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1. INTRODUCTION
Business and risks are two sides of the same coin. In other words, there is no business without risk.
However, unintended risks involved in a business may cause serious damage to all the stakeholders.
In this paper, we propose a logical framework to analyze business processes.

A business process in general is a set of business entities together with their activities for certain
business purposes. It is often designed by using a business process modeling language, such as,
BPEL (TC, 2007) (Business Process Execution Language) or BPMN (Group, 2009) (Business
Process Modeling Notation), or by using a standard modeling language, such as UML (Unified
Modeling Language), flowcharts, and so on. We must choose an appropriate modeling language (or
several languages) to represent the aspects in which we are interested. At the same time, it is
important to choose an appropriate abstraction level. An important goal of our research is to provide
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a model and an analysis method that helps designers of business processes to formulate and analyze
risks. Our model provides concepts, a language, and an abstraction level appropriate to capture the
essentials of business processes, yet amenable to formal analysis. In this paper, our interest is in the
flow of a business process, i.e., who does what, when. We use the phrase Business Process Flow
(abbreviated to BPF) to clarify that we are focusing on the flow of a business process.

1.1 Business Process Flow
Figure 1 shows a simple and small BPF example. It is modeled by using a UML Sequence Diagram.
We have two business entities, client and sales, and messages are passed between these entities. A
business entity can be a division of a company, a worker, a client, a computer system, and so on. In
this paper, we simply use the word division to represent business entities. We restrict the elements
of the Sequence Diagram as follows to make the diagram specific to our purpose:

• Each object is a division.
• Each message passed between divisions is a document.
• Each message passed from a division to itself is a special activity either of the type creation

message or control message.

The messages of type creation message are create(d) for creating a document d, create(d1, d2)
for creating a document d1 from a document d2, create-cc(d) for creating a document d with a
carbon copy, and create-cc(d1, d2) for creating a document d1 from document d2 with a carbon copy.

Each message of type control message consists of two categories: check and approve, which
means that we can check and approve a document respectively. If a document is checked or

Figure 1: Simple Business Process Flow
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approved, then it is marked by “something”, e.g., a signature or a seal, to record that it is already
checked or approved. We call this “something” evidence of a check (evidence for short). An
evidence of a check contains information about which division has checked the document.

The category check consists of the following four messages. These messages are all for checking
a document d1 with document d2, but have different evidences: 

• check(d1, d2) for checking a document d1 with document d2,
• check(d1, e1, d2) for checking a document d1 that has evidence e1 with document d2,
• check(d1, d2, e2) for checking a document d1 with document d2 that has an evidence e2 and
• check(d1, e1, d2, e2) for checking a document d1 that has evidence e1 with document d2 that has

an evidence e2.

If a document d is checked by a division v, then an evidence ch(v) is written in d.
The category approve consists of the following messages:

• approve(d) for approving a document d and
• approve(d, e) for approving document d which has an evidence e.

If a document d is approved by a division v, then an evidence apv(v) is written in d.

1.2 The World of Business Process
Figure 1 represents a simple BPF. There are two business entities: client and sales. However, in real
business situations, there would be several clients and there may be several office workers in the
sales division. In addition, there may be several attackers planning to do illegal activities. So, the
world of business process can be considered as a soup of business entities (and attackers). These
business entities are working concurrently and they are communicating with each other.

A business process like Figure 1 shows only a session in this world. When we analyze a BPF, it
is important to clarify which of the following is our concern:

• analysis of a single session or
• analysis of multiple sessions.

For the former case, we are considering only one session and business entities that are related to
the session. We also consider an unbounded number of attackers. Let us call this model the micro
view of a BPF. For the latter case, we are considering unbounded numbers of business entities and
attackers, and unbounded numbers of sessions between them. Let us call this model the macro view
of a BPF. In addition to these two views, we can consider a wider view that we call the enterprise
view of BPFs in a company. The enterprise view provides a model for all the business entities and
BPFs in a company.

The meaning of risk analysis differs among these views. In the micro view model, we only
consider risks within a session. In the macro view model, we also consider risks that will be caused
by interference of different sessions of one BPF. In the enterprise view model, we are interested in
whole activities that happen in a company. In this case we also consider interference that may arise
between different BPFs.

In this paper, we discuss the micro and the macro view. We do not discuss the enterprise view,
since it requires new analysis methods to manage the complexity of interactions.

1.3 Risks in Business Process Flow
There are many kinds of risks in business. The risks we can discover in a BPF depend on how we
model the BPF. Risks such as natural disasters, economic crises, and personal problems are not our
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concern. Our concern is to discover the possibilities of illegal activities, such as document forging,
embezzlement, and illegal selling. So, we focus on information flows among organizations. For
example, in Figure 1, the following risks could be of concern:

• The sales division may receive a forged order.
• An office worker in the sales division may forge an order.
• An office worker in the sales division may forge an invoice.

These risks come from illegal documents. Our analysis focuses on the authenticity of a
document.

Risks are not always a bad thing in business. Most companies take some risks and those risks
are the source of their business. So, we have to clarify which risks are expected and which are not,
and design controls to prevent unexpected risks from occurring. Document Logic only captures
unexpected risks that derive from specified activities. Other activities that are not specified in our
model, even though they might represent a risk, are risks that are expected. For example, we assume
that signatures cannot be forged, which means we are ready to take risks caused by that. As a
consequence, in our Document Logic model there is no rule that corresponds to signature forging.
On the other hand, if we do not set controls properly, then unexpected risks remain in a BPF, and
those risks are our concern.
An unexpected risk should be controlled by activities that are not directly related to the business
purpose. So, it is important to minimize a set of controls to prevent a risk. Therefore, we
immediately face questions such as the following:

• Do the controls cover risks sufficiently?
• Are the controls efficient?

In this paper, we propose a framework that allows users to infer the effectiveness of the controls
they set.

1.4 Trust Model
Risks depend on trust. If we do not trust any division, then anything can happen. On the contrary,
if we trust all the divisions, then there is no risk at all within our context. So, we have to decide
which divisions are trustworthy and which are not. Also, we assume that the numbers of illegal
activities happening in a BPF are bounded by a certain number. This is done to reduce the
complexity of problems and make models more amenable to analysis. We have modeled this by two
notions: untrusted division and illegal activity bound.

1.5 Related Work
This research can be seen as a bridge between business process analysis and protocol analysis.
There are many studies for business process analysis, such as Van der Aalst and de Graaf (2002) and
Barth et al (2007). These studies mainly focus on how to prove the correctness of a business process
only with proper players. On the other hand, many studies on protocol analysis such as Dolev and
Yao (1983); Thayer Fa´brega et al (1998) and Denker et al (1998) assume malicious players who
try to attack the proto- col. We regard a BPF as a protocol between different divisions and assume
attackers who are trying to do something illegal.

Risk analysis of a business process is required in many different situations, such as designing a
business process, evaluating an important business process, and auditing business processes of a
company. One should select an appropriate analysis method for these different situations. For some
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situations, a model checking technique provides a good solution, and maybe for other situations
simpler methods can be used. However, there is not much research providing a good foundation that
supports several analysis methods. We provide several analysis methods that a user can choose
according to a situation. To achieve this, we need a base-level language to specify a BPF, and a
meta-level mechanism to implement different analysis methods. We show how we can achieve this
in Section 5.

Our work is mostly inspired by Escobar et al (2006), and our analysis approach follows the ideas
presented in that paper.

1.6 Structure of this Paper
In Section 2, we give a basic definition of rewriting logic. In Section 3, we define our model of
BPFs such as a document, a division, a BFP state. In Section 4, we give the rules of our logic and
define the relation between a BPF and the rules. Section 5 explains our analysis method of the micro
view, that is, analyzing risks for a given BPF. In Section 6 we extend Document Logic to fit the
macro view model of a BPF that has several sessions. In Section 7 we present two analyses that
highlight the differences between micro and macro view models: (1) backward reachability analysis
of the micro view model, and (2) forward reachability analysis of the macro view model. We
conclude with final remarks in Section 8.

2. PRELIMINARIES
We use rewriting logic (Meseguer, 1992) to formalize our framework. Here, we provide definitions
used in this paper. We encourage readers to see Meseguer (1992; 1998) for more details.

Rewriting logic is a powerful and general logic that can be used for implementing other logics.
It is an extension of membership equational logic (Meseguer, 1998). Its operational semantics is
given by a term rewriting system (TRS), and its model-oriented semantics is given by categories
with algebraic structure. Here, we mainly focus on the operational semantics.

A term is constructed by function symbols and variables. Sorts are like types in a programming
language. They, together with function symbols, are used to define well-formed terms. So, if we
have two sorts A and B, a function f : A → B, and constants a : → A and b : → B, then f(a) is a well-
formed term of sort B but f(b) is not well-formed. However, if we add a sort inclusion B < A, then
f(b) is also a well-formed term. We can define axioms for a function, such as associativity,
commutativity, idempotency, and identity. We call these axioms equational attributes of the given
function. Suppose we have a function f : Nat × Nat → Nat with commutativity, then f(f (3,4),5) is
equal to f (5, f (4,3)). A signature is a triple (S, Σ, <) where S is a set of sorts, Σ is a set of sorted
function symbols (such as f : s1 × sn–1 → sn, where s1 … sn ∈ S), and < is an order (sort inclusions)
on S. A set of well-formed terms (called Σ-term) constructed from a signature (S, Σ, <) is represented
as TΣ. We can consider a set of well-formed terms constructed from (S, Σ, <) and variables X that is
also sorted with S. In this case, we represent the set as TΣ(X), and we call an element of TΣ(X) a
pattern. A ground term is a term that does not contain any variable. A substitution is a sort
preserving function θ : X → TΣ(Y). We can extend a substitution homomorphically to terms as 
θ : TΣ(X) → TΣ(Y). A subterm of a term t is a subtree of t and is also a well-formed term. We represent
a subterm of t by t /π where π is a position of the subterm and t[t']π is the term t with the subterm
at position π replaced by t�. We can match a ground term t to a pattern p with a set of variables X if
there exists a substitution θ : X → TΣ such that θ (p) = t.

An equational theory is a pair (Ω, E ∪A), where Ω is a signature (i.e., (S, Σ, <)), E is a set of Σ-
equations, A is a set of equational attributes. A Σ-equation is a possibly conditional equation as follows:
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t = t� if uo = v0 ∧…∧ un = vn

where t, t�, uo … un, v0 … vn ∈ TΣ(X). When the list of equations for the condition is empty, we have
an unconditional Σ-equation. The term t is called the left hand side of the equation (lhs) and t� is
called the right hand side of the equation (rhs).

If we replace the symbol = in Σ-equations E with the symbol →, then we get a set of rewrite
rules RE. We can rewrite a ground Σ-term t to another term by using RE and a set of equational
attributes A. A step of rewriting is defined as follows:

1. Find a rule l → r in RE such that the pattern l matches t / π modulo A with substitution θ.
2. If the matched rule is conditional, then check for all the conditions (we explain how to check

conditions later).
3. If all the conditions hold, then we have a rewrite step t → t[θ(r)]π.

For example, suppose that we have the equational theory with the set of sort {Nat}, the set of
variables {n,m}, the set of function symbols {0 :→Nat ,s :Nat→Nat ,+:Nat×Nat→Nat, the set of
equations {n+s(m) = s(n+m)}, and + as associative and commutative. Then, we can rewrite the
ground term s(s(0))+0+0 to s(0+s(0))+0, because we can match the s(s(0))+0 to the pattern n+s(m)
(modulo commutative) with the substitution {n�→0, m�→ s(0)}. With RE and the rewriting step, we
can define the equational rewriting relation →E such that t→E t� if t can rewrite to t� by using RE. If
a term cannot be rewritten further, then it is called a normal form. If there is no infinite sequence of
rewrites for any term, then RE is called terminating. Suppose u can rewrite to v and also to v�; if we
can rewrite both v and v� to u�, then we call RE confluent. We call RE convergent, if it is terminating
and confluent. If RE is convergent, then there exists a unique normal form called canonical form for
each t ∈ TΣ. Suppose we have a convergent set of rewrite rules RE. If for each rule (l→r∈RE) 
Var(r)⊆ Var(l), then we can use →E to prove an equality t = t� by computing the canonical form of
t and t� such that CanE(t) = CanE(t�) (where the function Var gives us a set of variables in a term,
and CanE gives the canonical term of t by →E). Conditions of a Σ-equation are checked also by
checking CanE(u0) = CanE(v0) … CanE(un) = CanE(vn).

A rewrite theory is a triple (Ω, E ∪A,R), where (Ω, E ∪A) is an equational theory (E is a set of
equations and A is a set of equational attributes) and R is a set of rewrite rules. A rewrite rule is l→r,
where l is a pattern and r is a Σ-term (A rewrite rule is either conditional or unconditional. Here, we
only consider the unconditional case). From the computational point of view, RE should be
convergent; however, R does not have to be (but still should have Var(r)⊆ Var(l) for every rule l→r
in R and we also need R to be coherent (Meseguer, 1992)). By using RE, we compute equality
between terms, and by using R, we compute reachability between terms. A ground term t can be
rewritten by using RE ∪ R and A as follows:

1. Find a rule l→r in R such that the pattern l matches CanE(t)/π modulo A with substitution θ.
2. Then, we have a rewrite step t→CanE(t[θ(r)]π).

If t rewrites to t� in one step, then we say t and t� are in one-step rewrite relation and denote it
as t→1t�. We denote the reflexive and transitive closure of →1 as →*. We say a term t� is reachable
from a term t if t→*t�.

If two terms t, t�∈ TΣ(X) can be equal by using the same substitution θ : X→TΣ(Y) as θ(t) = θ(t�),
then we call θ a unifier. A unifier σ is more general than θ if there exists a unifier η such that θ =ση
(ση is a unifier that can be obtained by composing σ and η). A unifier σ is the most general unifier
(mgu) if for every unifier θ of t and t� σ is more general than θ. If no function in a rewrite theory
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has an equational attribute and terms t and t� have a unifier, then there exists a unique mgu. (This
is true in the many-sorted case (which does not have any order on sorts); for order-sorted theories
there can be several unifiers, even when no equational attribute is used.). If we have equational
attributes, then we cannot have a unique mgu but instead we may have a complete set of unifiers
(CSU), which means that for every unifier θ of t and t� we can find σ in CSU such that σ is more
general than θ. It is well known that if we have a function only with associativity for its equational
attribute then CSU can be an infinite set. However, in the case of having a function with
commutativity alone or associativity with commutativity, CSU is finite.

Narrowing is another way of computing reachability by using RE ∪ R of a rewrite theory 
(Ω, E ∪A,R). A step of narrowing t ∈ TΣ(X) is defined as follows (here we give the definition only
for the unconditional case):

1. Find a rule l →r in RE ∪ R such that there exists a position π in term t and a unifier θ (which is
an element of CSU of l and t / π) such that θ(l) = θ(t / π).

2. Then we have a narrow step t θ(t[r]π).

In a rewriting step, we cannot use a rule l →r such that Var(l) ⊄ Var(r), but in a narrowing step
there is no such restriction.

2.1 Multisets and Lists
In this paper, we heavily use sets and lists for basic data structures. We use a multiset instead of
using a set, because of the computational cost. A multiset is defined by a function _ _:MSet × MSet
→MSet that is associative, commutative, and has an identity element empty. Multisets allow dupli -
cation of elements, so we do not have idempotency. The function _ _ is a special notation for
multiset union. The use of empty syntax for multiset union follows traditional mathematical
convention. For example, if A and B are both multisets then A B is also a multiset. We have
associativity and commutativity, so (C B) A is equal to A B C. Also, we have identity for empty, so
A empty is equal to A. When we want to specify the type of elements of a multiset, we can define
subsort inclusion, including each element as a singleton multiset. For example, if we want multisets
of natural numbers, then we add the subsort relation Nat < MSet. The following are examples of
multisets of natural numbers:

1 5 10,            1,            empty,    4 4 4,     5 empty.

A list is defined by a function _;_: List List → List that is associative, and has an identity element
nil. A list of natural numbers can be defined by Nat < List. The following are examples of lists of
natural numbers:

9; 3; 8,           2,            nil,         1; 1; 1, 3; nil.

3. MODELING BUSINESS PROCESSES FLOW
We define several components of the BPF model, such as document, division, and cabinet. We also
define how we can execute a BPF.

3.1 Basic Entities
Documentation is an essential activity in any business. In other words, every business activity
should be recorded. We focus on two information aspects of business documents, authenticity and
evidence history, to trace the flow of a document in a BPF.
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• Authenticity of a document means whether or not the document is real. If it is not real, then it
means that the document is forged.

• A document can be checked against another document, and also a document can be approved.
These activities are recorded as an evidence history in the document.

In the real world, checks and approvals are usually recorded by the signature of the person who
checks (or approves) the document. In our model, we do not care which individual checked the
document, but we do care which document was used to check the document. Also, when approving
a document, we record only the division that approves the document.

Definition 1 (Evidence of a check and evidence history). An evidence of a check is constructed by
the following functions:

ch : DocType → Evidence apv : Div → Evidence

where DocType is a finite set of document types, Evidence is a set of evidences, and Div is a finite
set of divisions. An evidence history is a set of evidence. The set of all evidence histories is denoted
EvidenceHistory.

We use set instead of list because of an implementation issue. Specifically, the analysis tool we
use, Maude, only supports use of (multi)set type axioms for unification and narrowing. If we need
to reason about ordering between evidence items, this could be done by adding suitable annotations
to the evidence.

Definition 2 (Document). A document is constructed by the following function:

doc: DocType × Bool × EvidenceHistory→Doc

where Bool is used to represent authenticity of the document. If the authenticity of a document is
true, the document is real. If it is false, the document is forged. An element of Doc represents an
abstraction of a document, in the sense that we are not concerned with its content.

Example 1 Suppose that we have a set of document types {order,invoice}, then doc(order,
true,empty) is an order that is not forged, and this document has not yet been checked with any
document. The following is an invoice that is forged and has been checked with the order:

doc(invoice, false, ch(order))

A division is an entity that sends and receives a message (document). For example, client, sales
division, shipping division, accounting division, and so on are considered to be divisions. Each
document is stored in a division; we call this the document’s location, and we call a set of
document’s locations a cabinet.

Definition 3 (Document’s location and cabinet). A document’s location is constructed by the
following function:

in : Doc × Div → DocLoc

where DocLoc is the set of all documents’ locations. A cabinet is a finite set of documents’ locations.
We denote the set of all cabinets Cabinet.

Example 2 Suppose that we have a set of document types {order, invoice} and a set of divisions
{client, sales}; then in(doc (order, true, empty)) is a document’s location, which means that client
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has the order. The following is a cabinet:

in(doc (order, true, empty), client) in(doc (invoice, false, empty), sales)

where we have two documents’ locations in the cabinet (recall the definition of set in Section 2.1).

3.2 State Space of a Business Process Flow
Each activity of a division is modeled as a strand (Thayer Fábrega et al, 1998). A strand is a list of
messages. There are three message types: input/output, document creation, and control message.

Definition 4 (Input/output message). An input message is constructed by the function rec: DocType
× Div→SMsg, where SMsg denotes the set of all messages. An output message is constructed by the
function snd: DocType × Div→SMsg

A document can be created by either using information in another document, or without using
any other information. So, we have two types of document creation for messages. Similarly, a
document can be created with a carbon copy (cc).

Definition 5 (Document creation for messages). A document creation message is constructed by the
following functions:

create:DocType→SMsg   create:DocType × DocType→SMsg

The latter function represents a document having the document type of its first argument, but
which is created from its second argument. A document creation with cc message is constructed by
the following functions:

create-cc:DocType→SMsg   create-cc:DocType × DocType→SMsg

The latter function represents a document of the type of its first argument, which is created (with
cc) from its second argument.

There are six instances for control message type: four check messages and two approve
messages.

Definition 6 (Check message). Check messages are constructed by the following functions:

check: DocType × DocType→SMsg
check: DocType × Evidence × DocType→SMsg
check: DocType × DocType × Evidence→SMsg
check: DocType × Evidence × DocType × Evidence→SMsg

Basically, these messages are for checking a document specified by the first argument (we name
the document target document) with a document specified by the second (in the case of the first and
third message) or third (in the case of the second and fourth message) argument (we name the
document reference document). Both target and reference document may have evidence history.
Evidence is either the approval through a division or a check against another document. Thus, there
are four different formats for the check message: The first message format is for checking a target
document with the reference document and neither of them has evidence. The second and the third
messages are for checking a target document with a reference document where one of them has
evidence. The last message is for checking the target document with the reference document and
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both documents have evidence history as specified as the second and the fourth argument,
respectively.

Definition 7 (Approve messages). Approve messages are constructed by the following functions:

approve: DocType→SMsg   approve: DocType × Evidence→SMsg

The second message means that to approve this document, the document should have the
evidence specified by the second argument.

A strand is a list of messages. This structure specifies in which order the messages are supposed
to be sent and received. This list is divided into two parts using the symbol |. Messages to the left
of | are past messages, meaning messages that have been already processed (i.e., messages that have
been sent or received), and messages to the right of | are future messages that still must be processed
(i.e., message that must be sent or received). Thus, | represents the current position in the execution
of the strand.

Definition 8 (Strand and current position). A strand is a triple (v, L1,L2), where v is a division, and
L1 and L2 are both lists of messages. We denote (v, L1,L2) as v[L1 | L2]. We call “|” the current
position of v[L1 | L2].

Example 3 Suppose that we have a set of divisions {client, sales} and a set of document types
{order, invoice}; then

client [create(order) | snd(order, sales); rec(invoice, sales)]

is a strand representing the client activity in Figure 1 (recall the definition of list in 2.1). It describes
that the client has created an order and it will send order to sales and then receive invoice from sales.

Definition 9 (Initial position and final position of a strand). A strand is in its initial position if the
first part of the list of messages is nil. A strand is in its final position if the second part of the list of
messages is nil.

Before we define the state space of a BPF, we have one more concept to define. In our model,
risks depend on our trust in divisions. This is modeled by a set of divisions that we do not trust.

Definition 10 (Untrusted set). An untrusted set is a set of divisions that we do not trust.
Now, we are ready to define the state space.

Definition 11 (State). A state of a BPF is a 4-tuple (S,C,U,n), where S is a set of strands, C is a
cabinet, U is an untrusted set, and n is a natural number representing the illegal activity bound.

Example 4 A state of the BPF shown in Figure 1 can be modeled as follows:

((client[create(order) | snd(order, sales); rec(invoice, sales)]
sales[nil | rec(order, client); create(invoice, order); snd(invoice, client)])
(in(doc(order, true, empty), client)), (sales), 2))

This means that we have two strands for client and sales, and that client has created a document
order and sales is waiting to receive it. In the cabinet, we can find doc(order, true, empty) in client.
We do not trust the sales division and we allow as many as two illegal activities.
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3.3 Execution
Execution of a BPF is performed by passing messages, and is defined by a set of rules in our model
(the actual Document Logic rules are given in Section 4). A rule is modeled by a rewrite rule in
rewriting logic.

Definition 12 (Document Logic rule). A rule of Document Logic is a rewrite rule of rewriting logic
of the form SP→SP�, where SP and SP� are both terms denoting patterns for states of a BPF. We
denote a set of Document Logic rules as RDL.

Usually, we begin execution at an initial state, and the current positions of the different strands
gradually move from left to right until they reach a final state or there is no rule to be applied any
more. In other words, we use rewriting to reach a final state from an initial state. We call this
execution a forward execution of a BPF.

Definition 13 (Initial state and final state). Suppose that we have a state (S,C,U,n). A state is called
an initial state if all the strands in S are in their initial position and C is empty. A state is called a
final state if all the strands in S are in their final position.

If the rules have nondeterminism, that is, if we can apply several rules to a state, we may have
several paths from an initial state to (possibly many) final states. We may also have several initial
states, because we allow an unlimited number of attackers to participate in a BPF.

Instead of using a forward execution, we can start from a final state and use the rules in a
backward way to search for an initial state. We call this execution a backward execution of a BPF.

Definition 14 (Backward rule). Suppose we have a Document Logic rule l→r. The corresponding
backward rule is r→l. If we have a set of Document Logic rules RDL, then we denote the set of
corresponding backward rules as ȒDL. Note that in RDL rewriting proceeds from initial toward final
states, while in ȒDL rewriting proceeds from final toward initial states.

In the following, we will present all rules as forward rules and indicate when we use them in
forward fashion or in backward fashion for different analyses. 

4. DOCUMENT LOGIC
Document Logic rules are specified as forward rules. Forward rules describe state transitions going
forward in time in the sense that the left side of the rule describes the predecessor state, and the right
side of the rule describes the successor state that can be reached from the preceding state. If one
were to swap left and right sides of a rule, a forward rule becomes a backward rule. In a backward
rule, the left side of the rule describes the successor state that can be reached from the preceding
state described in the right side of the rule. In that sense, backward rules describe the evolution of
systems states going backwards in time. The decision to formulate the state transitions of a system
using forward or backward rules depends on the kind of analysis methods one wants to use. In
Section 5 we will discuss two types of analyses of state transitions supported by Maude: reachability
analysis using forward execution and reachability analysis using backward execution. We will see
that for finding attacks in the micro view, reachability using backward execution is more expressive.
Backwards narrowing is a search strategy that allows one to consider an unbounded number of
initial states (with different numbers of sessions, attacks and so on) at once. This contrasts with
model checking and forward search that starts with a concrete initial state and looks for one attack.
Backward search can look for multiple attaches if they are reachable. Of course, one trades looking
for many initial states in backward search for starting with a fixed attack pattern. 
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However, to ease readability, we will present all rules in forward fashion and point out for each
analysis whether we use forward rules or the corresponding backward rules. Thus, in the context of
analysis in the micro view, while we represent the BPF with forward rules, the analysis is done with
the corresponding backward rules. In the macro view analysis, we will present the BPF using
forward rules and use these rules in forwards reachability analysis to manage state space explosion
by focusing on a fixed initial state. 

Definition 15 (Document Logic). A Document Logic is a triple (∑,A,R), where ∑ is the set of
function symbols defined as in Section 3, A consists of equations used only as equational attributes
(i.e., associativity, commutativity, and identity), and R is either RDL or ȒDL. Depending on analysis
we use RDL or ȒDL (see Section 5 for analysis).

From now on, we assume the following variables: We use uppercase letters for sets and lists, and
lowercase letters for other data; S for StrandSet, C for Cabinet, U for Untrusted, n for natural
numbers, and H for EvidenceHistory; v,v1,… for Div; t,t1,… for DocType; k,k1,… for Evidence;
b,b1,… for Authenticity; ML,ML1,… for list of messages.

4.1 Proper Operations
We define “proper” operations for documents: create, create-cc, snd, rec, check, and approve. We
mean proper in the sense that these are legal operations in the business process.

The create operation has two types: simply create a document, and create a document from
another document.

Definition 16 (Create-1). The rule create-1 is

((v[ML1 | create(t); ML2]S), C, U, n)
→((v[ML1; create(t) | ML2]S), (in(doc(t, true, empty), v) C), U, n)

This rule can be read as follows: “If there is a strand whose current position is right before creating
a document of type t, then it can transition into a new state in which the strand’s current position is
right after creating the message and we can find that document which is not forged and has an empty
evidence history in the cabinet.” Note that the strand is for the division in which the document is
located (because we use the same variable v for the strand and for the document’s location).

Definition 17 (Create-2). The rule create-2 is:

((v[ML1 | create(t1, t2) ; ML2]S), (in(doc(t2, b, H), v) C), U, n)
→((v[ML1; create(t1, t2) | ML2]S), (in(doc(t1, b, empty), v) in(doc(t2, b, H), v) C), U, n)

The rule create-2 says that if there is a strand whose current position is right before creating
document t1 from document t2, and if the document of type a t1 has not yet been created, then we
can find in the next state both documents of type t1 and t2 with the same authenticity in the same
document’s location. The point is that we can create a real document only from a real one and we
will create a forged document from a forged one even if we do not intend to forge a document. This
rule expresses our assumption that in the real world a person who processes a document cannot
change its validity from true to false or vice versa.

Definition 18 (Carbon copy). A carbon copy of a document is constructed by the function 
cc: Doc→Doc.
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Definition 19 (Create-cc-1). The rule create-cc-1 is:

((v[ML1 | create-cc(t); ML2]S), C, U, n)
→((v[ML1; create-cc(t) | ML2]S),

(in(doc(t, true, empty), v) in(cc(doc(t, true, empty)), v) C), U, n)

The rule create-cc-1 is almost the same as create-1, except that this is for creating a document
and its carbon copy simultaneously. The original document and its carbon copy are essentially the
same, except that the carbon copy is marked as such. Carbon copies are special in that an attacker
never forges carbon copies.

We chose to model the create carbon copy message without indicating the division to which the
carbon copy is sent, but it would be possible to add a parameter keeping track of the carbon copy.
The main reason we decided against tracking the carbon copy is that it is not relevant for enabling
new illegal activities, since the attacker cannot forge a carbon copy.

We omit the rule create-cc-2, which corresponds to create carbon copy for create-2.
Sending a document (snd) and receiving it (rec) happen synchronously, defined as follows:

Definition 20 (Send). The rule send is:

((v1[ML1 | snd (t, v2); ML2] v2 [ML3 | rec(t,v1); ML4] S), (in(doc(t, b, H), v2) C), U, n)
→((v1[ML1 ; snd (t, v2) | ML2] v2 [ML3 ; rec(t,v1) | ML4] S), (in(doc(t, b, H), v2) C), U, n)

We recall Definition 6, which defines four different messages to check a document with another.
Accordingly, when writing rules for checking documents, all message formats need to be
considered, which results in several rules for checking a document that are somewhat similar. Thus,
in the following we define rules for checking documents for two message formats: (1) checking a
target document with a reference document, neither of them having evidence, and (2) checking a
target document that has evidence history with a reference document that has evidence history.

We can check a document with another document only if their document’s locations are the same
and they have the same document authenticity. It is natural to think a real document can be checked
with another real document. In addition to that, a forged document can be checked with another
forged document. To explain why we need the latter case, let us consider the following situation.
Assume that we have two documents d1 and d2 and we want to check d1 with d2. If d2 is forged, then
it is possible that someone wants to trick the checker of d1 and make up the contents of d2. In this
case, both d1 and d2 are forged. We are looking for risks, so if there is a possibility of illegal activity,
we should make it traceable.

If the check is passed, then we add an evidence to the evidence history of the document (in the
real world this can be seen as writing down the signature of the person who checks the document),
so that we can know whether or not a document is checked.

Definition 21 (Check-1). The rule check-1 is:

((v[ML1 | check (t1, t2); ML2] S), (in(doc(t1, b, H1), v) in(doc(t2, b, H2), v) C), U, n)
→((v[ML1 ; check (t1, t2) | ML2] S), (in(doc(t1, b, (ch(t2) H1)), v) in(doc(t2, b, H2), v) C), U, n)

We can check a document by using a carbon copy. The corresponding rule is exactly the same
as the rule check except that we check a document with a carbon copy cc(doc(t2, b, H2)) instead of
doc(t2, b, H2). We omitted showing the rule.

As mentioned earlier, we will also provide the rule for checking a target document that has
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evidence history with a reference document that has evidence history. The corresponding check
message is defined as check: DocType × Evidence × DocType × Evidence→SMsg. This check can
be used for the situation that a document d1 should be checked with d2 and the checker should make
sure that d1 has an evidence k1 that may be a signature of the manager of the checker, and also d2
has an evidence k2 that may be a signature of the other division’s manager.

Definition 22 (Check-7). The rule check-7 is:

((v[ML1 | check (t1, k1, t2, k2); ML2] S),
(in(doc(t1, b, (k1, H1)), v) in(doc(t2, b, (k2, H2)), v) C), U, n)
→((v[ML1 ; check (t1, k1, t2, k2) | ML2] S),
(in(doc(t1, b, (ch(t2) k1 H1)), v) in(doc(t2, b, (k2, H2)), v) C), U, n)

To approve a document, we add an evidence apv(v) to the evidence history of the document,
where v is the division that the person who gave the approval belongs to.

Definition 23 (Approve-1). The rule approve-1 is:

((v[ML1 | approve(t) ; ML2] S), (in(doc(t, b, H), v) C), U, n)
→((v[ML1 ; approve(t) | ML2] S), (in(doc(t, b, (apv(v) H)), v) C), U, n)

Definition 24 (Approve-2). The rule approve-2 is:

((v[ML1 | approve(t, k) ; ML2] S), (in(doc(t, b, (k H)), v) C), U, n)
→((v[ML1 ; approve(t, k) | ML2] S), (in(doc(t, b, (apv(v) kH)), v) C), U, n)

4.2 Attacker Model
We adopt a quite simple attacker model in which an attacker can forge a document if it is in an
untrusted division. Each attacker belongs to the special kind of division called an attacker division.

Definition 25 (Attacker division). An attacker division is constructed by the function attacker :
Div→Div, which means that there is an attacker in the division.

Note that an attacker can only forge a document that has not yet been checked. We assume that
our checking mechanism is completely trustworthy. In the real world, this means that we cannot
forge other persons’ signatures or seals. While this is a somewhat simplifying assumption, it is a
good starting point since many risks can be identified even under this assumption. Future work will
explore extending our attacker model to forging a signature similar to work done in cryptographic
protocols.

An attacker uses a special message called attacker message.

Definition 26 (Attacker message). An attacker message is constructed by the following function:

forge: DocType→SMsg

Definition 27 (Forge). The rule forge is:

((attacker(v) [nil | forge(t); nil] S), (in(doc(t, true, h), v) C) (vU), s(n))
→(S, (in(doc(t, false, empty), v) C) (vU), n)
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This simple rule includes several important points. An attacker can forge a document: if that
attacker belongs to an untrusted division, if the document is not a carbon copy, if the document is a
real one and if the illegal activity bound is not zero. These conditions are represented by the left
hand side of the rule. Also, note that if we apply this rule, and to a state of a BPF, in a backward
search, the strand set of the resulting state will have a new element attacker(v)[nil | forge(t); nil].
This mechanism allows us to deal with an unbounded number of attackers by generating new
instances as needed.

5. ANALYSIS OF MICRO VIEW MODEL
Here, we mainly focus on the micro view of a BPF and discuss how we can analyze risks involved
in the BPF. Given a BPF we would like to know whether or not there exists any risk, and if so, we
also want to know how the unwanted situation will occur. We have implemented our framework as
a prototype tool using Maude (Clavel et al, 2007).

Thanks to analysis capabilities provided by rewriting logic, Document Logic supports several
different levels of analysis. This is quite important because there is a trade-off between analysis
power and computational cost according to the analysis method we choose. Our framework has
three major levels of analysis such that:

• execution,
• reachability analysis using forward execution,
• reachability analysis using backward execution.

We can execute BPF to see what will happen. This is almost the same idea as testing a program
by execution. In a concurrent process situation like BPF, this analysis gives us quite limited
information, because we have lots of different execution paths.

The reachability analysis using forward execution is much more powerful than just executing a
BPF. In this analysis method, a user gives an initial state of a BPF and a pattern (a term with
variables) of final states. Then, Maude searches all the execution paths from the initial state and
outputs all the final states that match the pattern. This search is done by rewriting with RDL. Maude
also allows the user to specify a temporal property in LTL (Linear Temporal Logic) instead of just
giving a pattern of final states. In other words, we can model check a BPF by using the Maude LTL
model checker. To know all the risks involved in a BPF, we should manually enumerate all the
initial states and run the analysis for all of them.

The reachability analysis using backward execution is more powerful compared to the former
two methods. A user gives a pattern of final states, and Maude searches for all the initial states from
which the final states that match the pattern are reachable. Using this approach, the user does not
have to specify in advance the number of attacker instances needed to reach the specified state. The
following is an example of an illegal situation for Figure 1:

((client[create(order); snd(order, sales); rec(invoice, sales) | nil]
sales(rec[order, client); create(invoice, order); snd(invoice, client) | nil])
(in(doc(order, b3, empty), v1) in(doc(invoice, false, empty), client)), (sales), 2)

This pattern means that client and sales have completed their work, and the invoice is forged and
client has it. However, we do not care about the order, where it is (v1 is a division variable), and
whether or not it is forged (b3 is a Boolean variable).

This search is done by narrowing with the backward form of the rules ȒDL. Using Maude’s built-
in narrowing and meta-programming capabilities, we have built a prototype tool. The built-in
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narrowing command takes a term and gives us a result. We have to collect all the results and select
the initial states from the results (since the results include states that are not initial). We implement
this analysis tool by using Maude’s meta-programming facility. We note that the prototype tool can
be easily extended to work with either forward or backward rules, thus allowing both forward and
backward analysis. Before we present details on the analysis in Section 7, we investigate the
necessary extensions to support macro view model analysis.

6. EXTENDING DOCUMENT LOGIC TO ANALYZE MACRO VIEW MODEL
We extend Document Logic to fit the macro view model of a BPF that has several sessions. A
division may participate in several BPF instances and each BPF instance is identified by a session
identifier. For analyzing the macro view model, we use the forward rules for forward reachability
analysis (see next section).

Definition 28 (Session). A session is constructed by the following function:

session : Div × SessionId→Session

where SessionId is a set of session identifiers.
The definition of Doc is extended to have information that identifies the session in which the

document is created.

Definition 29 (Document (macro view version)). A document is constructed by the following
function:

doc: DocType × Bool × SessionId × EvidenceHistory→Doc

A strand now has Session information instead of just having Div. The rules of Document Logic
are also extended according to the above definitions in the obvious way. Exceptions are the rules
for create and check that handle session identifiers as follows. When creating a document from
another document, the new document inherits the session identifier, as can be seen in the new rules
for Create-2 and Check-2.

Definition 30 (Create-2). The rule create-2 (macro view version) is:

((e[ML1 | create(t1, t2) ; ML2]S), (in(doc(t2, true, i, H), e) C), U, n)
→((e[ML1 ; create(t1, t2) | ML2]S), (in(doc(t1, true, i, empty), e)

(in(doc(t2, true, i, H), e) C), U, n)

where e is a variable for Session and i is a variable for SessionId.

Definition 31 (Check-2 (macro view version)). The rule check-2 is:

((e[ML1 | check(t1, t2) ; ML2]S), (in(doc(t1, b, i, H1), v) in(doc(t2, b, i, H2), v) C), U, n)
→((e[ML1 ; check(t1, t2) | ML2]S), (in(doc(t1, b, i, (ch(t2) H1)), e)

(in(doc(t2, b, i, H2), e) C), U, n)

where e is a variable for Session and i is a variable for SessionId.
The above definition of check-2 means that document t1 can pass the check with document t2 if

both documents have the same authenticity and the same session identifier. SessionId can be
understood similar to a “serial number” that is used to bind several documents to a session. The
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other rules for create and check must be extended in a similar way.
The most interesting question is how we should extend the attacker rules. We propose an

extension so that an attacker can exchange two documents of different sessions that have the same
document type. The following is the rule for this new attack:

Definition 32 (Exchange). The rule exchange is:

((attacker(v)[nil | exchange(t); nil] S), (in(doc(t, b1, o1, H1), session(v, i1))
(in(doc(t, b2, o2, H2), session(v, i2)) C), (v U), n)
→((attacker(v)[exchange(t) | nil] S), (in(doc(t, b1, o1, H1), session(v, i2))
(in(doc(t, b2, o2, H2), session(v, i1)) C), (v U), s(n))

An attacker can exchange documents if the attacker and the two documents are in the same
untrusted division. Note that the authenticity of exchanged documents is not changed.

We do not claim that the above attacker rule constitutes a complete attacker model, but it is
sufficient to demonstrate a rather intricate attack in our case study. Other attacker rules are possible.
For example, an attacker may just intercept documents from one session and substitute them instead
of other documents in another session, without changing anything in the session from which the
document was intercepted, or an attacker can forge a document with arbitrary session identifier.

7. CASE STUDY
The example BPF of Figure 2 is a sequence diagram representing a simple wholesale BPF. We show
the results of two analyses for this example: (1) backward reachability analysis of the micro view
model, and (2) forward reachability analysis of the macro view model. These two analyses will
highlight the differences between micro and macro view models.

7.1 Backward Reachability Analysis of Micro View Model
We consider the following final goal, which we have divided into four components: StrandSet,
Cabinet, UntrustedDivision, and IllegalActivityBound:

StrandSet =
(client[create-cc(order); snd(order, sales); rec(ack, sales); check(ack, order);
rec(invoice, shipping); check(invoice, order); create(receipt, invoice); snd(receipt, sales) | nil]

sales[rec(order, client); create(ack, order); snd(ack, client); create(request, order);
snd(request, shipping); approve(order); rec(report, shipping); rec(receipt, client);
check(receipt, order, apv(sales)); check(report, order, apv(sales)) | nil]

shipping[rec(request, sales); create-cc(invoice, request); snd(invoice, client); create(report, invoice);
snd(report, sales); | nil])

Cabinet =
(in(doc(invoice, b1, H1), v1) in(cc(doc(order, b2, H2)), v2) (in(doc(ack, b3, H3), v3)
(in(doc(order, b4, H4), v4) in(doc(report, false, (ch(order), H5)), sales2) (in(doc(receipt, b6, H6), v6)
(in(cc(doc(invoice, b7, H7)), v7) in(doc(request, b8, H8)), v8))

UntrustedDivision = (sales shipping)
IllegalActivityBound = 2

This query means “Is there a case for which the sales division finally has a forged report that
is checked with order?” This is encoded in the above goal as part of the cabinet as follows:
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in(doc(report, false, (ch(order), H5)), sales)

The above goal (i.e., the definition of StrandSet, Cabinet, UntrustedDivision, and
IllegalActivityBound) is given as the pattern of the final state and our Maude tool searches for all initial
states from which the final states that match the pattern are reachable. Executing this reachability
analysis using backward execution (that is, reversing the arrows in all the forward rules specified in
Section 4 so that they become backward rules) is triggered using the command rew solutions(term).
Maude> is the Maude input prompt, and executing rew solutions(term) gives the following result:

Maude> rew solutions(term) .
rewrite in NARROW : solutions(term) .
rewrites: 98525 in 186597ms cpu (280944ms real)

(528 rewrites/second)
result StateList: nil-sl

The resulting “StateList: nil-sl” means that there is no such initial state, and thus, there is no
initial state from which a final state that matches the given goal pattern could be reached.

We can modify the goal pattern to analyze a different aspect of the BPF. For example, we modify
the last message of the sales division in the strand set from check(report, order, apv(sales)) to
check(report, order). This new goal pattern is one in which the sales division checks the report with

Figure 2: Whole sales
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an order that has no evidence history. The old goal pattern required that the sales division checks
the report with an order that was approved by the sales division.

If we execute the same query “rew solutions(term)” but with the new goal as the term to be re -
written, we get the result shown in Figure 3. This result shows that there are two possibilities: to forge
both the order and the report in sales, or to forge the order in sales and forge the report in shipping.

Formulating the final goal that will be used for backward reachability analysis can be done for
a given BPF. Our example illustrates that the final goal must define all strand sets involved in the
BPF, all documents exchanged in the BPF that end up in the cabinet and the divisions that are
untrusted. Finally, a document in the cabinet that is forged but passed checks must be identified. The
strand sets model the business process of interest, and will be the same for all the analyses to be
performed on the model, and many of the cabinet items will be common to all the analyses. Thus
the main work is defining the bad documents to be considered. The illegal activity bound can be set
experimentally, slowly increasing the bound until an error is found or, if the analysis does not
uncover risks, until the analyst considers the achieved assurance level as sufficient.

While our example illustrated the goal definition for a forged report that was checked with an
order, a similar goal template would suffice to capture other risks as pointed out in Section 1.3, such
as an office worker in the sales division forging an invoice or an order. For example, the goal state
for a forged invoice would be as follows:

StrandSet =
(client[create-cc(order); snd(order, sales); rec(ack, sales); check(ack, order);
rec(invoice, shipping); check(invoice, order); create(receipt, invoice); snd(receipt, sales) | nil]

sales[rec(order, client); create(ack, order); snd(ack, client); create(request, order);
snd(request, shipping); approve(order); rec(report, shipping); rec(receipt, client);
check(receipt, order, apv(sales)); check(report, order, apv(sales)) | nil]

shipping[rec(request, sales); create-cc(invoice, request); snd(invoice, client); create(report, invoice);
snd(report, sales); | nil])

Cabinet =
(in(doc(invoice, false, (ch(order) H1)), client) in(cc(doc(order, b2, H2)), v2) 
in(doc(ack, b3, H3), v3) (in(doc(order, b4, H4), v4) in(doc(report, b5, H5)), v5)
in(doc(receipt, b6, H6), v6) in(cc(doc(invoice, b7, H7)), v7) in(doc(request, b8, H8), v8))

UntrustedDivision = (sales shipping)
IllegalActivityBound = 2

Figure 3: Possible Risks
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Here StrandSet, UntrustedDivision, and IllegalActivityBound are the same as in the previous
example. The cabinet part of the goal is obtained by changing the authenticity component of the first
invoice document to false and making the authenticity component of the report document a variable.

7.2 Forward Reachability Analysis of Macro View Model
The macro view model deals with unbounded number of sessions. Thus, performing backward
reachability analysis comes with a huge computational cost. Although forward reachability analysis
is a somewhat adhoc analysis method, it proves to be quite powerful if one can find a proper initial
state. The computational cost is much smaller than that of backward reachability analysis and we
can adopt an iterative analysis approach in which we increase the analysis complexity by increasing
the numbers of sessions until we find an error, or become convinced that more simultaneous
sessions are sufficiently unlikely.

In our case study we fix the number of sessions to two sessions, i.e. SessionId = {i1, i2}. We have
three divisions and each has two sessions, which means that we have six session instances:
session(client, i1), session(client, i2), session(sales, i1), session(sales, i2), session(shipping, i1), and
session(shipping, i2).

We assume four attackers as follows:

attacker(sales)[nil | forge(order); nil] attacker(sales)[nil | exchange(order); nil]
attacker(sales)[nil | exchange(order); nil] attacker(shipping)[nil | forge(order); nil]

The risk we want to analyze is the same as the previous analysis. The initial state is as follows:

StrandSet =
(session(client, s1)[create-cc(order); snd(order, sales); rec(ack, sales); check(ack, order);

rec(invoice, shipping); check(invoice, order); create(receipt, invoice); snd(receipt, sales) | nil]
(session(client, s2)[create-cc(order); snd(order, sales); rec(ack, sales); check(ack, order);

rec(invoice, shipping); check(invoice, order); create(receipt, invoice); snd(receipt, sales) | nil]
(session(sales, s1)[rec(order, client); create(ack, order); snd(ack, client); create(request, order);

snd(request, shipping); approve(order); rec(report, shipping); rec(receipt, client);
check(receipt, order, apv(sales)); check(report, order, apv(sales)) | nil]

(session(sales, s2)[…]
(session(shipping, s1)[…]
(session(shipping, s2)[…]
attacker(sales)[nil | forge(order); nil]
attacker(sales)[nil | exchange(order); nil]
attacker(sales)[nil | exchange(order); nil]
attacker(shipping)[nil | forge(report); nil]
Cabinet = ()
UntrustedDivision = (sales shipping)
IllegalActivityBound = 4

Figure 4 shows one of the results we got by performing forwards reachability analysis. The
analysis reveals a quite subtle attack pattern. We call the order that is created in session #1 order1
and the order that is created in session #2 order2. An attacker forged order1 right after the receipt is
checked. By using this forged order1, report cannot pass the succeeding check, because order1 does
not have the evidence of approval. So, attacker intercepts order1 and order2 that is waiting for
approval in session #2, and exchanges them. In session #2, order1 can be approved by a manager of
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the sales division because the operation approve does not depend on the session identifier. The
reason is that we assume that in a real business process the operation approve is performed by a
manager to ensure the content of the document and to confirm conditions, such as credit limit,
regulations, and standards, all of which are independent of a specific session. Right after order2 gets
approval, an attacker exchanges order1 and order2 again. The forged report is then checked with the
forged order1 which has the evidence of approval and, thus, passes the check. This attack cannot be
achieved by using only one session.

Of course, in session #2, the last check fails and the attack would be discovered. However, by this
time, the attack could have already been successfully completed and caused real harm to the business.
In addition, even though the attack might have been discovered, it might still take some time for a
human to trace the origin of the forged documents and determine the exact attack pattern. From this
simple example, it becomes clear that more sophisticated attacks (e.g., including more sessions),
would be even harder to find for a human, yet can be detected by means of automated analysis.

8. CONCLUSION
Our research goal is to model social systems that involve many kinds of risks. Social systems, like
business processes, contain many complex concepts, such as illegality, profits, and trust. These
concepts usually do not appear in the engineering systems that are the usual subject of formal
analysis, although they have some similarities with cryptographic protocols. We want to build
formal models that can explain such concepts well and use them to help experts in the design of safe
business processes. Document Logic is an example of this attempt.

Document Logic is a simple yet powerful framework to infer risks in business process flows.
We focus on flows of documents and build a set of inference rules based on document authenticity
and a simple trust model. Document Logic can be seen as a specialized logic for risk analysis of
business process flow. From this point of view, rewriting logic together with its Maude

Figure 4: A risk in macro view model.
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implementation plays a crucial role. By using rewriting logic, we can easily implement our
experimental concepts by means of rewrite rules. This is useful in understanding business activities
more precisely, such as what does checking a document mean? When can an attacker forge a
document? By using Maude, this specialized logic can immediately become a prototype tool that
automatically answers our queries. Also, the meta- level programming facility of Maude allows us
to build such a special function quite readily.

However, there is much to do to achieve our goal. The current version of Document Logic
cannot talk about individuals in a division and their authorities. Authority is quite an important
aspect when we consider risks in a BPF. Adding authority to the rules of Document Logic is not so
difficult; however, the number of states we have to deal with can easily explode. Thus, we will need
to find heuristic techniques to cut down the search spaces. We hope that this can be done by
studying real business knowledge.

Also, we made the assumption of a trustworthy checking mechanism in the attacker model. This
is similar in spirit to the perfect encryption option made in many cryptographic protocol analysis
formalisms. Even with such strong assumptions, many problems can be found. Our approach has
been to start with a very simple logic and attack model, develop analysis methods, and understand
the types of risks that can be found. A more extensive attack model is an important topic for future
work.
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