A MetaArchitecture for QoS-Based Distributed Resource Management

Nalini Venkatasubramani&n Carolyn Talcott* Gul Agha **

No Institute Given

Abstract: Systems that provide distributed multimedia services alogest to constant evolution - customizable middleware is
required to effectively manage this change. In this papepresent a meta-architectural framework for customizabtesSased
middleware using Actors, a model of concurrent active dbjédiddleware services for resource management execatic@ntly
with each other and with application activities— schedgliprotocols providing security and reliability, load baleing and stream
synchronization can therefore potentially interfere watich other. To ensure cost-effective QoS in distributedimediia systems,
safe composability of resource management services isite@séor instance, system protocols and activities must cause
arbitrary delays in the presence of timing based QoS comgaUsing TLAM, a semantic model for specifying and reagpn
about components of open distributed systems, we show hooSab€kerage service can be used to coordinate multimedia
resource management services in a safe, flexible and effioi@mer.

In the coming years, distributed multimedia servers willdeployed to deliver a variety of interactive,
digital multimedia(MM) services over emerging broadbanidé-area) networks?] to form a wide-area
infrastructure. Applications such as telemedicine, distalearning and electronic commerce exhibit vary-
ing requirements such as timeliness, security, relighdlitd availability. Many MM applications can tolerate
minor, infrequent violations of their performance reqmients specified as a quality-of-service (QoS) pa-
rameter, for e.g., tolerable jitter in a video frame. Systeéhat provide distributed multimedia services are
continuously changing and evolving. For instance, thefkstivers, clients, user requirements, network and
system conditions, in a wide area infrastructure are clmgngdntinuously. Multiple protocols that cater to
a wide range of network configurations and software apjdinatmust be supported seamlessly and handle
dynamically changing QoS requirements. In order to manhgelistributed components and adapt to the
above dynamic changes in multimedia applications, cugtanhé middleware services are required. Today,
the task of distributed systems management is performedddleware layers using frameworks such as
CORBA and DCOM. Such frameworks are designed for heteragenimteroperability but are limited in the
degree of flexibility and customizability of services. Thggvide only limited capabilities for the specifica-
tion and adaptation of end-to-end QoS properties. Futypications will require dynamic invocation and
revocation of services distributed in the network witholalating QoS constraints of ongoing applications.
Customizable middleware allows us to deal with changesstesys and applications in a non-intrusive way.
In this paper, we describe techniques for developing compksrof customizable component based mid-
dleware infrastructures. We develop a model for custonhzadmst-effective middleware to enforce QoS
requirements in multimedia applications. For instancejllwstrate a placement policy that determines the
degree of replication necessary for popular MM objectsgisinost-based optimization procedure based on
a priori predictions of expected subscriber requests. For scimepdM requests, we represent an adaptive
scheduling policy that compares the relative utilizatiémesources in a multimedia server to determine an
assignment of requests to replicas. To optimize storagdjeation, we introduce methods for dereplication
of MM objects based on changes in their popularity and inesensage patterns. The meta-architectural
middleware framework developed in this paper ensures ceatpldy of concurrently executing system
components. This meta-architecture is the basis of expatihimplementation of resource management

* Contact Author: Nalini Venkatasubramanian Dept. of Infatibn and Computer Science, Univ. of California Irvine ey, CA
92697-3425, Email: nalini@ics.uci.edu
** Department of Computer Science, Stanford University, 8tdnCA 94305, Email: clt@cs.stanford.edu
*** Department of Computer Science, University of lllinois abBha-Champaign, Urbana, IL 61801, Email: agha@cs.wuc.e

mechanisms for distributed MM servers. Details of the meidmas implemented and the performance eval-
uation of the composite environment is described i detailed formal specification and correctness rea-
soning of system activities is described i#].[

Performance studies show that application objects can beagea effectively by composing multiple
resource management activities managed at the metal@véliqures?? and ??illustrate the performance,
measured by request rejection rate, of various policiesoit management - (a) purely adaptive (on-the-
fly) scheduling and placement(P1), (b) purely predictivec{ded apriori) scheduling and placement(P2),
(c) composite policies that provide adaptive scheduling predictive placement(P3 and P4, an optimized
version of policy P3). Figure? illustrates the request rejection rate under purely adagiblicies for
placement and schedulin§tartup latencyis a QoS factor that indicates how long the user is willing to
wait for a replica to be created adaptively. The graph detnates that when the startup latency is below a
threshold value (2 min), the purely adaptive mechanisnmsesented by P1 force a very large fraction of
the requests received to be rejected. Assuming that sttty is sufficiently large, Figurg? depicts the
inadequacy of P2, that relies on only predictive policiassitheduling and placement. In comparison, the
other 3 policies (P1, P3 and P4), show hardly any rejectscéiteld by the overlapping lines in the graph).
As can be observed from the performance results, the atulityn multiple policies simultaneously (as in
cases P3 and P4) reduced the total number of rejected requéise overall system.

150 T 4
G--—-—0pl
A——Ap4
;"\
- ~o 2
m | R
= 100 ‘G{‘ §
3 \ =
g \ e
@ \ 3
i \ T
o 50 \ b
#* \ ft
\\
\\
\\
0 Q—'_' B & < L S & S & O & 3
0 1 2 3 4 1 2 3 4 5 6 7 8 9 10
Startup latency in minutes Time in days

Fig. 1. Comparison of the performance of load management policessfjuest scheduling and video placement in a distributed
video server. In the graph on the left hand side, Policy Ptiwtepresents purely adaptive policies has a much higtestien rate
than policy P4 that represents composite adaptive andgbrezimechanisms. In the right hand side graph, Policy P2kviepre-
sents purely predictive mechanisms has a much higher i@jeette than P1 (purely adaptive mechanisms), P3 and P{sita
adaptive and predictive mechanisms) for data placementeapuebst scheduling.

The rest of this paper is organized as follows. Section levevithe two level semantic framework
for distributed resource management based on Actors, almabdencurrent objects. Section 2 describes a
multimedia metaarchitecure, its components and intenagthmong resource management services. Section
3 presents the several policies and optimizations for loadagement represented in the meta-architecture.
Section 4 briefly describes the formalization of the multilmemeta-architecture and the representation of

the policies discussed in the two level semantic framew8dction 5 discusses related work and outlines
areas for future research.

1 The Two Level MetaArchitecture

The Actor model is a model of concurrent active objects tlzt & built-in notion of encapsulation and
interaction and is thus well-suited to represent evolusiod co-ordination among interacting components in
distributed multimedia applications. In the actor paratithe universe contains computational agents called

actors distributed over a network. Traditional passive objectsapsulate state and a set of procedures that
manipulate the state; actors extend this by encapsulatihgead of control as well. Each actor potentially
executes in parallel with other actors and interacts onlgdiyding and receiving messages. On receiving
a communication, an actor processes the message and a#t a@asdo one or more of the following: (a)
create new actors; (b) change its state; (c) send message®ts that it knows about. (Se&7] for more
discussion of the actor model, and for many examples of progring with actors.)

In [?,7], we presented the TLAM(Two Level Actor Machine) framewdok specifying, composing and
reasoning about resource management services in opabutistk systems. In the TLAM, a system is com-
posed of two kinds of actors, base actors and meta actotspdied over a network of processing nodes.
Base-actorgarry out application level computation, whiteeta-actorsare part of the runtime system which
manages system resources and controls the runtime bebétherbase level. A TLAM provides an abstract
characterization of actor identity, state, messages, amghatation, and of the connection between base and
meta level computation. Meta-actors communicate with edlolr via message passing as do base-actors,
and they may also examine and modify the state of the basesdotated on the same node. Base level
actors and messages have associated runtime annotatareathbe set and read by meta actors, but are
invisible to base level computation. Actions which resnolichange of base-level state are called events.
Meta actors may react to events occurring on their node. ANllodnfiguration,C, has a set of base and
meta level actors and a set of undelivered messages. Ths actadistributed over the TLAM nodes. Each
actor has a unique name (address) and the configurationiatssoa current state to each actor name. The
undelivered messages are distributed over the network € spetraveling along communication links and
others are held in node buffers. The semantics of a TLAM ismivy a labeled transition relation on con-
figurations. There are two kinds of transitions: commuiizatind execution. Communication transitions
move undelivered messages around the network and are tleeisavery TLAM. An execution transition
is a computation step taken by a base or meta level actoreTresssitions are described bgaction rules
specific to a particular TLAM that determine how individugt@s react to messages received, and in the
case of meta actors how they react to eventsofputation patHor a configuration is a possibly infinite
sequence of labeled transitions. The semantics of a coafigaris the set of fair computation paths starting
with that configuration. Asystenis a set of configurations closed under the transition aati

Core Services for Resource Management: Meta-level actors provide services that customize various
aspects of distributed systems management. In practickiptawsystem and application activities occur
concurrently in a distributed system, e.g. schedulingd lealancing, protocol processing, stream synchro-
nization — such compositions can lead to complex interasti@onsider the following example of a system
where distributed garbage collection and process migrat#m proceed concurrently. If processes in tran-
sit are not accounted for, the garbage collection procaspatentially destroy accessible information. In
general, risks that arise due to composition of servicdsdigcloss of information, possible nonterminations
that cause deadlocks and livelocks, dangling resourcesngistencies, and incorrect execution semantics.
Current approaches to deal with such interference incladgalizing or delaying activities, which may
cause QoS violations; and designing a closed system, whdtices portability of code.

Composability of resource management activities is ndt giesirable, it isessentialto ensure cost-
effective QoS in distributed multimedia systems. For ins& system protocols and activities must not
enforce arbitrary delays in the presence of timing based @aoStraints. This adds complexity to the design
of such systems. We would like to be able to consider sepwiageies such as: functional behavior of an ap-
plication; and resource management issues such as memoageraent, load balancing, QoS specification
and enforcement. To ensure non-interference and manager@exity of reasoning about components of
open distributed systems in general, our strategy is taifgerey system services where non-trivial inter-
actions between the application and system occur, i.e-linas& interactions. We refer to these key services

ascqre seryicesAs astarn? om{ we ha\{e |dent|f{ed three core services:
o Recreation of services a remote srEmote creation

e Capturing information at multiple nodes/sitedistributed snapshot

We IH&V@%‘EB&%&V iﬁ%ﬁ—mf&%f&?@é ‘F%%ﬂfFSﬁ’i%%é‘?ﬁ‘éﬁP%ww dghese services to safely operate concur-

rently. A detailed case study of the composition of remoeation and a distributed snapshot formalized
in the TLAM framework appears in?]. Core services may be used in specifying and implementiogem

Remote ’
Creation

= |

Distributed Directory

Snapshot Services
|

‘\, ! Application(Base) Level

Fig. 2. Classification of Core Services

\

complex activities within the actor framework as purely aakdvel interactions (See Figur@?). For ex-
ample, remote creation can be used as the basis for desiglgjagthms for activities such as migration,
replication and load balancing. Distributed snapshots [2f). can also be used as the basis for global ac-
tivities like quiescence detection, checkpointing anavecy and distributed garbage collection (cf])[
Similarly, a directory service can be used to design aca@ssal mechanisms, routing policies and group

based communication.
2 A Meta-Architecture for Multimedia Servers

« Dlstrlbutlon Network

reques% o t data t \

Distribution Data Data Tertiery
Controller Source Source Storage

| _conrol | ! !

Fig. 3. Architectural View of a Networked Multimedia System

Building on the two-level model described in the previoustie®, we develop a meta-architectural
model of a multimedia server that provides QoS based searticapplications. The physical architecture of
the MM server (See Figure?) consists of:

e A set of data sources (DS) that provide high bandwidth stieguM access to multiple clients. Each
independent data source includes high capacity storageede(e.g. hard-disks), a processor, buffer
memory, and high-speed network interfaces for real-timéimedia retrieval and transmission

e a specific node designated as the distribution controll&)at coordinates the execution of requests
on the data sources and

e a tertiary storage server that contains the MM objectsjaaplof these MM objects are placed on the
data source nodes.

All the above components are interconnected via an extdrs@ibution network that also transports multi-
media information to computers and set-top devices at thatand. A lower speed back-channel conveys
subscriber commands back to the data sources via the DC.

The meta-architecture model of a multimedia server cansibtwo subsystems - the base level and
meta-level subsystems corresponding to the applicatidrsgstem management components respectively.
The base level component implements the functionality eftM application and models both MM data
objects and their replicas (e.g. video and audio files), aMirguests to access this data sessionsThe
corresponding base-level entities agplica actorsandrequest actors

The Meta-Level System: The meta-level component deals with the coordination oftipiel requests
and sharing of existing resources among multiple requéstprovide coordination at the highest level and
perform admission control for new incoming sessions, wedhice a meta-level entity, th@oS Broker
meta-actoi) B. The two main functions of the QoS Broker are data managearehtequest management.
The organization of meta-level services provided by a Qafkéaris shown in Figur@?. Each of these
services in turn can be based on one or more of the core seriemote creation and distributed snapshot.

Metalevel
e QoS AN Services
/ Broker .
- Request ~pam

mgmt \ mgmt ,/‘
Vo N

’ N\ / N
“Message /“Request ‘Data /Derepllcat‘on

Schedullng Scheduh“9><PlaCem/e”t -
~Clock~ = . o P
(Synchronl— Rephcatlon:‘ (Migration)

“zation / -

Core
| Services

~ Remote . /" Distributed
Creation) _ Snapshot

Fig. 4. Detailed Architecture of the Meta-level System

We describe some of the metalevel services in more dé&€tata Management The data management
component decides on the placement of replica actors instribdted MM system, i.e. it decides when and
where to create additional replicas of data. It also deteemivhen additional replicas are no longer needed
and can be garbage collected/dereplicated. Data Placeraprtie performed adaptively or offline using
a predefined placement strategy. The adaptive data platqrokey dynamically initiates data placement
when data or resources that are required to satisfy a regreeabt available.A predictive placement policy
determines the degree of replication necessary for popbjacts using a cost-based optimization procedure
based ora priori predictions of expected subscriber requests.

Request managemenRequest arrival is unpredictable; often, it is not posstblknow when requests
will arrive and for how long they will last. This creates a dder adaptive admission control. The feasibility
of QoS constraints for a MM session is determined duringrédggiest schedulingrocess when a new
request arrives. For scheduling requests, we use an aglaptjuest scheduling policy that compares the
relative utilization of resources in a MM server and assitpesrequest to a replica on a DS node. Once a
request has been admittednassage schedulirpmponent assures the satisfaction of QoS constraints for
service within the session.

Media data and request management functions in turn requirember of services. We describe a
representative sample below.

Synchronization servicachedules message service in order to maintain a uniforimmofttime among
multiple nodes and thereby among actors in the sessionrthdtsdributed across multiple nodes. The notion
of synchronization among audio and video actors can be liltsing a uniform time value implemented
as a shapshot broadcast phase that informs nodes aboutax{apion of) current value of time. In7],
we specify the notion of a session in the context of MM actoid describe a construc@oSSynchronizer
for expressing session specific time and QoS constraints.

Replication servicecreates replicas to support availability, load-balancing fault tolerance. When
the existing copies of a MM object are not capable of suppgrdidditional subscriber requests, replication
of the MM object becomes necessary. At the time of replicalios necessary to choose a data source on
which a new replica should be created. The rate at whichoatjin proceeds also has a direct impact on
system performance and application interactivity. Regpion at a rate that is faster than real-time minimizes
the time for replication, but consumes greater server ressu

Dereplication servicecan dereplicate data. In many time periods, a MM object may dr popularity.

By tracking the demand for different MM objects and deteiiminwhen copies of a MM object can be
dereplicated, the load management procedure can optirilization of storage space on a MM server. The
copy to be dereplicated must be carefully chosen based oentload on the different data sources, as well
as the expected future demands for other MM objects cuyreerthg stored or that are expected to be stored
on the MM server. Dereplication cannot occur instantly -gbevice must ensure that a copy that has been
chosen for dereplication is removed only after all requésas are currently being serviced by that copy
have completed.

Migration service:migrates data or requests to support load balancing, ailéifaand locality. Often,
instead of replicating a MM object to service a new requast, @an effectively migrate an existing request
to another data source. Sucbpy-freemigration is an attractive alternative for Internet Webvees and
other services that handle non-real-time data. Oftenrdugires explicit tear-down and reestablishment of
network connections as well as exchange of state informaitween data sources, both of which can cause
significant playback jitter in the case of a video stream.

In order to map the QoS meta-architecture to the physicésyarchitecture, we distinguish between
local and global components and define interactions betwazt resource managers on nodes and the
global resource management component. The global compahésh includes the QoS broker and associ-
ated meta-actors resides on the distribution controllelen®@he node local components of the QoS broker

metaarchitecture implementation include, for each DS node
e a DS meta-actor for load-management on that node. The DSan#iacontains state information re-

garding the current state of the node in terms of availatdeures, replicas, ongoing requests and
replication processes etc.
e Request base actors corresponding to the requests astighedti node.
e Replica base actors that correspond to the replicas of @igate currently available on that node.
3 Load Management in MM Servers

Apart from the QoS broker, the MM system contains a numbereatbractors whose behaviors implement
the specific resource management policies discussed.slsahbtion, we describe mechanisms that provide

a modular and integrated approach to managing the individsaurces of a MM server so as to effectively
utilize all of the resources such as disks, CPU, memory atalank resources. A MM request specifies a
client, one or more multi-media objects, and a required Qd&®.QoS requirement in turn entails resource
allocation requirements. The ability of a data source t@etipadditional requests is dependent not only on
the resources that it has available, but also on the MM obgegtested and the characteristics of the request
(e.g., playback rate, resolution). We characterize thesgeof loading of a data sour@eS with respect to re-

questR in terms of its load factotl.F(R, DS), as:LF (R, DS) = max({LE7, M7 CPUL NetBWT)

where DBE(DS) | pR(DS) ¢ pyR(DS) and NetBW(P5) denote the disk bandwidth, memory buffer
space, CPU cycles, and network transfer bandwidth, ragpBgtthat are necessary for supporting request
R (available on data sourd®S). The load factor helps identify the critical resource iragedsource, i.e., the
resource that limits the capability of the data source tuiseradditional requests. By comparing the load
factor values for different servers, load management gcscan be taken by the QoS brokerage service.

Scheduling of Multimedia Requests: The Request Scheduling meta-actBS(implements an adaptive
scheduling policy that compares the relative utilizatidrresources at different data sources to generate
an assignment of requests to replicas, so as to maximizeutnber of requests serviced. The data source
that contains a copy of the MM object requested and whichilertkee least overhead (as determined by the
computed load factor) is chosen as the candidate source focaming request.

If no candidate data source can be found for servicing reqigben theR.S meta-actor can either reject
the incoming request or initiateplication on demandimplemented via a replication on demand meta-actor
(ROD). In the former case, th&S meta-actor analyzes the rate of rejections over longer tieme and
triggers appropriate placement policies to reduce theafatejection. Withreplication on demandhe RS
meta-actor decides to create a new replica of the MM objearmnof the sources on the fly. The source
DS on which the new replica is to be made can be determined toebertl that has minimum load-factor
with respect taR, i.e., with the minimum value ofL F(R, DS). By doing so, the QoS broker attempts to
maximize the possibility of servicing additional requestsn the same replica. In order for this approach
to be feasible and attractive, the replication must proededvery high rate, thereby consuming vital server
resources for replication.

Placement of MM Objects: The predictive placement meta-act®B#®) implements a placement policy
that determines in advance when, where, for how long, andrhamy replicas of each MM object should be
placed in a MM server so as to maximize the number of requieatEan be serviced by it. Predictive place-
ment can be initiated periodically. The periodicity can bded and the frequency with which the predictive
placement process is executed governs its effectivenesalle® the time period, greater the computational
overheads and greater the difficulty in predicting the regtetes more accurately. Infrequent execution of
predictive placement may result in under-utilization of 1M server’s resources. The two main tasks of
the predictive placement module are replication of MM otggcom one data source to another, or from
tertiary storage to secondary storage, and dereplicafibtivbobjects from the data sources. The placement
module must determine how many replicas of each MM objechacessary, and which of the data sources
these replicas should be allocated to. The number of repficasible for each MM object is dependent on
the data source(s) to which the replicas are allocated, pod the degree of loading of the data sources.
In the process of determining the number and location ofgaplthat are necessary, the predictive place-
ment module has to derive an allocation of MM objects to dataces, as well as a tentative assignment of
expected requests to data sources; we term thisgbedo-allocatiorprocedure.

Placement mechanisms must be designed to work effectiviyraquest scheduling. The goal of the
pseudo-allocation procedure is to facilitate the task efddaptive scheduler module, by allocating MM
objects in such a way as to maximize system-wide revenueebwifting a maximum number of requests
to be admitted and scheduled for service. In order for ptigdiplacement to execute concurrently with the

adaptive scheduling process, a current snapshot of thensyisttaken prior to initiating predictive place-
ment to provide a consistent view of the system state. Thdigiiee placement module does not consider
the exact times at which requests may arrive; the adaptivedsting module makes assignment decisions
based on the exact arrival times of requests. The pseudcatitn procedure only determines when and to
where replication must be initiated. The predictive plaeatrmodule then has to figure out at what rate the
replication should proceed. Replication may be initiatetha maximum feasible replication rate and this
rate may even be changed dynamically, depending on thentastous load on the data sources and the
number of replications scheduled to be performed from theesdata source In?[?], we propose a greedy
matrix algorithm to implement the pseudo-allocation pescior predictive placement.

Optimizing the Load Management Policies: We discuss two possible optimizations that can be used
to further enhance resource utilization in a distributed Mbtver -eager replicationand lazy derepli-
cation Eager replication is a technique to make use of idle ressueffectively to reduce overhead and
provide good performance during periods of high demand. &dger replication mechanism creates addi-
tional replicas of popular MM objects so that they are readilailable when needed. Eager replication is
assigned lowest priority compared to the other load managetasks in the MM server and is initiated only
during periods when it is not likely to impact MM server perfance and throughput. Eager replication can
potentially not only enhance MM server utilization and thgbput, but it can also lower the latency between
reception of a subscriber request and servicing of thatesqu

In the lazy dereplicationstrategy, when a MM objeci M; is dereplicated, the storage resources that
were being taken up by M; are released and marked as available for other objects. Wowbe disk
blocks that were being used f&f M; are rewritten only if there is an immediate need to reusestbéscks
for storage of some other object. In the interim period, leetvthe time dereplication is initiated and the
time when the disk blocks ¥/ M; are overwritten, MM objecff M; exists on the data source and can be
reclaimed if so desired.

4 Specifying and Reasoning about QoS-Based MM Services

Assuring safe composability of resource management serigcessential for efficient management of dis-
tributed systems with widely varying and dynamically chiaggrequirements. To analyze designs, clarify
assumptions that must be met for correct operation, antlestt&riteria for non-interference, it is important
to have a rigorous semantic model of the system: the resgutee management processes, the application
activities, and the sharing and interactions among these.

In this section we briefly and mostly informally describe homwnodel the multimedia meta-architecture
and resource management policies presented above in th/Titanework. We state the key theorems
relating QoS requirements to the QoS broker architectuded&tuss reasoning about correctness and non-
interference. More detail can be found #]. Properties of a system modeled in the TLAM are specified as
properties of computation paths. A property can be a simplariant that must hold for all configurations
of a path, a requirement that a configuration satisfying soamglition eventually arise, or a requirement
involving the transitions themselves. Such propertiecheeked using the properties of the building blocks
for configurations — message contents and actor state piésesi — and of the TLAM reaction rules that
determine the behavior of actors in the system.

To set the stage we informally describe the notion of a sygi@viding QoS-based MM ServicddMServiceg,s)-
We then map QoS requirements to resource requirements ansl ém modeling and reasoning about the
resource management underlying a QoS-based service. W dieé notions of &esource-based MM
Service (MMService gesource) @and of a system havinResource Based MM BehavigM M Behavior).
MMService resource Feflects the chosen system resource architecture and allsws reason about the
availability and use of resource®MBehavior reflects the QoS broker software architecture and models
the resource management algorithms as specific meta adtavibes. Such a behavior specification can
serve as a first stage in refining a service specification intorglementation. The main result is that a

MM system meeting the Resource Based MM Behavior specificgirovides Resource-based MM Ser-
vice, which in turn implies (under the assumptions of the pirag from QoS requirements to Resource
requirements) that it provides QoS based MM Service.

We assume that there is a fixed 3&¥/Objects of MM objects available in the system and M/ range over
MMObjects. A MM request message specifies a tripte;, (MM, ... , MM), QoS) which is interpreted
as a request to initiate a MM streaming service from the seweeiving the request, to the client actor
a, using the MM object§ MM, ... , MM,), and obeying the QoS requireme@bS. To simplify the
presentation, we shall assume that there is only one MM bhjealved in each request.

Definition 1 (MMServicegos) A systemsS provides a QoS-based MM Service over the set of MM objects,
MMObjects, iff for a configurationC € S, if there is an undelivered messayjf\freq, then along any path

« from C' there are configurations such that one and only one of trexfislh properties hold: (1) the request
is accepted for service and service is provided with theiredquQoS until complete, or (2) the request is
rejected, for this to happen it must be the case that the stepi€o0S cannot be provided at the time the
request arrives.

4.1 Resource Based MM Service

We assume given a functiofoSTranslate which maps MM requests to resource requirements which, if
met, will ensure the requested QoS (Ségfr examples of such QoS translation functions). The fiomct
QoSTranslate maps MM requests to 4-tuples representing resource atbocegquirements for the four
managed resources: network bandwid¥e4B W), CPU cycles CPU), disk bandwidth DiskBW), and
memory buffer BufMem).

MM nodes (data source, distribution controller, and chiere modeled as TLAM nodes. We assume
given a functionCapacity such thatCapacity (DS, Res) € Unit ges for any data source nodeS and re-
sourceRes. To provide an abstraction of the admission and placemertegses, we introduce functions
characterizing the state of replicas on each data source anaodl functions characterizing the state of each
request that has arrived. For exampleplClass(C, DS, MM) is the replication class of the multimedia

Decision to
dereplicate

Video Object
Loading

eed
another
replica

can dereplicate
JETN mark disk blocks used
replication by object as free

Fig. 5. State Transition DiagranClass, indicates that the replica is not present on the nod&lldss, replica is guaranteed to
be available. AClasss replica is marked as dereplicable but remains availabli alhtequests assigned to it have completed. A
Classg replica exists on the node in the sense that it has not beewidtten, but there is no guarantee it will remain that wag an
can not be considered available until its class is changke.tfnsitions specify the possible phase changes in theflia MM
object.

object MM on nodeDS. The constraints on this function are given by the classsitian diagram in Fig-
ure ??. Each request is uniquely associated to a base-level regctes. This relies on the uniqueness of
messages and of newly created actors in the TLAM maBlejState(C, a™?) is the request status of re-
quest acton”?. When initially created a request actor is in stélteitForAdm. As the system progresses,
the value of this function will eventually change froWaitForAdm to admGranted or admDenied.
From admGranted it moves toServicing and then toCompleted. After the value reache€ompleted

or admDenied it remains constant. The functiogeqObjld(C, a"¢?) and ReqReplica(C, a™¢?) identify

the replica to which the request has been assigned (the M&tbdind the DS node containing the assigned
replica). RegQoS(C,a"¢?) is the tuple of resources assigned to the request.tdtaé resource property
fotal(G) states that for every configuration in the system and evety staurce node the sum of the re-
sources allocated to the requests on the node will not exbedaotal capacity of resources on the node.
Using the characterizing functions and the correspondimgttaints on their values, we define a Resource-

based MM service as follows.
Definition 2 (MMService gesource) A SystemS providesResource-based MM service with respect to func-
tions QoSTranslate, Capacity, and the functions characterizing replica and request ataspecified above

iff S obeys the constraints given for the replica and resourcetiturs, 22! (S) holds, and forC € S, if

TeSs

there is an undelivered messadéMreq = (aq, MM, QoS), then along any computation patifrom C
there is one of the following segments:

+
(D) Cstart — Cdeny
+ + +
(G) Cstart — Cgrant — Cserve — Ccomplete

such that

1. Cgars IS the result of delivery oM Mreq and there is a new request actéf? such thatReqClientId (Csiart, @) =
acl, ReqObjId(Cygart, 7¢?) = MM, ReqQoS (Csart, @"Y) ges IS greater thar@QoS Translate (QoS) res
for eachRes, and RegState(Csart, o' €?) = WaitForAdm.

2. ReqState(Cgeny, ") = admDenied, and there is a messagedg notifying of rejection of MMregq.
In this case the system had insufficient resources to sol@dilfreq in Csart.

3. ReqState(Cyrant, oY) = admGranted, and ReqReplica(Cyrant, oY) = DS for some DS node such
that ReplClass(Cgrant, DS, MM) = Class; .

4. RegState(Cserve, @"°?) = Servicing and RegState(Ceomplete, @' °?) = Completed (allocated resources
remain allocated during servicing).

Theorem 1 (QoS2Resource)lf a systemS providesMMService gesource, aNd QoS Translate satisfies the
stated requirements, then the system provid@gServicegos.

4.2 QoS Broker MM Behavior

A system with MM behavior has meta acto@B (a QoS Broker),RS (a Request SchedulerROD
(Replication-On-Demand))R (Dereplication),PP (Predictive Placement), located on the DC node, and a
data source manag@rSma(DS) on each data source nod& . Information about resource capacity, repli-
cation, and request allocation is distributed on the datacgonodes. The replica of an MM objeftiM on
data source nod®S, if present, is represented by a replica base a¥ateReplica(C, DS, MM) and the
request and replica state information is kept in annotat@frthe base actors state.

The QoS broker maintains, as part of its current shatdb, a model]\/IMstate(behqb) of the distributed
MM state which is used by the resource managers to make desisihere are analogs of the configuration
based functions characterizing request and replicas iohw@bS broker state plays the role of configura-
tion. To support more sophisticated resource managemenegses, the QoS broker maintains a current
prediction/statistics modePmodel (beh), and knowledge of what management processes are ongoing at
any time.

The dynamic behavior of the QoS meta actors is given by TLAMs$pecifying the effects of reac-
tion to events and messages: updating the actors statéingreaw actors, sending messages, modifying
base-level annotations. There are QoS broker rules foiviergerequests, invoking resource management
processes (request scheduling, predictive placememplition,. ..), and updating the broker model in
response to reports from these processes. In additionanereles specifying the behavior of DS node meta
actors that manage the replicas and local request actors.

All such broker processes are required to terminate andciraiely report effects tQ B. DR can only
change the class of replicas and can only change class 1s®ZIBROD and PP can change change class

annotations and initiate replication (changing replmatstatus and bandwidth). They can only change a
replicas class from 0, 2, or 3to 1. Processes that can changerce allocation are required to maintain the
total resource invariant of the model they are provided withieplication in progress must complete and
we require that request servicing is a finite process.

We assume that only the MM meta actors set or modify the MM tatioms of replica and request base
actors. The QoS broker must coordinate the managemernitiastsufficiently to assure that the model used
is accurate. Thus we require that in any configuration, th&s@@kers model agree with the distributed
state, modulo the effects of delivery of pending updatefications from the managers.

Theorem 2 If a systemS has QoSBroker MM behavior as specified above, thenovidesMMService gesource-

The shared information used and modified by the resource geaga- resources allocated to requests,
replication status and replica class— is distributed oriX8anodes as base actor annotations. Interleaving of
incremental modifications keeps the QoS brokers model irfflg accurate to prevent interference among
these processes. In fag{?’e!($) and the class transition constraints provide simple citfer admitting
other management processes in the interleaved setting.

A rigorous framework such as we have outlined is crucial iahaing and preventing interference
between concurrent activities. As an example of probleras dhise, we might imagine th&@R and RS
could be allowed to proceed concurrently. An attempt tobdistathat the system invariants are maintained
reveals the following problem. Suppo3&f on DS is Class;, RS is invoked with requesk”®? requiring a
copy of MM and concurrenthyDR is invoked. Then we have the following possible scenabi® decides
to mark MM on DS as Class, and RS decides to allocatd/M on DS to «"¢?; the notification fromDR
reachesDSma(DS) first and all requests previously allocatedMtl/ complete sa M becomesClasss;
then the notification fronRS arrives and now we have a request allocated t8as3 replica which can be
overwritten. Protocols and annotations that support as®d concurrency of MM resource management are
the topic of current investigations.

5 Related Work and Future Research Directions

A preliminary implementation of the QoS broker and its agged components is discussed i#]. [Using
the two level multimedia metaarchitecture described is gaper, a QoS-enabled customizable middle-
ware framework, calle€ompOSE|Q is currently being developed at the University of Califagrirvine
[?]. CompOSE|Q includes modules that implement the 3 basic composablesarkéces with specific
interface definitions and interaction constraints builtdommon services built out of the core services -
object migration, distributed snapshot, directory sexsjscheduling etc. THEompOSE|Q environment
consists of the following components: (1) a programmingirernnent based on concurrent objects (2) a
middleware library that manages execution of applicatmmsiodes, coordinates distribution and provides
services. (3) a compact runtime component that resideseamaithes of the distributed system which interacts
with the distributed component of the middleware.

Commercially available object-based middleware infrattires such as CORBA and DCOM represent
a step toward compositional software architectures butatcsupport the development and maintenance
of large applications. Specifically, they do not deal wittemctions of multiple object services executing
at the same time, or the implication of composing objectisesv For instance, the Electra framewok [
extends CORBA to provide support for fault tolerance usingug-communication facilities and protocols
like reliable multicast. Architectures that provide réate extensions to CORBA?[?] necessary to sup-
port timing-based QoS requiremen® have been proposed. TAO is a framework that supports eal-t
CORBA extensions to provide end-to-end QoS; it has been wsetlidy performance optimization8][
and patterns for extensible middlewaf. [Similarly, real-time method invocations have been erguioby
transmitting timing information in CORBA data structuré$. |

The Java Development Environment is a distributed objeptémentation framework that provides mo-
bility; however the semantics of interaction with othertomsizations is dependent on the implementation.

The ability to deal with the management of thread priorif@sreal-time thread management is dependent
on the underlying threads implementation, making QoS supmmmplicated to achieve. Various systems
such as the Infospheres InfrastructuPgdnd the Globe Systen?] explore the construction of large scale
distributed systems using the paradigm of distributedatbjeslobus, a metacomputing framework for net-
worked virtual machines defines a QoS component called Q[hlivhere low level QoS mechanisms can
be integrated and testeReflectionallows application objects to customize the system behaj/ as in
Apertos [?] and 2K [?]. The Aspect Oriented Programming paradigthrpakes it possible to express pro-
grams where design decisions can be appropriately isofseditting composition and re-use. Some of
the more recent research on actors has focused on cooodirsttiictures and meta-architectur@sgnd
runtime systems such as Broadw&ydnd the Actor Foundry7].

Multimedia QoS enforcement has been a topic of extensivearel. The Omega architectufg flevel-
oped end-to-end real-time communication protocols and yokers at the endpoints to supply end-to-end
QoS.QualMan[?] is a QoS aware resource management platform which coraases of resource brokers
that provides negotiation, admission and reservationhibifies for sharing end-system resources such as
CPU, memory and network bandwidth. Work on resource managemechanisms for multimedia servers
has focussed on placement of media on disk to ensure realrétrieval 7], admission control procedures
to maximize server throughpu®][replication and striping strategies for optimizing stpe across disk ar-
rays [?], batching mechanisms that group closely spaced requasted same object¥], load balancing
mechanisms for effective utilizatior? [?].

Much of the work on formal models for QoS has been in the cardE®QoS specification mechanisms
and constructs. In some implementation driven methods & §ueecification, the specification of QoS re-
qguirements is intermixed with the service specificati®f?]] Other approaches address formal description
methodologies based on synchronous communication foifgimecQoS via dual language technigues that
specify functional behavior and QoS constraints distynating two different language$&][add more cur-
rent work reference on multiparadigm representation, aspéented representation etSynchronizers 7
allow us to express QoS constraints via coordination caimé in the actor model either as local synchro-
nization constraints or multi-actor coordination conisiia Real-time constraints are described by synchro-
nization code between the interfaces of act@taifing a high-level programming language construct called
RTsynchronizerA number of language independent formalisms have beerlageak for specifying and
reasoning about concurrent systems such as U#jtarid 1/0 automata?]. The TLAM approach models
runtime services and the application using a single framlewnd uses the framework to reason about in-
teractions between application actors, between metaseveices as well as ensure the correct behavior of
base-meta interactions.

We are actively working on extending the existing meta-é&eckure to support more services. Modeling
client interaction requires a notion of session and ressuwgithin a session. Further work is required to
provide a generalized model that captures the architdatesaurces required in the server and network
to support the session connectidynamic negotiation protocolgvolves negotiation of resources on the
fly to degrade QoS of ongoing requests in order to admit mayaests. In addition to providing a clear
model of negotiation, this requires developing a mechangs@allow requests to decide when and how to
renegotiate. For end-to-end QoS, it is necessary to deterhwreal-time schedulingtrategies for time
constrained task management interact with strategiestiier éasks such as CPU intensive calculations, or
network communication with clients. Also, further work equired in order to model the request migration
service in the meta-architecture and develop strategratsfeffective use.

In general, the dynamic nature of applications such as tbbgmiltimedia under varying network con-
ditions, request traffic, etc. imply that resource managemelicies must be dynamic and customizable.
Current mechanisms, which allow arbitrary objects to bgghd together, are not sufficient to capture the
richness of interactions between resource managers afidadigm components. For example, they do not
allow customization of execution protocols for schedulirgplication, etc. This implies that the compo-

nents must be redefined to incorporate the different préggepresenting such interaction. We believe that
a cleanly defined meta-architecture which supports cugtation and composition of protocols and services
is needed to support the flexible use of component basedaseftw

