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Abstract. A distributed logical framework designed to serve as a declar-
ative semantic foundation for Networked Cyber-Physical Systems pro-
vides notions of facts and goals that include interactions with the en-
vironment via external goal requests, observations that generate facts,
and actions that achieve goals. Reasoning rules are built on a partially
ordered knowledge-sharing model for loosely coupled distributed comput-
ing. The logic supports reasoning in the context of dynamically changing
facts and system goals. It can be used both to program systems and to
reason about possible scenarios and emerging properties.

The underlying reasoning framework is specified in terms of constraints
that must be satisfied, making it very general and flexible. Inference rules
for an instantiation to a specific local logic (Horn clause logic) are given
as a concrete example. The key novel features are illustrated with snip-
pets from an existing application—a theory for self-organizing robots
performing a distributed surveillance task. Traditional properties of log-
ical inference and computation are reformulated in this novel context,
and related to features of system design and execution. Proofs are out-
lined for key properties corresponding to soundness, completeness, and
termination. Finally, the framework is compared to other formal systems
addressing concurrent/distributed computation.

Keywords: Distributed declarative logic, partially ordered knowledge,
networked cyber-physical systems.

1 Introduction

We present a novel distributed logic framework intended to serve as a semantic
foundation for Networked Cyber-Physical Systems (NCPS). NCPS present many
challenges that are not suitably addressed by existing distributed computing
paradigms. They must be reactive and maintain an overall situation awareness
that emerges from partial distributed knowledge. They must achieve system goals
through local, asynchronous actions, using (distributed) control loops through
which the environment provides essential feedback. NCPS should be resilient to
failures of individual elements, readily adapt to changing situations, and often
need to be rapidly instantiated and deployed for a given mission.

To address these challenges, we are developing a logical framework for NCPS
that combines distributed reasoning and asynchronous control in space and time.



The purpose of logic in this context is many-fold. First of all, it provides a lan-
guage to express and communicate system goals. Dually, it allows expressing and
communicating facts about the current system state. In both cases, communi-
cation includes communication with the users but also communication among
the system components themselves. At the level of an individual cyber-physical
component, the logic provides a declarative interface for goal-oriented control
and feedback through observations that are represented as logical facts. Finally,
it provides a framework for inference and computation, which allows facts and
goals to interact with each other and form new facts or goals. Our aim is a solu-
tion to declarative control that covers the entire spectrum between cooperation
and autonomy, makes opportunistic use of networking resources, and adapts to
changing resource constraints.

In the following we present a distributed inference system that is a significant
step toward this goal. Our logical framework is based on partially ordered knowl-
edge sharing, a distributed computing paradigm for loosely coupled systems that
does not require continuous network connectivity. We use Horn clause logic to
illustrate our approach, which we expect to generalize to more expressive logics.
The features of the framework are illustrated using a theory of self-organizing
robots. A simplified version of the inference system was presented in [11]. The
main contributions of this paper are

– the fully general inference system with explicit derivations,
– the identification of conditions under which key properties such as

soundness, completeness, termination, and confluence hold, and
– the application of our results to a theory for self-organizing robots

2 Case Study: Self-Organizing Robots

We focus on networked cyber-physical systems S with a finite set of cyber-nodes.
Two cyber-nodes have the capability to communicate whenever the network con-
ditions permit. Each cyber-node can have sensors that can generate observations
at arbitrary time points, and actuators driven by goals. S may operate under
arbitrary conditions, so there is no guarantee that goals will be achieved. Con-
sider a self-organizing network of mobile robots deployed in a building, e.g., for
situational awareness during an emergency. In this paper, we use an abstract
topological mobility model where a robot is located in some area and can move
to any adjacent area. Each area is equipped with acoustic or motion sensors.
The robots use a common logical theory that specifies a language (constants,
functions, and predicates) and local inference rules based on Horn clause logic.
A robot’s local knowledge (state) consists of a set of facts and a set of goals.
Facts are formulas derived by logical inference or by observation of the environ-
ment. Goals are formulas expressing what the system should achieve and drive
the inference process. Goals can arrive from the environment at any time. They
can also be generated as subgoals during local inference. Robots can exchange
knowledge (i.e., facts and goals) opportunistically if they reside in the same or
adjacent rooms.
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Forward Clauses:

F1 :Noise(T,A)⇒ Trigger(T,A).
F2 :Motion(T,A)⇒ Trigger(T,A).
F3 :Adjacent(A,B)⇒ Adjacent(B,A).

Backward Clauses:

B1 : Interest(TI , I, R)⇐ Result(TI , TT , 0, I), Deliver(TI , TT , 1, I, R).

B2 :Deliver(TI , TT , ND, I, R)⇐ Delivered(TI , TT , ND, I, R).
B3 :Deliver(TI , TT , ND, I, R)⇐

Position(TP , R,A), Position(T ′P , R
′, A′), R′ 6= R,

MoveTo(TI , TT , ND, 0,∞, R′, A), Deliver(TI , TT , ND, I, R).

B4 :Result(TI , TT , ND, I
′)⇐ CompImage(TI , TT , ND, I), I ′ = Extract(I).

B5 :CompImage(TI , TT , ND, I
′)⇐ RawImage(TI , TT , ND, I), I ′ = Compress(I).

B6 :RawImage(TI , TT , ND, I)⇐ Trigger(TT , A), TI ≤ TT ,
MoveTo(TI , TT , ND, 0, TT +∆tsd, R,A),
TakeSnapshot(TI , TT , ND, TT +∆tsd, A, I).

B7 :TakeSnapshot(TI , TT , ND, D,A, I)⇐
Snapshot(TI , TT , ND, TS , A, I), TT ≤ TS , TS ≤ D.

B8 :MoveTo(TI , TT , ND,W
′, D,R,B)⇐ Position(TP , R,B), TP ≤ D.

B9 :MoveTo(TI , TT , ND,W
′, D,R,B)⇐ Adjacent(A,B),W ′ > −bw,W = W ′ − 1,

MoveTo(TI , TT , ND,W,D,R,A),Move(TI , TT , ND,W
′, D,R,A,B).

Replacement Ordering: (f denotes a fact and g a goal and x denotes either)

O1 : f :Position(tP , r, . . .) ≺ f :Position(t′P , r, . . .) if tP < t′P .
O2 :x :X(tI , . . .) ≺ g : Interest(t′I , . . .) if tI < t′I .
O3 :x :X(tI , tT , 0, . . .) ≺ f :Result(tI , tT , 0, . . .) if x :X 6= f :Result.
O4 :x :X(tI , tD, 1, . . .) ≺ f :Deliver(tI , tD, 1, . . .) if x :X 6= f :Deliver.

Variables: T : time, D: snapshot deadline, A and B: area, R: robot,
I: image or derived information, N : identifier, W : weight

Constants: ∆tsd: relative snapshot deadline (max. delay from trigger event),
bw: bound for weight (diameter of the floor plan)

Fig. 1. Logical Theory for Self-Organizing Robots

Figure 1 shows the logical theory that is used to specify the possible be-
haviors of our self-organizing robots. The clauses are partitioned into forward
and backward rules, providing a means for controlling inference/execution. For-
ward clauses such as the trigger conditions F1 and F2 can be applied at any
time when the conditions are met. Backward clauses are applied only when
the conclusion formula matches (unifies with) an existing goal. Goal atoms ap-
pearing as premises in forward or backward clauses generate new goals to be
satisfied in an execution. The primary goal is delivery of images I to a node
r, Interest(TI , I, r). Figure 2, shows a possible execution of the theory of Fig-
ure 1 achieving an instance of the Interest goal. The variables (TI ,TT ,ND) are
suppressed, as they are fixed for an execution solving primary goal instance. For
example, Result(I) abbreviates Result(tI , tT , nD, I) where tI is the session value
of TI and so on. At the top of Figure 2, the user injects a cyber-goal Interest(I, r)
at the root node r. Backward reasoning with clause B1 is used to add the first
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subgoal, Result(I), to the local knowledge base. Then clauses B4, B5 for solv-
ing Result goals, are used to add subgoals, CompImage(I) and RawImage(I).

Interest(I,r)	  

Noise(0.0,a)	  

Result(I)	  

CompImage(I)	  

RawImage(I)	  

Trigger(T,A)	   MoveTo(0.0+Δt,R,A)	  

TakeSnapshot(0.0+Δt,a,I)	  

Deliver(I,r)	  

Trigger(0.0,a)	  

PosiDon(5.0,x,a)	  

MoveTo(0.0+Δt,R,B)	  

Snapshot(10.0,a,i)	  

Move(0.0+Δt,R,B,A)	  

Delivered(i,r)	  

I’=Extract(I)	  

I’=Compress(I)	  

….	  

PosiDon(0.0,x,b)	  

Fig. 2. Example Robot Execution

Meanwhile, at the bottom of Figure
2, the cyber-fact Noise(0.0, a) is ob-
served by the sensor in area a, and for-
ward reasoning using clause F1 leads
to the fact Trigger(0.0, a). Clause
B6 for RawImage(I) has three sub-
goals involving Trigger, MoveTo,
and TakeSnapshot. The leftmost sub-
goal can be matched with the fact
Trigger(0.0, a). Suppose the above
reasoning is carried out by robot r
in area a and further that a camera
robot, x, is in adjacent area b. Then
by communication with r, x can learn
the RawImage goal, and the Trigger
fact and use B6 to add a MoveTo goal
to its knowledge base and B8, B9 to
satisfy the goal. Then using its cam-
era, robot x can take a snapshot adding Snapshot(10.0, a, i) to the set of facts
and apply B7, B6 to realize the TakeSnapshot(tD, a, I), and the RawImage(I)
goals. The goals CompImage(I) and Result(I) can be solved by the robot x,
since it has the fact RawImage(i). Alternatively, it could be satisfied by another
robot, possibly r, depending on available computational resources. The backward
clause B3 is used to steer a robot toward the root node r to deliver the image,
and B2 can be applied once a Delivered fact is available. Then Interest(I, r)
can be satisfied.

Unlike traditional logics, new facts and/or goals can arrive at any time, in-
terleaved with local inference processes. For example, a robot can observe its
position at different times, and possibly get different answers. Two features
of the logical framework help to avoid potential confusion. Certain predicates,
called cyber-predicates, have time stamps as part of their argument list. For ex-
ample, position readings are time stamped and thus different readings can be
distinguished logically by their time stamp. In addition, the logical theory is
augmented by a partial ordering on facts and goals, called the replacement or-
dering. A fact or goal can be replaced by one that is higher in the ordering. This
provides a means of removing outdated knowledge from the distributed system
state, without any need for synchronization.

The clauses (O1-4) at the end of Figure 1 axiomatize the replacement or-
dering of the robot theory. Suppose some robot has a fact Position(0.0, r, b) in
its knowledge base, stating that robot r is in area b at time 0.0, and later the
robot receives the fact Position(1.0, r, a). The replacement rule can be used
to remove Position(0.0, r, b) from its set of facts since Position(0.0, r, b) ≺
Position(1.0, r, a).
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3 The Distributed Logical Framework

Constraints on the Local Theory LetΣ be a signature, V a countably infinite
set of variables, and Ω a fixed finite theory of Horn clause logic over Σ. The sets
of terms T (Σ,V), and atoms A(Σ,V), ground terms T (Σ) and ground atoms
A(Σ) are defined as usual. We use P and Q to range over atoms. A (ground)
substitution is a mapping from variables to (ground) terms. We let σ range over
substitutions, and σ(e) denotes the application of a substitution, that is the
result of replacing variables in e by their image under σ.

Σ contains built-in constants for natural numbers and names of cyber-nodes.
Additional built-in functions, and built-in predicates can be included in Σ, and
the application of a built-in predicate cannot be the conclusion of a clause in
Ω. Σ also contains a distinguished set of predicates (distinct from built-ins)
called cyber-predicates. These predicates define the interface of the logic with
the outside world. We use pc to range over such predicates. The first argu-
ment of a cyber-predicate is a natural number interpreted as a timestamp. In
the robot theory, ≤, Compress and Extract are built in, while Snapshot and
Position are cyber-predicates. Clauses in Ω are assigned unique labels, for ex-
ample l :P1, . . . , Pn ⇒ Q is a clause with label l. In addition Ω = Ωf ∪Ωb, where
Ωf and Ωb are sets of clauses that we refer to as forward and backward clauses,
respectively. We use ` to denote the standard derivability in Horn clause logic
with all the built-ins in Σ.

A fact is a ground atom. The definition of goal is more complex. A subset
of the predicates, designated as goal predicates, includes at least the built-in
predicates and all predicates that appear in the conclusion of a clause from
Ωb. The set of goals can be any set of (not necessarily ground) atoms that are
applications of goal predicates satisfying the following closure properties: (1) If
G is a goal then σ(G) is a goal. (2) If l :P1, . . . , Pn ⇒ Q ∈ Ωf , j ∈ 1, . . . , n, Pj
is the application of a goal predicate, and σ(Pi) is a fact for i ≤ 1 < j, then
σ(Pj) is a goal. (3) If l :P1, . . . , Pn ⇒ Q ∈ Ωb, Pj is the application of a goal
predicate, σ(Pi) is a fact for all 1 ≤ i < j ≤ n, and σ(Q) is a goal, then σ(Pj) is
a goal. In the robot theory, Interest(tI , I, R) is a goal only for ground terms tI ,
and MoveTo(tI , tT , nD,W,D,R,B) is a goal for ground terms tI , tT , nD. The
capitalized arguments are variables.

We further require the variable restriction: (1) For l :P1, . . . , Pn ⇒ Q ∈ Ωf ,
each variable in Q appears in at least one of P1, . . . , Pn. (2) For l :P1, . . . , Pn ⇒
Q ∈ Ωb, if σ(Q) is a goal, then each variable in σ(Q) appears in at least one of
σ(P1), . . . , σ(Pn). It is easy to check that our example satisfies this restriction.

Derived Atoms as Knowledge Derived facts and derived goals are objects
of the form f :F and g :G that constitute units of knowledge, atoms equipped
with an indication of their role and an explanation of their origin. The set of
(atomic) derived facts and (atomic) derived goals together is inductively defined
as follows: (1) Bσ(g) :σ(G) is a derived fact if G is a built-in goal, ` σ(G),
and g :G is a derived goal. (2) O(F ) :F is an atomic derived fact, also called
an observation, for each cyber-fact F , (3) C(G) :G is an atomic derived goal,
also called a control, for each cyber-goal G; (4) lσ(f1, . . . , fn) :σ(Q) is a de-

5



rived fact if l :P1, . . . , Pn ⇒ Q ∈ Ωf , σ(Q) is a fact, and fi :σ(Pi) are de-
rived facts; (5) l−1

σ (f1, . . . , fj−1) :σ(Pj) is a derived goal if l :P1, . . . , Pn ⇒
Q ∈ Ωf , j ∈ 1, . . . , n, σ(Pj) is a goal, and fi :σ(Pi) are derived facts; (6)
lσ(f1, . . . , fn; g′) :σ(Q) is a derived fact if l :P1, . . . , Pn ⇒ Q ∈ Ωb, σ(Q) is a
fact, fi :σ(Pi) are derived facts, and g′ :G′ is a derived goal with σ(G′) = σ(Q);
and (7) l−1

σ (f1, . . . , fj−1; g′) :σ(Pj) is a derived goal if l :P1, . . . , Pn ⇒ Q ∈ Ωb,
j ∈ 1, . . . , n, σ(Pj) is a goal, fi :σ(Pi) are derived facts, g′ :G′ is a derived goal,
and σ(G′) = σ(Q).

A derived atom is either a derived fact or a derived goal. This is different
from standard approaches to explicit proof objects where derivations of goals
are not considered. We let f :F range over derived facts with derivation f and
underlying fact F . Similarly g :G ranges over derived goals and d :P ranges over
derived atoms. Goals may have variables, and we consider two derived goals that
differ only by renaming of the variables to be the same. Given a derived atom
d :P , it is easy to see that P is uniquely determined by d. We write at(d :P ) to
denote the atom of d :P , i.e., P .

We say that d :P is an immediate subderivation of d′ :P ′, written d :P .
d′ :P ′, iff d′ is of the form L(. . . , d, . . .), where L represents any of the above
constructors of derivations. .+ and .∗ denote the transitive and reflexive tran-
sitive closure of ., respectively. We let K range over derived atoms and K range
over sets of derived atoms. The knowledge entailment relation ` is defined in-
ductively by: (1) K ∈ K implies K ` K, and (2) K′ `1 K

′′ and K ` K ′ for all
K ′ ∈ K′ implies K ` K ′′, where K `1 K

′ is defined by K . K ′ for some K ∈ K.
We assume that the set of derived atoms is equipped with a quasi-order

≤, the so-called subsumption order, and a strict partial order ≺, the so-called
replacement order. These relations must not make use of the structure of the
derivations other than distinguishing between facts and goals, they must not
relate distinct built-in derived atoms, and ≤ must not relate derived facts and
derived goals. For derived goals g :G and g′ :G′ with G = σ(G′) we require
g :G ≤ g′ :G′. The induced subsumption equivalence K ≡ K ′ is defined as K ≤
K ′ ∧ K ′ ≤ K and strict subsumption is defined by K < K ′ iff K ≤ K ′ and
K ′ 6≤ K. We require that the replacement order is a compatible extension of strict
subsumption, that is, (1) K < K ′ implies K ≺ K ′, and (2) K ≤ K ′, K ′ ≺ K ′′,
and K ′′ ≤ K ′′′ implies K ≺ K ′′′. In addition, the relations must satisfy the
ordering consistency requirements, that is, (1) K ≺ K ′ implies K 6≡ K ′, and
(2) K ′1 ≤ K1 ≺ K2 ≤ K ′2 and K ′1 < K ′2 implies K1 < K2.

Distributed Proofs as Interactive Executions The local state of a cyber-
node is of the form Γ ` ∆ @ t, x, where x is the unique name of the node, t is a
natural number representing its local time, and Γ ,∆ constitutes the knowledge
at the node. Γ is a finite set of derived facts, and ∆ is a finite set of derived goals.
A configuration of a cyber-physical system S is a set of local states Γ ` ∆ @ t, x,
one for each cyber-node x of S. Given a configuration c containing Γ ` ∆ @ t, x,
we write Fx(c) and Gx(c) to denote Γ and ∆, respectively.

Figure 3 gives the proof rules of our logic. The rule (Control) represents the
addition of a new user-level objective to the set of system goals. The rule (Ob-
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Γ ` ∆ @ t, x

Γ ` ∆, C(G) :G @ t′, x
if G = pc(t, . . .) is a cyber-goal (Control)

Γ ` ∆ @ t, x

Γ, O(F ) :F ` ∆ @ t′, x
if F = pc(t, . . .) is a cyber-fact (Observation)

Γ, f :F ` ∆ @ t, x

Γ ` ∆ @ t′, x
if f :F ≺ Γ,∆ (Replacement1)

Γ ` ∆, g :G @ t, x

Γ ` ∆ @ t′, x
if g :G ≺ Γ,∆ (Replacement2)

Γx ` ∆x @ tx, x Γy, f :F ` ∆y @ ty, y

Γx, f :F ` ∆x @ t′x, x
(Communication1)

if x 6= y, t′x ≥ ty, and f :F is fresh at x.

Γx ` ∆x @ tx, x Γy ` ∆y, g :G @ ty, y

Γx ` ∆x, g :G @ t′x, x
(Communication2)

if x 6= y, t′x ≥ ty, and g :G is fresh at x

Γ ` ∆, g :G @ t, x

Γ, Bσ(g) :σ(G) ` ∆, g :G @ t′, x
(Built-in)

if G is a built-in goal with a solution σ(G) such that Bσ(g) :σ(G) is fresh.

Γ, f1 :σ(P1), . . . , fn :σ(Pn) ` ∆ @ t, x

Γ, f1 :σ(P1), . . . , fn :σ(Pn), f :σ(Q) ` ∆ @ t′, x
(Forward1)

if l :P1, . . . , Pn ⇒ Q is a clause from Ωf ,
f = lσ(f1, . . . , fn), σ(Q) is a fact, and f :σ(Q) is fresh.

Γ, f1 :σ(P1), . . . , fj−1 :σ(Pj−1) ` ∆ @ t, x

Γ, f1 :σ(P1), . . . , fj−1 :σ(Pj−1) ` ∆, g :σ(Pj) @ t′, x
(Forward2)

if l :P1, . . . , Pn ⇒ Q is a clause from Ωf ,
g = l−1

σ (f1, . . . , fj−1), σ(Pj) is a goal, and g :σ(Pj) is fresh.

Γ, f1 :σ(P1), . . . , fn :σ(Pn) ` ∆, g′ :G′ @ t, x

Γ, f1 :σ(P1), . . . , fn :σ(Pn), f :σ(Q) ` ∆, g′ :G′ @ t′, x
(Backward1)

if l :P1, . . . , Pn ⇒ Q is a clause from Ωb,
f = lσ(f1, . . . , fn; g′), σ(Q) = σ(G′), σ(Q) is a fact, and f :σ(Q) is fresh.

Γ, f1 :σ(P1), . . . , fj−1 :σ(Pj−1) ` ∆, g′ :G′ @ t, x

Γ, f1 :σ(P1), . . . , fj−1 :σ(Pj−1) ` ∆, g′ :G′, g :σ(Pj) @ t′, x
(Backward2)

if l :P1, . . . , Pn ⇒ Q is a clause from Ωb,
g = l−1

σ (f1, . . . , fj−1; g′), σ(Q) = σ(G′), σ(Pj) is a goal, and g :σ(Pj) is fresh.

Γ ` ∆ @ t, x

Γ ` ∆ @ t′, x
(Sleep)

Notes. An implicit side condition t < t′ is omitted in all proof rules (tx < t′x in the
communication rules). In the context of a proof rule that has a premise Γ ` ∆ @ t, x
we say that K is fresh (at x) if there is no K′ ∈ Γ,∆ such that K ≡ K′ or K ≺ K′.
In the condition of proof rules we use σ to range over all most general (not necessarily
ground) substitutions that satisfy the condition of the proof rule.

Fig. 3. Proof Rules of our Distributed Logical Framework for NCPS
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servation) captures the generation of information from the environment, spon-
taneously or triggered by a goal. The (Replacement) rules are used to overwrite
subsumed and obsolete facts and goals. The (Communication) rules allow cyber-
nodes to exchange facts or goals by means of asynchronous communication. The
time constraints in the rule achieve a minimal level of temporal consistency. The
forward and backward rules implement forward and backward reasoning. The
rule (Forward1) is the usual Horn clause rule. The rule (Forward2) covers the
case where the available facts are not sufficient to apply the clause so that a
new subgoal σ(Pj) needs to be generated for a missing fact. The backward rules
are analogous to the two forward rules, but in addition require the Horn clause
conclusion to unify with an existing goal. Finally, the (Sleep) rule allows the
system to be inactive, for example to save energy or wait for new knowledge.

The proof rules determine a labeled transition relation →r on configurations
of the cyber-physical system S: For configurations c and c′, we have c →r c

′

iff there exists an instance of proof rule r such that c contains the premises of
the instance, and c′ is obtained by an update of c with the conclusion, i.e., by
replacing Γ ` ∆ @ t, x by the conclusion Γ ′ ` ∆′ @ t′, x. In this case, we also
say that r is applicable at x in c. An execution of the networked cyber-physical
system S is a finite or infinite sequence π = c0, r0, c1, r1, c2, . . . of configurations
such that ci →ri

ci+1 for all i, and we say that ci →ri
ci+1, or briefly ri, is the

ith step of π. We say that a rule r is applied in π at j iff r = rj .
For a given execution π, we denote by FO(π) all derived facts of the form

O(F ) :F generated in π by the observation rule and by GC(π) all derived goals
of the form C(G) :G generated in π by the control rule.

4 Properties of the Logical Framework

For a logical framework to be a useful semantic foundation it is important that
we understand the guarantees provided by the framework. Here we discuss prop-
erties of executions, π = c0, r0, c1, r1, c2, . . ., where c0 is an initial configuration
in which each node has an empty set of facts and goals. Most of these prop-
erties are independent of the underlying communication system. Several of the
properties only require the Horn clause theory and/or the execution strategy to
satisfy additional conditions. Specifically, we consider notions of Monotonicity,
Soundness, Completeness, Termination, and Confluence. These are analogs of
properties of traditional inference and computation systems and important for
ensuring desired properties of specific cyber-physical systems. In the following,
π|i denotes the prefix c0, r0, c1, r1, c2, . . . , ci of π, and K ` Q denotes at(K) ` Q
where at(K) is the set of atoms of the derived facts of K (i.e., ignoring deriva-
tions).

Monotonicity is the property that for all steps i ≤ j of π and for every
cyber-node x, Fx(ci) ⊆ Fx(cj) and Gx(ci) ⊆ Gx(cj). Monotonicity holds if no
replacement rules are applied in π, because only replacement rules remove facts
or goals from a node’s state.

Soundness expresses that any derived fact appearing in an execution π is
provable in Horn clause logic (with built-ins) from the previous observations. It
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holds because derived atoms that appear in π are entailed by previous observa-
tions and controls of π, and entailment on derived atoms implies entailment in
Horn clause logic.

Theorem 1 (Soundness). For every step i of π, and for each f :F ∈ F(ci),
we have FO(π|i),GC(π|i) ` f :F , which in turn implies FO(π|i) ` F .

Proof. By Lemmas 1 and 2 below. ut

Lemma 1 (Derivability implies provability). If f :F is a derived fact and
F is the set of facts underlying the atomic subderivations of f :F then F ` F

Proof. We show F ` F by cases on f . If f :F is Bσ(g) :σ(G), then ` σ(G)
by definition of derived facts. If f :F is O(F ) :F we have O(F ) ` O(F ). If f :F
is lσ(f1, . . . , fn, [g′]) :σ(Q), with l :P1, . . . , Pn ⇒ Q in Ω, then by induction we
have F ` fi :σ(Pi), 1 ≤ i ≤ n and F ` σ(Q), applying clause l. ut

Lemma 2 (Derivations are derivable). If f :F ∈ F(ci) and g :G ∈ G(ci),
then FO(π|i), GC(π|i) ` f :F and FO(π|i), GC(π|i) ` g :G.

Proof. The proof is by induction on i. Note that FO(π|i−1), GC(π|i−1) ` f :F
implies FO(π|i), GC(π|i) ` f :F (monotonicity of `). We only need to consider
rules ri that introduce a new derived fact f :F or goal g :G at some cyber-node
x. There are five cases for facts and four for goals. Here we show a few cases to
illustrate the arguments (see [8] for the full proof).

(Observation) f :F is O(F ) :F , which is in FO(π|i).

(Forward1) f :F is lσ(f1, . . . , fn) :σ(Q), l :P1, . . . , Pn ⇒ Q ∈ Ωf , fj :σ(Pj) ∈
F(ci−1), 1 ≤ j ≤ n. By induction FO(π|i−1), GC(π|i−1) ` fj :Fj for 1 ≤ j ≤ n
and so FO(π|i), GC(π|i) ` f :F .

(Forward2) g :G is l−1
σ (f1, . . . , fj−1) :σ(Pj), l :P1, . . . , Pn ⇒ Q ∈ Ωf , and fk :σ(Pk) ∈

F(ci−1), 1 ≤ k < j. By induction FO(π|i−1), GC(π|i−1) ` fk :Fk for 1 ≤ k < j
and thus FO(π|i), GC(π|i) ` g :G. ut

Note that Monotonicity and Soundness are independent of the specific theory;
in particular, they hold for the robot theory.

Completeness gives conditions under which a fact provable in the logic will
eventually be covered (either directly or by subsumption). These conditions in-
clude fairness conditions on executions and consistency conditions between the
theory and the subsumption and replacement orderings.

Definition 1 (Weak Fairness). A rule instance contains the parameters that
determine whether a rule applies in a configuration and if so, what the result is.
It is given by the rule name, the node(s), the clause label, substitution, and all de-
rived facts or goals involved in the application. For example, Forward1(x, l, σ, f1 :
σ(P1), . . . , fn :σ(Pn), lσ(f1, . . . , fn) :σ(Q)) represents an instance of the first for-
ward rule. A rule instance ρ is permanently applicable in π at i iff ρ is applicable
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to cj for j ≥ i. An execution is logically fair iff each instance of a reasoning rule,
i.e., either a built-in, forward, or backward rule, that is permanently applicable
at i is applied at some j ≥ i. Similarly, an execution is replacement fair iff each
instance of a replacement rule that is permanently applicable at i is applied at
some j ≥ i. An execution is communication fair iff each instance of a commu-
nication rule that is permanently applicable at i is applied at some j ≥ i. An
execution is globally fair iff it is logically, replacement, and communication fair.

Definition 2 (Subsumption Preservation). We say subsumption is preserved
iff whenever Ki ≤ K ′i and K1, . . . ,Kn `1 K, then there exists K ′ such that
K ′1, . . . ,K

′
n `1 K

′ and K ≤ K ′ (recall that K ranges over derived atoms).

Definition 3 (Replacement Conditions). Replacement is restricted iff the
following conditions hold: (1) If K1 ≺ K2, then K2 6.+ K1. (2) If K1 ≺ K2,
K1 6.+ K2 and K1 6< K2, then there exists atomic K ′1,K

′
2 such that K ′1 .

∗ K1,
K ′2 .

∗ K2 and K ′1 ≺ K ′2. (3) If K1 ≺ K2, K1 .
+ K2, K1 .

+ K3, K3 6.+ K2, and
K2 6.+ K3, then K3 ≤ K2. (4) If K1 ≤ K2 and there is an atomic K ′2 .

∗ K2

with K ′2 ≺ K, then there is an atomic K ′1 .
∗ K1 with K ′1 ≺ K.

We say that a derived fact f :F is eventually covered in π there is some i and
f ′ :F ′ ∈ F(ci) such that f :F ≤ f ′ :F ′. The essence of completeness is that if
F ` F for a subset of the observed facts of an execution, then some derivation
of F will be eventually covered in the execution. The completeness theorem
statement refines this, beginning with sufficient constraints for completeness to
hold. The statement is broken into two parts, first showing provability implies
derivability, and second showing that if a derived fact f :F is entailed by subset of
the observations of an execution, f :F will eventually be covered. This is further
split into two cases depending whether the final rule in the Horn clause derivation
is a forwards or backwards rule. This is needed to account for the requirement
that there must be a goal that unifies with a backwards rule conclusion before
the rule can be applied, and thus in the backwards case, the theorem only applies
to instances of goals.

Theorem 2 (Completeness). Let π be a logically and communication fair ex-
ecution, and let F ⊆ FO(π) and G ⊆ GC(π) be such that each element in F ∪ G
is maximal in FO(π)∪GC(π) w.r.t. the replacement ordering. Assume subsump-
tion is preserved, upward well-founded, and that replacement is restricted. If
at(F) `f F then there exists a derived fact f :F such that F ` f :F , which in
turn implies that f :F is eventually covered in π. If G ∈ at(G) and at(F) `b σ(G)
then there exists a derived fact f :σ(G) such that F ,G ` f :σ(G), which in turn
implies that f :σ(G) is eventually covered in π. Here `f (`g) denote Horn clause
derivability where the last clause applied is from Ωf (Ωg).

Proof. As for soundness the proof has two parts: (a) showing that entailment in
the Horn logic sense implies entailment in derived-atom sense, and (b) showing
that a derived-atom derivable from the observed facts and injected (control)
goals will eventually be covered in an execution. The proof of (a) is similar
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to the proof of Lemma 1. The proof of (b) is structured using cases from the
definition of replacement restriction. Maximality of the observed facts is needed
as part of dealing with replacement rules. For details we refer to [8]. ut

Completeness implies that all solutions for a goal are eventually generated,
which is not always a desirable property in practice. For instance, in our robot
example, the specification states that the user interest is satisfied as soon as
one suitable snapshot is available, and further snapshots (and related activities)
can be suppressed by means of the replacement ordering. Specifically, consider
a situation where one goal TakeSnapshot(tI , tT , nD, tD, A, I) leads to multiple
Snapshot(tI , tT , nD, tS , a, i) facts. Suppose there are two Snapshot facts; the
logic will solve the Result goal with the first and discard both using replace-
ment. In this execution one Snapshot fact will be ignored, but there is another
execution where it is not.

Termination constrains the local inference system to avoid infinite regression
in the attempt to achieve a goal. To state the theorem we need to define the
finite closure property for a set of derived atoms, which by the correspondence
between Horn clause derivability and the derivability relation on derived atoms
is in fact a constraint on the Horn clause theory. We use a special case of the
general definition for simplicity.

Definition 4 (Finite Closure). We say that a set F ∪ G of derived facts and
goals has the finite closure property iff there exists a well-founded quasi-order
(K,≤) such that F ∪ G ⊆ K, for each induced equivalence class K′ the projec-
tion on atoms at(K′) is finite, and the following conditions are satisfied: (0) If
g :G ∈ K is a built-in goal and ` σ(G) then Bσ(g) :σ(G) ∈ K and Bσ(g) :σ(G) ≤
g :G. (1) If l :P1, . . . , Pn ⇒ Q in Ωf and K ` f1 :σ(P1), . . . , fn :σ(Pn), then
lσ(f1, . . . , fn) :σ(Q) ∈ K, and fi :σ(Pi) ∈ K implies lσ(f1, . . . , fn) :σ(Q) ≤
fi :σ(Pi) for 1 ≤ i ≤ n. (2) If l :P1, . . . , Pn ⇒ Q in Ωf with a goal σ(Pj) and K `
f1 :σ(P1), . . . , fj−1 :σ(Pj−1), then l−1

σ (f1, . . . , fj−1) :σ(Pj) ∈ K, fi :σ(Pi) ∈ K
implies l−1

σ (f1, . . . , fj−1) :σ(Pj) ≤ fi :σ(Pi) for 1 ≤ i < j. (3) If l :P1, . . . , Pn ⇒
Q in Ωb and K ` f1 :σ(P1), . . . , fn :σ(Pn), and g′ :G′ ∈ K with σ(Q) = σ(G′),
then lσ(f1, . . . , fn; g′) :σ(Q) ∈ K, and fi :σ(Pi) ∈ K implies lσ(f1, . . . , fn; g′) :
σ(Q) ≤ fi :σ(Pi) for 1 ≤ i ≤ n. (4) If l :P1, . . . , Pn ⇒ Q in Ωb with a goal
σ(Pj) and K ` f1 :σ(P1), . . . , fj−1 :σ(Pj−1), and g′ :G′ ∈ K with σ(Q) = σ(G′),
then l−1

σ (f1, . . . , fj−1; g′) :σ(Pj) ∈ K, l−1
σ (f1, . . . , fj−1; g′) :σ(Pj) ≤ g′ :G′, and

fi :σ(Pi) ∈ K with i < j implies l−1
σ (f1, . . . , fj−1; g′) :σ(Pj) ≤ fi :σ(Pi) for

1 ≤ i < j.

Intuitively, the set K over-approximates the set of all derived facts and goals
that could be generated in response to an element from this set. Condition
(0) corresponds to the built-in rule, conditions (1) and (2) correspond to the
forward rules (which can be applied to solutions of goals), and conditions (3)
and (4) correspond to the backward rules. We note that K may be infinite, but
due to the use of most general substitutions σ in the proof rules, only a finite
subset of K will be generated in any actual execution.
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Theorem 3 (Termination). If FO(π)∪GC(π) is finite and has the finite clo-
sure property then π is terminating, that is, either π is finite or there is some n
such that ri is the sleep rule for all i > n.

Proof. Define depth d(K) of a derived fact or goal K such that if K ∈ K then
there is a descending l-chain in K of length d(K), where l is the relation
inductively generated by the conditions (0)–(4) above (replacing ≤ by l). We
then argue (a) that if π is nonterminating then due to the freshness condition
of the proof rules the set of derived facts and goals grows without bound; and
(b) that there is a finite bound on the set of facts and goals of a given finite
depth. This means that in a nonterminating proof there is a descending l-chain
and hence a descending < chain that grows without bound, which contradicts
well-foundedness. For details we refer to [8]. ut

Our robot theory does satisfy the conditions for termination. Intuitively, the
cases to check involve recursive calls: F3, B3, B9. Recursive calls using the clause
F3, axiomatizing commutativity, lead to cycles with two facts in the equivalence
class for any pair of areas. Calls to B9 will terminate because the argument
W decreases on each until it reaches the lower bound bw. The recursive call in
B3 will never happen, by freshness constraints, but even without freshness the
recursive call results in an equivalent derived fact.

Theorem 4 (Confluence). If π is a globally fair and terminating execution
then π is confluent, i.e., there exists a suffix π′ such that Fx(c) = Fy(c) and
Gx(c) = Gy(c) for all cyber-nodes x, y and c ∈ π′.

Proof. It is easy to see that in a globally fair and terminating system, the re-
placement and communication rules will eventually ensure that all cyber-nodes
will reach the same logical state (disregarding time and name) after no new
knowledge is produced by reasoning rules.

5 Related Work

Knowledge sharing is a well-known idea that has been investigated by Halpern
in [6] and in much subsequent work. Understanding knowledge sharing in dis-
tributed environments has led to a complementary view providing new insights
into distributed algorithms and a logical justification for their fundamental lim-
itations. For instance, attaining common knowledge, i.e., complete knowledge
about the knowledge of other agents (and hence about the global state) in a
distributed system is not feasible in a strict sense, and hence problems such
as coordinated attack are unsolvable in asynchronous systems. In practice, ap-
proximations of common knowledge can be used by making assumptions of (suf-
ficient) synchrony, but the fundamental problem in asynchronous systems re-
mains. Halpern’s concept of knowledge is based on modal logic, which expresses
facts and the state of knowledge of individual agents. A key axiom is the knowl-
edge axiom, which states that if an agent knows a fact, it must be true. Such
an axiom is problematic in a distributed setting without a global view of the
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world. Furthermore, such logics do not deal with changes in the facts during the
reasoning process, or the ability to discard facts that are no longer useful, nor
do they take goals into account.

The idea of applying declarative techniques in communication and network-
ing is not new. A large body of work exists in the areas of specification, analysis,
and synthesis of networking policies and protocols, e.g., in the context of secu-
rity, routing, or dynamic spectrum access. Declarative querying of sensor net-
works has been studied through several approaches, for instance in [13], which
composes services on the fly and in a goal-driven fashion using a concept of se-
mantic streams. Declarative techniques to specify destinations have been used
in disruption-tolerant networking [2]. A variant of Datalog has been applied to
the declarative specification of peer-to-peer protocols [9]. Based on this work,
[3] develops a very interesting approach to declarative sensor networks that can
transmit generated facts to specific neighbors and can also utilize knowledge
about neighbors to specify, e.g., routing algorithms. The idea of providing an
abstraction that views a system as a single asset (an ensemble) rather then pro-
gramming its individual components has been explored in several projects. Most
interesting, the approach in Meld [1] extends the ideas from declarative sensor
networks to modular robots, i.e., ensembles of robots with inter-robot commu-
nication limited to immediate neighbors. As an example, the movement of a
composite robot emerges as a result of the coordinated interaction between its
homogeneous robot modules. Most of the existing work focuses not on the theo-
retical foundations, but on efficient compilation into a conventional programming
language. Another approach is the use of an efficient reasoning engine in embed-
ded systems such as software-defined radios [5] or routers [12] as explored in the
context of disruption-tolerant networking.

6 Conclusion and Future Directions

We have presented first steps toward combining local forward and backward
reasoning in a fully distributed fashion with knowledge that is transparently
shared. A fixed or known neighborhood is not assumed in our more abstract
approach, and the use and dissemination of both facts and goals aims at general
cyber-physical systems with distributed actuation, and hence leads us beyond
sensor networks, in particular to dynamic sensor/actuator networks that are,
unlike ensembles, inherently heterogeneous.

The partial order structure of knowledge enables distributed knowledge shar-
ing and replacement. The subsumption relation has a logical interpretation,
which in a sufficiently expressive logic can be defined in terms of a logical impli-
cation. The replacement ordering, on the other hand, allows the user to specify
when knowledge becomes obsolete. The use of knowledge is not limited to facts;
knowledge can also represent goals. We do not use a modal logic, which means
that knowledge about knowledge must be explicitly represented if needed.

We have developed a prototype of our distributed logical framework based
on an implementation of the partially ordered knowledge-sharing model and
an application programming interface (API) for cyber-physical devices that en-
ables interaction with the physical world [7]. Our framework provides a uniform

13



abstraction for a wide range of NCPS applications, especially those concerned
with distributed sensing, optimization, and control. Key features of our frame-
work are that (i) it provides a generic service to represent, manipulate, and share
knowledge across the network under minimal assumptions on connectivity, (ii) it
enables the same application code to be used in various environments including
simulation models and real-world deployments, (iii) it adapts to a wide range of
operating points between autonomy and cooperation to overcome limitations in
connectivity and resources, as well as uncertainties and failures.

The proof system that we have presented in this paper focuses on a few
core ideas, but the work can be generalized in many directions. One step is the
generalization of the underlying logic, for example, incorporation of equational
features as in Maude [4]. Another possibility is introducing stochastic events
and/or probablistic reasoning.

The logical framework should be thought of as a means of expressing the
space of logically sound behaviors, which can be further constrained by more
quantitative techniques. Our inference rules force a proof strategy that proceeds
according to the ordering of atoms in the conditions of a Horn clause. More
general proof strategies are possible, and could potentially lead to a higher degree
of parallelism. Solved or unsolved goals that cannot generate further solutions
could be removed — for example, by equipping goals with an expiration time
to allow removal in a controlled manner. Several conflicting goals can be active
at the same time, and strategies guided by prioritization and more generally
distributed optimization techniques need to be developed.

This paper presents an interleaving semantics, but a true concurrency se-
mantics, such as the semantics of rewriting logic [10], where the concurrent
application of proof rules is represented explicitly, might be more appropriate.

In this paper derivations are used for meta-level reasoning. However, the
explicit representation of derivations could be made available to applications.
Possible uses include the following.
(1) Faulty Facts Elimination. If the initial sensor data (e.g., noise detected in
area A) is wrong — for example, due to a faulty or malicious sensor — and
is detected, this (meta) fact should be disseminated to other robots and the
inference system should exclude reasoning based on faulty data.
(2) Situation Awareness. Noise was correctly detected, but ceases when one of
the robots arrives in area A. In this case, new facts will be disseminated and
decisions based on the obsolete facts might need to be canceled.
(3) Uncertainty Management. Derivations can be used to indicate whether a
decision was made based on reliable information. If a decision is made based on
an uncertain observation (e.g., a sensor with some error margin), the degree of
uncertainty needs to be propagated through the derivation so that decisions can
be based on the quality of derivations as well as the conclusions.
(4) Post-Examination. After a goal is satisfied, one can examine whether further
optimization is possible (e.g., in terms of delay, energy consumption). For exam-
ple, one can examine why a certain robot decided to move in a certain direction.
This can be related to (3) if the less optimal decision was made due to data
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uncertainty that was not correctly evaluated (e.g., data fusion from two sensors
with equal weight is suboptimal if one of the sensors has a larger error).
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