
normality of data, and then utilize the normal distribution to obtain the error
bound and confidence interval for quantitative analysis. The xTune framework
also implements two statistical model-checking techniques: the sequential prob-
ability ratio test [20] and black-box testing [16]. Given a property, the sequential
probability ratio test [20] continues sample generation until its answer about
accepting or rejecting the hypothesis can be guaranteed to be correct within the
required error bounds. Black-box testing [16] instead computes the statistical
significance (p-value) for a given number of samples without having any control
over the execution. These statistical techniques can be used to quantify statisti-
cal performance (e.g., execution times) with a specific confidence and to verify
properties (e.g., battery depletion), which may be satisfied only in a probabilistic
sense. They provide a quantifiable solution to enable policy-based operation and
adaptation as well as parameter setting and adjustment for selected policies.

4.2 Constraint Refinement and Composition

In the xTune framework, constraint-based optimization is guided by a model of
the system to be optimized. The compositional optimization is purely generic in
the sense that we can construct an interface language for generic composition
(e.g., negotiation and contract), which can be used with heterogeneous applica-
tion specifications. An interesting extension would be distributed compositional
techniques that integrate randomization and symbolic reasoning. For that pur-
pose, the constraint language needs to be expressive enough to support strategies
for distributed cooperative optimization.

In the following, we describe our composition method. First, we explain the
idea of constraint refinement for robust optimization. Then, we define our compo-
sitional cross-layer optimization based on this representation. Our experiments
show that the encapsulation of the local optimization at each sublayer leads to
substantial improvement of solution quality at low complexity [10].

Constraint Refinement Given an optimization problem with the model M

and the parameter space P, our approach attempts to quickly find a region
P ∈ R(P)3 containing a nearly optimal solution by the following heuristics:

1. Recursive Resampling: We obtain observables by Monte Carlo sampling
over the current region Pi ∈ R(P) using the model M. Subsequently, we
refine Pi to Pi+1 such that the utility is maximized based on the samples
available, and size(Pi+1) = size(Pi) · τi, where τi (0.0 < τi < 1.0) represents
the i-th refinement ratio. The new region Pi+1 is then used as the current
region and the process is repeated.

3 Region P ∈ R(P)⇐⇒ P ⊆ P is a closed convex set, (i.e., if (x, z ∈ P )
V

(x < y < z),
then (y ∈ P )) and P is finitely representable (e.g., interval-based).
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Compositional Cross-layer Optimization

2. Interval-based Description: For simplicity we use regions defined by the
Cartesian product of intervals for each of the parameters. For example, an
application layer region might be

PApp = [Param1min ,Param1max ]× [Param2min ,Param2max ].

More expressive constraint languages are possible in our framework and
should be investigated in the future.

3. Generic Constraint-based Interface: The input (Pi) and output (Pi+1)
of each refinement step are regions (infinite sets), and our approach lifts the
level of abstraction by treating Pi as constraints (finite symbolic represen-
tations) when we restrict the resampling space to find Pi+1.

The process of constraint refinement can be stated as a chain

P = P0 ⊇ P1 ⊇ P2 ⊇ · · · ⊇ Pt = P

where P is the set of admissible parameter settings at termination after t itera-
tions.

Our experimental results indicate that the constraint refinement can be ef-
fectively used for robust parameter selection by refining spectrum of reliable
policies and parameters. One key feature of this approach is that we can co-
ordinate parallel composition of individual optimizers as illustrated in Figure
3(a). Each sublayer optimizer controls a subset of parameters. For instance, the
application layer optimizer only restricts its own parameters (PApp), while the
OS layer optimizer only restricts OS-related parameters (POS). The constraints
Pi are used as inputs and outputs of individual (sublayer) optimizers.

Composition through constraint refinement reduces the possibility of con-
flicts because of the more general notion of a solution compared with traditional
single-point optimizers. More important, constraint refinement enables simple
yet powerful cross-layer optimization via composition (Figure 3(b)), as discussed
below.
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Online Cross-Layer Optimization The primary goal of our framework is to
enable online cross-layer optimization that provides the refined parameter set-
tings from which a system can select any suitable operating point within the
region as explained above. The constraint refinement allows encapsulation of
detailed system optimization information. This opens up the possibility of co-
ordinated interaction (composition) instead of relying on a global view. Figures
4(a), 4(b), and 3(b) compare the global vs. local vs. compositional approach
for cross-layer optimization, respectively. The key idea underlying the composi-
tional optimization is to exchange the local optimizer’s decision for an informed
selection. This allows us to achieve a balance between global optimization’s full
awareness with high overhead and local optimization’s minimal complexity with
poor solution quality.

The sampling strategy explores the search space of potential solutions by
constraining the behavior of local optimizers in accordance with the other opti-
mizers’ refinement results. Thus, the constraint language can serve as a generic
interface among different local optimizers, leading to improvements of solution
quality and convergence speed. In comparison, a global cross-layer optimizer that
resides at a certain layer that is fully aware of the complex system dynamics can
introduce unacceptable overhead.

A similar strategy can be applied to other optimization techniques (e.g., sim-
ulated annealing [11]). The strict convergence to a single point, however, may
not be achievable in the sense that at each step the intermediate parameter set-
tings may be totally different from the previous iteration. These types of abrupt
and/or constant parameter changes are not desirable in practice. Constraint re-
finement can still undergo constant parameter changes, but with lower impact
since any parameter settings (pi) within the region (Pi) can be chosen, and the
probability that pi is valid after the next iteration (pi ∈ Pi+1) is proportional to
the refinement ratio. We can also easily see that the situation will worsen with
conflicting local objectives.

Our approach is not limited to a specific constraint refinement protocol
scheme. Compositional optimization through constraint refinement enables a



controller to coordinate existing optimizers (possibly distributed) that can ac-
commodate different objectives by treating them as black boxes, which in turn
permits them to operate in parallel. Different solutions obtained concurrently
can be unified by taking the intersection, which corresponds to the conjunction
at the symbolic level.

5 Sample Application Domains

Here we lay out possible future research directions that we believe can benefit
from model-based compositional cross-layer optimization.

5.1 Networked Cyber-Physical Systems

As elaborated in [18], system control and optimization in networked cyber-
physical systems (NCPS) is a challenging task. Traditional optimization tech-
niques that strive for optimal solutions based on precise models are not suitable
for most real-world problems, where models have many dimensions of uncer-
tainty, and optimality is neither desirable nor achievable. What is needed in
practice are strategies to find acceptable and robust solutions that are sufficient
to achieve the goal while taking into account the limitations of the models and
of the available resources. Capabilities to explore the state space of NCPS have
fundamental limitations. The exploration can be expensive in terms of compu-
tation, and physical actions can be costly in terms of time, energy, and other
resources or even harmful to humans or to the environment.

Furthermore, the overall goal of NCPS cannot be simply decomposed top-
down into goals that are optimized locally at each node and each layer, because
solutions may require cooperation across layers and across nodes. It is important
to keep in mind that even abstract models can be quite complex with multiple
and nonoverlapping regions of potential solutions so that purely local gradient-
based optimization strategies are clearly insufficient. Given that modifications
in parameters (e.g., node position) cannot always be achieved instantaneously,
reaching a new improved solution may require transition through intermediate
states with lower utility (e.g., lower performance). The distributed nature of
NCPS, the limited communication capabilities, the uncertainties in the environ-
ment, and the possibility of failures further exacerbate this situation, because
system operation is inherently asynchronous.

On the other hand, NCPS with a large number of nodes offers many ad-
vantages including fault tolerance, distributed sensing, coordinated actions, and
inherent parallelism for computational processes. Technically, a vast range of ca-
pabilities is already available at the hardware level, but the challenge to design a
software architecture that can exploit those capabilities and to present them as
a single cyber-physical system is far from being met. In this regard, [6] provides
a prototype of a distributed logical framework based on the partially ordered
knowledge-sharing model and an API for cyber-physical devices that enables
interaction with the physical world (see http://ncps.csl.sri.com for details).

http://ncps.csl.sri.com


The proposed API provides a uniform abstraction for a wide range of NCPS
applications, especially those concerned with distributed sensing, optimization,
and control. Using the API with or without a distributed logic, NCPS can be
programmed to adapt to a wide range of operating points between autonomy
and cooperation to overcome limitations in connectivity and resources, as well
as uncertainties and failures [6,17,7]. Along this line of research, our method-
ology can be extended to consider multiple distributed cyber-physical nodes as
local optimizers (horizontal composition in addition to vertical (layered) com-
position). To capture the distributed and heterogeneous nature of NCPS, the
compositional optimization strategies need to be generalized to include com-
position among various local optimizers across layers as well as across nodes,
leading us to distributed cooperative constraint refinement.

5.2 Dependable Instrumented Cyber-Physical Spaces

The ability to integrate sensing and communication platforms with large-scale
distributed storage/computing facilities and software services enables the cre-
ation of instrumented cyber-physical spaces (ICPS). Applications dictate application-
specific constraints on the timeliness and accuracy/quality at which information
must be captured and delivered from the infrastructure. Repurposing the in-
frastructure and its software/hardware resources dynamically to realize different
application functionalities presents challenges. In this context, it is natural to de-
velop a framework that can customize the operation of ICPS to meet the varying
needs of applications and users, based on an observe-analyze-adapt philosophy
[12]. The xTune formal modeling and analysis framework can be extended to
support specification of properties at both infrastructure and application levels,
including multidimensional QoS properties and the relationships among them.
Tuning processes at both the application and infrastructure levels can use com-
positional optimization to derive and validate the tuning and adaptation factors
(sensors, policies, parameters).

Among many crosscutting concerns (e.g., security, privacy), let us take an
example of cross-layer and end-to-end dependability issues. ICPS should be de-
pendable despite disruptions/failures in sensing, communication, and computa-
tion. Dependability of ICPS thus includes attributes such as availability, reliabil-
ity, maintainability, safety, and integrity [15]. Realizing dependability requires
monitoring and management of parameters at different layers of the system.
Composition of nonfunctional needs such as dependability cannot be addressed
in a single layer or device due to the inherent dependencies/trade-offs among
them (e.g., techniques at any layer to improve dependability usually have im-
plications on timing and power.). At the infrastructure level, a broad array of
devices is interconnected by various communication channels (e.g., Ethernet,
cellular, Wi-Fi) with distributed middleware support to execute cyber-physical
applications. We view each device as a vertically layered architecture consisting
of application, middleware, network, OS, and hardware layers. At each layer,
the system can enforce policies that are (i) independent of other layers, (ii) a



vertical composition of policies on the device across layers, and (iii) a horizontal
composition of policies distributed across nodes.

To illustrate dependability across layers, consider the following example. If
the data has high importance with a short expiration time, the middleware layer
must adjust the frequency of dissemination appropriately. Similarly, CPU slow-
down to control thermal runaway (hotspot) at the hardware layer may increase
deadline misses in the OS task scheduling layer; this anomaly bubbles up to
the application layer and is manifested as a failure to provide up-to-date data.
Furthermore, deadline misses may lead to the delayed delivery of the network
packets, which in turn results in a failure for timely delivery of messages. From a
dependability perspective, both permanent and transient errors need to be mod-
eled and mitigated. For instance, heavy utilization of the device hardware (e.g.,
for peak performance) can result in excessively high temperatures that may cause
thermal errors; to alleviate this, we may trigger task replication or re-execution
at the OS layer. The mitigation strategy might cause packet loss due to buffer
overflow, since it requires more processing time. Under such circumstances, the
dynamic choice of routing algorithms and their parameters needs to consider
higher-layer QoS constraints, (partial) knowledge about the network (e.g., sen-
sor density, coverage), heterogeneous devices (with different error sources), and
operational context (e.g., prioritizing information flow).

5.3 Physical Infrastructure Protection

Physical infrastructure availability relies on the process control systems that can
gather, handle, and share real-time data on critical processes from and to net-
worked entities. For example, wireless sensor networks are now being applied
in the industrial automation to lower systems and infrastructure costs, improve
process safety, and guarantee regulatory compliance. Harsh environments such
as remote areas with potential toxic contamination where mobile ad hoc net-
works can be the only viable means for communications and information access
often necessitate the use of mobile nodes (e.g., surveillance robots with cam-
era and position-changing capability). Optimized control based on continuous
observation is an integral part because availability is becoming a fundamental
concern to reduce the vulnerabilities of such systems.

Let us take an example of a surveillance system, consisting of a collection
of sensors deployed at fixed locations together with mobile nodes, that moni-
tors critical national infrastructure by distributed sensing and actuating. Due
to possible jamming attacks and mobility of nodes, the wireless sensors and
mobile nodes need to communicate via opportunistic links that enable the shar-
ing and evaluation of data such as video streams in the presence of unstable
connectivity. The challenge here is enabling networked entities to respond to
dynamic situations in an informed, timely, and collaborative manner so that the
physical infrastructure can safely recover after a cyber-disruption. The idea of
automated verification and configuration of situation- and resource-aware cross-
layer security needs to be investigated since security goals at each layer can be
counterproductive and even harmful.



Furthermore, the implementation of security goals is constrained by the avail-
able resources. Various solutions ranging from event-driven or on-demand power
cycling to reduce transmission power are possible, but the security effects cannot
be understood at a single layer. This is why security should be viewed as a mul-
tidimensional cross-layer objective for which reasonable trade-offs must be found
in a situation- and resource-aware manner. The resources of the wireless sensors
and mobile nodes need to be provisioned to ensure a certain level of security while
avoiding the depletion of residual energy and avoiding congestion. This requires
the dynamic configuration of individual (seemingly independent) techniques to
compose the appropriate protection against attack situations while also mak-
ing optimal use of resources. By supporting specification of security properties
across layers and exploiting the composition methods among them, the response
to cyber-disruption is adapted to the situation and resource constraints.

6 Concluding Remarks

We have elaborated on the need for a unified framework for analyzing, deriv-
ing, and validating cross-layer adaptations for mobile applications operating in
highly dynamic environments. Specifically, we have presented the design princi-
ples and implementation of the xTune framework [19]. We have developed formal
analytical methods for understanding cross-layer optimization issues in mobile
real-time embedded systems that incorporate resource-limited devices, and to in-
tegrate these methods into the design and adaptation processes for such systems.
We have focused on the primary problem of identifying how to tune policies and
parameters for cross-layer adaptation that aims to manage resource usage, and
to satisfy the multifaceted constraints while providing a sufficient level of QoS
with a verifiable/quantifiable solution quality.

We have presented our approach of iterative system tuning for mobile real-
time embedded systems that has been applied in a case study treating the video-
phone mode of a multimode multimedia terminal. The integration of lightweight
formal methods with the observation of dynamic system execution results in
a feedback loop that includes the formal models, simulation, and monitoring of
running systems. Within the xTune framework, we proposed compositional cross-
layer optimization to achieve robust and sufficiently good parameter settings
with low overhead by coordinated interaction among local optimizers through
refinement of constraints that can be used further as a basis of local optimization.

The underlying formal executable models are moderately simple to develop,
and their analysis is feasible. The experiments on a fairly complex case study
demonstrate the applicability of our framework to cross-layer adaptation of mo-
bile real-time embedded systems. The work on xTune complements our previous
work on experimentally based cross-layer strategies (FORGE [3]) and conclu-
sively shows that the xTune framework provides a uniform methodology for
deriving, analyzing, and validating cross-layer adaptation.

The xTune framework essentially combines simulation, monitoring, and ex-
ecution with formal methods. Lightweight formal analysis seems sufficient for



multimedia applications in general. However, in the presence of mission-critical
applications, context awareness and situation awareness (e.g., live video feed
should be undisturbed in case of emergency evacuation) need to be further ex-
plored. Even though our current study using the xTune framework has produced
encouraging results, the discussions in Section 5 present strong motivation for
future work as mentioned in the sample application domains.
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