
A MetaArchitecture for QoS-Based Distributed Resource Management

Nalini Venkatasubramanian
�

Carolyn Talcott
��

Gul Agha
� � �

No Institute Given

Abstract: Systems that provide distributed multimedia services are subject to constant evolution - customizable middleware is

required to effectively manage this change. In this paper wepresent a meta-architectural framework for customizable QoS-based

middleware using Actors, a model of concurrent active objects. Middleware services for resource management execute concurrently

with each other and with application activities— scheduling, protocols providing security and reliability, load balancing and stream

synchronization can therefore potentially interfere witheach other. To ensure cost-effective QoS in distributed multimedia systems,

safe composability of resource management services is essential. For instance, system protocols and activities must not cause

arbitrary delays in the presence of timing based QoS constraints. Using TLAM, a semantic model for specifying and reasoning

about components of open distributed systems, we show how a QoS brokerage service can be used to coordinate multimedia

resource management services in a safe, flexible and efficient manner.

In the coming years, distributed multimedia servers will bedeployed to deliver a variety of interactive,
digital multimedia(MM) services over emerging broadband (wide-area) networks [?] to form a wide-area
infrastructure. Applications such as telemedicine, distance learning and electronic commerce exhibit vary-
ing requirements such as timeliness, security, reliability and availability. Many MM applications can tolerate
minor, infrequent violations of their performance requirements specified as a quality-of-service (QoS) pa-
rameter, for e.g., tolerable jitter in a video frame. Systems that provide distributed multimedia services are
continuously changing and evolving. For instance, the set of servers, clients, user requirements, network and
system conditions, in a wide area infrastructure are changing continuously. Multiple protocols that cater to
a wide range of network configurations and software applications must be supported seamlessly and handle
dynamically changing QoS requirements. In order to manage the distributed components and adapt to the
above dynamic changes in multimedia applications, customizable middleware services are required. Today,
the task of distributed systems management is performed in middleware layers using frameworks such as
CORBA and DCOM. Such frameworks are designed for heterogeneous interoperability but are limited in the
degree of flexibility and customizability of services. Theyprovide only limited capabilities for the specifica-
tion and adaptation of end-to-end QoS properties. Future applications will require dynamic invocation and
revocation of services distributed in the network without violating QoS constraints of ongoing applications.
Customizable middleware allows us to deal with changes in systems and applications in a non-intrusive way.

In this paper, we describe techniques for developing components of customizable component based mid-
dleware infrastructures. We develop a model for customizable, cost-effective middleware to enforce QoS
requirements in multimedia applications. For instance, weillustrate a placement policy that determines the
degree of replication necessary for popular MM objects using a cost-based optimization procedure based on
a priori predictions of expected subscriber requests. For scheduling MM requests, we represent an adaptive
scheduling policy that compares the relative utilization of resources in a multimedia server to determine an
assignment of requests to replicas. To optimize storage utilization, we introduce methods for dereplication
of MM objects based on changes in their popularity and in server usage patterns. The meta-architectural
middleware framework developed in this paper ensures composability of concurrently executing system
components. This meta-architecture is the basis of experimental implementation of resource management
�

Contact Author: Nalini Venkatasubramanian Dept. of Information and Computer Science, Univ. of California Irvine, Irvine, CA
92697-3425, Email: nalini@ics.uci.edu

��

Department of Computer Science, Stanford University, Stanford, CA 94305, Email: clt@cs.stanford.edu
� � �

Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, Email: agha@cs.uiuc.edu

mechanisms for distributed MM servers. Details of the mechanisms implemented and the performance eval-
uation of the composite environment is described in [?]; detailed formal specification and correctness rea-
soning of system activities is described in [?].

Performance studies show that application objects can be managed effectively by composing multiple
resource management activities managed at the metalevel [?]. Figures??and ?? illustrate the performance,
measured by request rejection rate, of various policies forload management - (a) purely adaptive (on-the-
fly) scheduling and placement(P1), (b) purely predictive (decided apriori) scheduling and placement(P2),
(c) composite policies that provide adaptive scheduling and predictive placement(P3 and P4, an optimized
version of policy P3). Figure?? illustrates the request rejection rate under purely adaptive policies for
placement and scheduling.Startup latencyis a QoS factor that indicates how long the user is willing to
wait for a replica to be created adaptively. The graph demonstrates that when the startup latency is below a
threshold value (2 min), the purely adaptive mechanisms, represented by P1 force a very large fraction of
the requests received to be rejected. Assuming that startuplatency is sufficiently large, Figure??depicts the
inadequacy of P2, that relies on only predictive policies for scheduling and placement. In comparison, the
other 3 policies (P1, P3 and P4), show hardly any rejects (indicated by the overlapping lines in the graph).
As can be observed from the performance results, the abilityto run multiple policies simultaneously (as in
cases P3 and P4) reduced the total number of rejected requests in the overall system.

0 1 2 3 4
Startup latency in minutes

0

50

100

150

#r
ej

ec
ts

 (
in

 1
00

0s
)

p1

p4

1 2 3 4 5 6 7 8 9 10
Time in days

0

1

2

3

4

of

 r
ej

ec
ts

 (
in

 1
00

0s
)

p1

p2

p3

p4

Fig. 1. Comparison of the performance of load management policies for request scheduling and video placement in a distributed
video server. In the graph on the left hand side, Policy P1 which represents purely adaptive policies has a much higher rejection rate
than policy P4 that represents composite adaptive and predictive mechanisms. In the right hand side graph, Policy P2 which repre-
sents purely predictive mechanisms has a much higher rejection rate than P1 (purely adaptive mechanisms), P3 and P4(composite
adaptive and predictive mechanisms) for data placement andrequest scheduling.

The rest of this paper is organized as follows. Section 1 reviews the two level semantic framework
for distributed resource management based on Actors, a model of concurrent objects. Section 2 describes a
multimedia metaarchitecure, its components and interactions among resource management services. Section
3 presents the several policies and optimizations for load management represented in the meta-architecture.
Section 4 briefly describes the formalization of the multimedia meta-architecture and the representation of
the policies discussed in the two level semantic framework.Section 5 discusses related work and outlines
areas for future research.

1 The Two Level MetaArchitecture

The Actor model is a model of concurrent active objects that has a built-in notion of encapsulation and
interaction and is thus well-suited to represent evolutionand co-ordination among interacting components in
distributed multimedia applications. In the actor paradigm, the universe contains computational agents called

actors, distributed over a network. Traditional passive objects encapsulate state and a set of procedures that
manipulate the state; actors extend this by encapsulating athread of control as well. Each actor potentially
executes in parallel with other actors and interacts only bysending and receiving messages. On receiving
a communication, an actor processes the message and as a result may do one or more of the following: (a)
create new actors; (b) change its state; (c) send messages toactors that it knows about. (See [?,?] for more
discussion of the actor model, and for many examples of programming with actors.)

In [?,?], we presented the TLAM(Two Level Actor Machine) frameworkfor specifying, composing and
reasoning about resource management services in open distributed systems. In the TLAM, a system is com-
posed of two kinds of actors, base actors and meta actors, distributed over a network of processing nodes.
Base-actorscarry out application level computation, whilemeta-actorsare part of the runtime system which
manages system resources and controls the runtime behaviorof the base level. A TLAM provides an abstract
characterization of actor identity, state, messages, and computation, and of the connection between base and
meta level computation. Meta-actors communicate with eachother via message passing as do base-actors,
and they may also examine and modify the state of the base actors located on the same node. Base level
actors and messages have associated runtime annotations that can be set and read by meta actors, but are
invisible to base level computation. Actions which result in a change of base-level state are called events.
Meta actors may react to events occurring on their node. A TLAM configuration,

�
, has a set of base and

meta level actors and a set of undelivered messages. The actors are distributed over the TLAM nodes. Each
actor has a unique name (address) and the configuration associates a current state to each actor name. The
undelivered messages are distributed over the network – some are traveling along communication links and
others are held in node buffers. The semantics of a TLAM is given by a labeled transition relation on con-
figurations. There are two kinds of transitions: communication and execution. Communication transitions
move undelivered messages around the network and are the same in every TLAM. An execution transition
is a computation step taken by a base or meta level actor. These transitions are described byreaction rules
specific to a particular TLAM that determine how individual actors react to messages received, and in the
case of meta actors how they react to events. Acomputation pathfor a configuration is a possibly infinite
sequence of labeled transitions. The semantics of a configuration is the set of fair computation paths starting
with that configuration. Asystemis a set of configurations closed under the transition relation.

Core Services for Resource Management: Meta-level actors provide services that customize various
aspects of distributed systems management. In practice, multiple system and application activities occur
concurrently in a distributed system, e.g. scheduling, load balancing, protocol processing, stream synchro-
nization – such compositions can lead to complex interactions. Consider the following example of a system
where distributed garbage collection and process migration can proceed concurrently. If processes in tran-
sit are not accounted for, the garbage collection process can potentially destroy accessible information. In
general, risks that arise due to composition of services include loss of information, possible nonterminations
that cause deadlocks and livelocks, dangling resources, inconsistencies, and incorrect execution semantics.
Current approaches to deal with such interference include:serializing or delaying activities, which may
cause QoS violations; and designing a closed system, which reduces portability of code.

Composability of resource management activities is not just desirable, it isessentialto ensure cost-
effective QoS in distributed multimedia systems. For instance, system protocols and activities must not
enforce arbitrary delays in the presence of timing based QoSconstraints. This adds complexity to the design
of such systems. We would like to be able to consider separately issues such as: functional behavior of an ap-
plication; and resource management issues such as memory management, load balancing, QoS specification
and enforcement. To ensure non-interference and manage thecomplexity of reasoning about components of
open distributed systems in general, our strategy is to identify key system services where non-trivial inter-
actions between the application and system occur, i.e. base-meta interactions. We refer to these key services
ascore services. As a starting point, we have identified three core services:� Recreation of services/data at a remote site -remote creation

� Capturing information at multiple nodes/sites -distributed snapshot
� Interactions with a global repository -directory services.We have studied non-interference requirements that would allow these services to safely operate concur-

rently. A detailed case study of the composition of remote creation and a distributed snapshot formalized
in the TLAM framework appears in [?]. Core services may be used in specifying and implementing more

Remote
Creation

Distributed
Snapshot

Repli−
cation

Migration

Check−
pointing

Access
ControlDGC

Directory
Services

System(Meta) Level

Application(Base) Level

Fig. 2.Classification of Core Services

complex activities within the actor framework as purely meta-level interactions (See Figure??). For ex-
ample, remote creation can be used as the basis for designingalgorithms for activities such as migration,
replication and load balancing. Distributed snapshots (cf. [?]). can also be used as the basis for global ac-
tivities like quiescence detection, checkpointing and recovery and distributed garbage collection (cf. [?]).
Similarly, a directory service can be used to design access control mechanisms, routing policies and group
based communication.

2 A Meta-Architecture for Multimedia Servers

Distribution Network

Controller
Data
Source

Data
Source

Tertiery
Storage

datarequests

control

...Distribution

Fig. 3. Architectural View of a Networked Multimedia System

Building on the two-level model described in the previous section, we develop a meta-architectural
model of a multimedia server that provides QoS based services to applications. The physical architecture of
the MM server (See Figure??) consists of:
� A set of data sources (DS) that provide high bandwidth streaming MM access to multiple clients. Each

independent data source includes high capacity storage devices (e.g. hard-disks), a processor, buffer
memory, and high-speed network interfaces for real-time multimedia retrieval and transmission

� a specific node designated as the distribution controller (DC) that coordinates the execution of requests
on the data sources and

� a tertiary storage server that contains the MM objects; replicas of these MM objects are placed on the
data source nodes.

All the above components are interconnected via an externaldistribution network that also transports multi-
media information to computers and set-top devices at the client end. A lower speed back-channel conveys
subscriber commands back to the data sources via the DC.

The meta-architecture model of a multimedia server consists of two subsystems - the base level and
meta-level subsystems corresponding to the application and system management components respectively.
The base level component implements the functionality of the MM application and models both MM data
objects and their replicas (e.g. video and audio files), and MM requests to access this data viasessions. The
corresponding base-level entities arereplica actorsandrequest actors.

The Meta-Level System: The meta-level component deals with the coordination of multiple requests
and sharing of existing resources among multiple requests.To provide coordination at the highest level and
perform admission control for new incoming sessions, we introduce a meta-level entity, theQoS Broker
meta-actor,�� . The two main functions of the QoS Broker are data managementand request management.
The organization of meta-level services provided by a QoS broker is shown in Figure??. Each of these
services in turn can be based on one or more of the core services - remote creation and distributed snapshot.

Remote
Creation

Distributed
Snapshot

QoS
Broker

Request
mgmt

Data
mgmt

Message
Scheduling

Request
Scheduling

Data
Placement

Dereplication

Clock
Synchroni−
zation

Replication Migration

Core
Services

Metalevel
Services

Fig. 4. Detailed Architecture of the Meta-level System

We describe some of the metalevel services in more detail.Data Management– The data management
component decides on the placement of replica actors in the distributed MM system, i.e. it decides when and
where to create additional replicas of data. It also determines when additional replicas are no longer needed
and can be garbage collected/dereplicated. Data Placementcan be performed adaptively or offline using
a predefined placement strategy. The adaptive data placement policy dynamically initiates data placement
when data or resources that are required to satisfy a requestare not available.A predictive placement policy
determines the degree of replication necessary for popularobjects using a cost-based optimization procedure
based ona priori predictions of expected subscriber requests.

Request management– Request arrival is unpredictable; often, it is not possible to know when requests
will arrive and for how long they will last. This creates a need for adaptive admission control. The feasibility
of QoS constraints for a MM session is determined during therequest schedulingprocess when a new
request arrives. For scheduling requests, we use an adaptive request scheduling policy that compares the
relative utilization of resources in a MM server and assignsthe request to a replica on a DS node. Once a
request has been admitted, amessage schedulingcomponent assures the satisfaction of QoS constraints for
service within the session.

Media data and request management functions in turn requirea number of services. We describe a
representative sample below.

Synchronization service:schedules message service in order to maintain a uniform notion of time among
multiple nodes and thereby among actors in the session that are distributed across multiple nodes. The notion
of synchronization among audio and video actors can be builtby using a uniform time value implemented
as a snapshot broadcast phase that informs nodes about a (approximation of) current value of time. In [?],
we specify the notion of a session in the context of MM actors and describe a construct,QoSSynchronizer,
for expressing session specific time and QoS constraints.

Replication service:creates replicas to support availability, load-balancingand fault tolerance. When
the existing copies of a MM object are not capable of supporting additional subscriber requests, replication
of the MM object becomes necessary. At the time of replication it is necessary to choose a data source on
which a new replica should be created. The rate at which replication proceeds also has a direct impact on
system performance and application interactivity. Replication at a rate that is faster than real-time minimizes
the time for replication, but consumes greater server resources.

Dereplication service:can dereplicate data. In many time periods, a MM object may drop in popularity.
By tracking the demand for different MM objects and determining when copies of a MM object can be
dereplicated, the load management procedure can optimize utilization of storage space on a MM server. The
copy to be dereplicated must be carefully chosen based on current load on the different data sources, as well
as the expected future demands for other MM objects currently being stored or that are expected to be stored
on the MM server. Dereplication cannot occur instantly - theservice must ensure that a copy that has been
chosen for dereplication is removed only after all requeststhat are currently being serviced by that copy
have completed.

Migration service:migrates data or requests to support load balancing, availability and locality. Often,
instead of replicating a MM object to service a new request, one can effectively migrate an existing request
to another data source. Suchcopy-freemigration is an attractive alternative for Internet Web servers and
other services that handle non-real-time data. Often, thisrequires explicit tear-down and reestablishment of
network connections as well as exchange of state information between data sources, both of which can cause
significant playback jitter in the case of a video stream.

In order to map the QoS meta-architecture to the physical system architecture, we distinguish between
local and global components and define interactions betweenlocal resource managers on nodes and the
global resource management component. The global component which includes the QoS broker and associ-
ated meta-actors resides on the distribution controller node. The node local components of the QoS broker
metaarchitecture implementation include, for each DS node:
� a DS meta-actor for load-management on that node. The DS meta-actor contains state information re-

garding the current state of the node in terms of available resources, replicas, ongoing requests and
replication processes etc.

� Request base actors corresponding to the requests assignedto that node.
� Replica base actors that correspond to the replicas of data objects currently available on that node.

3 Load Management in MM Servers
Apart from the QoS broker, the MM system contains a number of meta-actors whose behaviors implement
the specific resource management policies discussed. In this section, we describe mechanisms that provide

a modular and integrated approach to managing the individual resources of a MM server so as to effectively
utilize all of the resources such as disks, CPU, memory and network resources. A MM request specifies a
client, one or more multi-media objects, and a required QoS.The QoS requirement in turn entails resource
allocation requirements. The ability of a data source to support additional requests is dependent not only on
the resources that it has available, but also on the MM objectrequested and the characteristics of the request
(e.g., playback rate, resolution). We characterize the degree of loading of a data source� � with respect to re-
quest� in terms of its load factor,�� �� � � � �, as:�� �� � � � � � 	
� � �
��
�� � � �� �� � � � � �� � � �� � � ��
� �� ��
� �� �
where�� � ��� �, � ���� �, � ! � �� � �, and " #$� %��&' � denote the disk bandwidth, memory buffer
space, CPU cycles, and network transfer bandwidth, respectively, that are necessary for supporting request
� (available on data source()). The load factor helps identify the critical resource in a data source, i.e., the
resource that limits the capability of the data source to service additional requests. By comparing the load
factor values for different servers, load management decisions can be taken by the QoS brokerage service.

Scheduling of Multimedia Requests: The Request Scheduling meta-actor (��) implements an adaptive
scheduling policy that compares the relative utilization of resources at different data sources to generate
an assignment of requests to replicas, so as to maximize the number of requests serviced. The data source
that contains a copy of the MM object requested and which entails the least overhead (as determined by the
computed load factor) is chosen as the candidate source for an incoming request.

If no candidate data source can be found for servicing request � , then the�� meta-actor can either reject
the incoming request or initiatereplication on demand- implemented via a replication on demand meta-actor
(* +(). In the former case, the�� meta-actor analyzes the rate of rejections over longer timeframe and
triggers appropriate placement policies to reduce the rateof rejection. Withreplication on demand, the��
meta-actor decides to create a new replica of the MM object onone of the sources on the fly. The source
� � on which the new replica is to be made can be determined to be the one that has minimum load-factor
with respect to� , i.e., with the minimum value of�� �� � � � �. By doing so, the QoS broker attempts to
maximize the possibility of servicing additional requestsfrom the same replica. In order for this approach
to be feasible and attractive, the replication must proceedat a very high rate, thereby consuming vital server
resources for replication.

Placement of MM Objects: The predictive placement meta-actor() implements a placement policy
that determines in advance when, where, for how long, and howmany replicas of each MM object should be
placed in a MM server so as to maximize the number of requests that can be serviced by it. Predictive place-
ment can be initiated periodically. The periodicity can be varied and the frequency with which the predictive
placement process is executed governs its effectiveness. Smaller the time period, greater the computational
overheads and greater the difficulty in predicting the request rates more accurately. Infrequent execution of
predictive placement may result in under-utilization of the MM server’s resources. The two main tasks of
the predictive placement module are replication of MM objects from one data source to another, or from
tertiary storage to secondary storage, and dereplication of MM objects from the data sources. The placement
module must determine how many replicas of each MM object arenecessary, and which of the data sources
these replicas should be allocated to. The number of replicas possible for each MM object is dependent on
the data source(s) to which the replicas are allocated, and upon the degree of loading of the data sources.
In the process of determining the number and location of replicas that are necessary, the predictive place-
ment module has to derive an allocation of MM objects to data sources, as well as a tentative assignment of
expected requests to data sources; we term this thepseudo-allocationprocedure.

Placement mechanisms must be designed to work effectively with request scheduling. The goal of the
pseudo-allocation procedure is to facilitate the task of the adaptive scheduler module, by allocating MM
objects in such a way as to maximize system-wide revenue, by permitting a maximum number of requests
to be admitted and scheduled for service. In order for predictive placement to execute concurrently with the

adaptive scheduling process, a current snapshot of the system is taken prior to initiating predictive place-
ment to provide a consistent view of the system state. The predictive placement module does not consider
the exact times at which requests may arrive; the adaptive scheduling module makes assignment decisions
based on the exact arrival times of requests. The pseudo-allocation procedure only determines when and to
where replication must be initiated. The predictive placement module then has to figure out at what rate the
replication should proceed. Replication may be initiated at the maximum feasible replication rate and this
rate may even be changed dynamically, depending on the instantaneous load on the data sources and the
number of replications scheduled to be performed from the same data source In [?,?], we propose a greedy
matrix algorithm to implement the pseudo-allocation process for predictive placement.

Optimizing the Load Management Policies: We discuss two possible optimizations that can be used
to further enhance resource utilization in a distributed MMserver -eager replicationand lazy derepli-
cation. Eager replication is a technique to make use of idle resources effectively to reduce overhead and
provide good performance during periods of high demand. Theeager replication mechanism creates addi-
tional replicas of popular MM objects so that they are readily available when needed. Eager replication is
assigned lowest priority compared to the other load management tasks in the MM server and is initiated only
during periods when it is not likely to impact MM server performance and throughput. Eager replication can
potentially not only enhance MM server utilization and throughput, but it can also lower the latency between
reception of a subscriber request and servicing of that request.

In the lazy dereplicationstrategy, when a MM object� � � is dereplicated, the storage resources that
were being taken up by� � � are released and marked as available for other objects. However, the disk
blocks that were being used for� � � are rewritten only if there is an immediate need to reuse these blocks
for storage of some other object. In the interim period, between the time dereplication is initiated and the
time when the disk blocks of� � � are overwritten, MM object� � � exists on the data source and can be
reclaimed if so desired.

4 Specifying and Reasoning about QoS-Based MM Services

Assuring safe composability of resource management services is essential for efficient management of dis-
tributed systems with widely varying and dynamically changing requirements. To analyze designs, clarify
assumptions that must be met for correct operation, and establish criteria for non-interference, it is important
to have a rigorous semantic model of the system: the resources, the management processes, the application
activities, and the sharing and interactions among these.

In this section we briefly and mostly informally describe howto model the multimedia meta-architecture
and resource management policies presented above in the TLAM framework. We state the key theorems
relating QoS requirements to the QoS broker architecture and discuss reasoning about correctness and non-
interference. More detail can be found in [?,?]. Properties of a system modeled in the TLAM are specified as
properties of computation paths. A property can be a simple invariant that must hold for all configurations
of a path, a requirement that a configuration satisfying somecondition eventually arise, or a requirement
involving the transitions themselves. Such properties arechecked using the properties of the building blocks
for configurations – message contents and actor state descriptions – and of the TLAM reaction rules that
determine the behavior of actors in the system.

To set the stage we informally describe the notion of a systemproviding QoS-based MM Service (
��) #����#���).

We then map QoS requirements to resource requirements and focus on modeling and reasoning about the
resource management underlying a QoS-based service. We define the notions of aResource-based MM
Service(

��) #����#����	
 ��) and of a system havingResource Based MM Behavior(
��� #�
����).��) #����#����	
 �� reflects the chosen system resource architecture and allowsus to reason about the

availability and use of resources.
��� #�
���� reflects the QoS broker software architecture and models

the resource management algorithms as specific meta actor behaviors. Such a behavior specification can
serve as a first stage in refining a service specification into an implementation. The main result is that a

MM system meeting the Resource Based MM Behavior specification provides Resource-based MM Ser-
vice, which in turn implies (under the assumptions of the mapping from QoS requirements to Resource
requirements) that it provides QoS based MM Service.

We assume that there is a fixed set
�� +�� #�$� of MM objects available in the system and let

��
range over�� +�� #�$�. A MM request message specifies a triple�� �� � ��� � � � � � ��� � 	 � ��) � which is interpreted

as a request to initiate a MM streaming service from the server receiving the request, to the client actor
� ��, using the MM objects��� � � � � � ��� � 	

, and obeying the QoS requirement��) . To simplify the
presentation, we shall assume that there is only one MM object involved in each request.

Definition 1 (
��) #����#���) A system) provides a QoS-based MM Service over the set of MM objects,�� +�� #�$�, iff for a configuration

�
) , if there is an undelivered message
�� �#�, then along any path� from

�
there are configurations such that one and only one of the following properties hold: (1) the request

is accepted for service and service is provided with the required QoS until complete, or (2) the request is
rejected, for this to happen it must be the case that the requested QoS cannot be provided at the time the
request arrives.

4.1 Resource Based MM Service
We assume given a function��)
�
���
$# which maps MM requests to resource requirements which, if
met, will ensure the requested QoS (See [?] for examples of such QoS translation functions). The function
��)
�
���
$# maps MM requests to 4-tuples representing resource allocation requirements for the four
managed resources: network bandwidth (" #$� %), CPU cycles (

�� �
), disk bandwidth ((���� %), and

memory buffer (� ��� #�).
MM nodes (data source, distribution controller, and client) are modeled as TLAM nodes. We assume

given a function
�
�
��$� such that

�
�
��$� �() � *#� �
 �� �$��� for any data source node() and re-
source*#� . To provide an abstraction of the admission and placement processes, we introduce functions
characterizing the state of replicas on each data source node and functions characterizing the state of each
request that has arrived. For example,*#� ���
�� �� � () ��� � is the replication class of the multimedia

Video Object
Loading

Decision to
dereplicateNeed

another
replica

Derepl
complete

Need
new
replica

Eager
replication

can dereplicate
mark disk blocks used
by object as free

Class 0

Class1

Class 2

Class 3

Fig. 5. State Transition Diagram.������ indicates that the replica is not present on the node. A����� replica is guaranteed to
be available. A�����! replica is marked as dereplicable but remains available until all requests assigned to it have completed. A�����" replica exists on the node in the sense that it has not been overwritten, but there is no guarantee it will remain that way and
can not be considered available until its class is changed. The transitions specify the possible phase changes in the life of a MM
object.

object
��

on node() . The constraints on this function are given by the class transition diagram in Fig-
ure ??. Each request is uniquely associated to a base-level request actor. This relies on the uniqueness of
messages and of newly created actors in the TLAM model.*#�)$
$# �� � �
 �# � is the request status of re-
quest actor�
 �# . When initially created a request actor is in state%
�$$��%&� . As the system progresses,
the value of this function will eventually change from%
�$$��%&� to
&� '�
� $#& or
&�(#� �#& .
From
&� '�
� $#& it moves to) #������(and then to

���� �#$#& . After the value reaches
���� �#$#&

or
&�(#� �#& it remains constant. The functions*#�+��)& �� � �
 �# � and*#�*#� ���
 �� � �
 �# � identify

the replica to which the request has been assigned (the MM object and the DS node containing the assigned
replica).*#���) �� � �
 �# � is the tuple of resources assigned to the request. Thetotal resource property� ���� �
 �� �) � states that for every configuration in the system and every data source node the sum of the re-
sources allocated to the requests on the node will not exceedthe total capacity of resources on the node.

Using the characterizing functions and the corresponding constraints on their values, we define a Resource-
based MM service as follows.
Definition 2 (

��) #����#����	
 ��) A system) providesResource-based MM service with respect to func-
tions ��)
�
���
$#, �
�
��$� , and the functions characterizing replica and request state as specified above
iff) obeys the constraints given for the replica and resource functions,

� ���� �
 �� �) � holds, and for
�
) , if

there is an undelivered message,
�� �#� � �� �� ��� � ��) �, then along any computation path� from

�

there is one of the following segments:

(D) ������ ���� �	
��
(G) ������ ���� �
���� ���� ��
��
 ���� ������
�

such that
1.

������ is the result of delivery of
�� �#� and there is a new request actor�
 �# such that:*#����#� $)& ������� � �
 �# � �

� ��, *#�+��)& ������� � �
 �# � � ��
, *#���) ������� � �
 �# ���� is greater than��)
�
���
$# ���) ����

for each*#� , and*#�) $
$# ������� � �
 �# � � %
�$$��%&� .
2. *#�)$
$# ������ � �
 �# � �
&�(#� �#& , and there is a message to� �� notifying of rejection of

�� �#�.
In this case the system had insufficient resources to schedule

�� �#� in
������.

3. *#�)$
$# ������� � �
 �# � �
&� '�
� $#& , and*#�*#� ���
 ������� � �
 �# � � () for some DS node such
that*#� ���
�� ������� � () ��� � � ��
��� .

4. *#�)$
$# ������� � �
 �# � �)#������(and*#�) $
$# ��� !"#��� � �
 �# � � ���� �#$#& (allocated resources
remain allocated during servicing).

Theorem 1 (QoS2Resource)If a system) provides
��) #����#����	
��, and��)
�
���
$# satisfies the

stated requirements, then the system provides
��) #����#��� .

4.2 QoS Broker MM Behavior
A system with MM behavior has meta actors:�� (a QoS Broker),*) (a Request Scheduler),* +(
(Replication-On-Demand),(* (Dereplication),

��
(Predictive Placement), located on the DC node, and a

data source manager()�
 �() � on each data source node() . Information about resource capacity, repli-
cation, and request allocation is distributed on the data source nodes. The replica of an MM object

��
on

data source node() , if present, is represented by a replica base actor" �&#*#� ���
 �� � () ��� � and the
request and replica state information is kept in annotations of the base actors state.

The QoS broker maintains, as part of its current state�#� $% , a model
�� �$
$# ��#� $% � of the distributed

MM state which is used by the resource managers to make decisions. There are analogs of the configuration
based functions characterizing request and replicas in which QoS broker state plays the role of configura-
tion. To support more sophisticated resource management processes, the QoS broker maintains a current
prediction/statistics model,

� � �&#� ��#� $% �, and knowledge of what management processes are ongoing at
any time.

The dynamic behavior of the QoS meta actors is given by TLAM rules specifying the effects of reac-
tion to events and messages: updating the actors state, creating new actors, sending messages, modifying
base-level annotations. There are QoS broker rules for receiving requests, invoking resource management
processes (request scheduling, predictive placement, dereplication, � � �), and updating the broker model in
response to reports from these processes. In addition thereare rules specifying the behavior of DS node meta
actors that manage the replicas and local request actors.

All such broker processes are required to terminate and to accurately report effects to�� . (* can only
change the class of replicas and can only change class 1 to class 2.* +(and

��
can change change class

annotations and initiate replication (changing replication status and bandwidth). They can only change a
replicas class from 0, 2, or 3 to 1. Processes that can change resource allocation are required to maintain the
total resource invariant of the model they are provided with. A replication in progress must complete and
we require that request servicing is a finite process.

We assume that only the MM meta actors set or modify the MM annotations of replica and request base
actors. The QoS broker must coordinate the management activities sufficiently to assure that the model used
is accurate. Thus we require that in any configuration, the QOS brokers model agree with the distributed
state, modulo the effects of delivery of pending update notifications from the managers.
Theorem 2 If a system) has QoSBroker MM behavior as specified above, then) provides

��) #����#����	
 ��.
The shared information used and modified by the resource managers— resources allocated to requests,

replication status and replica class— is distributed on theDS nodes as base actor annotations. Interleaving of
incremental modifications keeps the QoS brokers model sufficiently accurate to prevent interference among
these processes. In fact

� ���� �
 �� �) � and the class transition constraints provide simple criteria for admitting
other management processes in the interleaved setting.

A rigorous framework such as we have outlined is crucial in analyzing and preventing interference
between concurrent activities. As an example of problems that arise, we might imagine that(* and*)
could be allowed to proceed concurrently. An attempt to establish that the system invariants are maintained
reveals the following problem. Suppose

��
on() is

��
��� , *) is invoked with request�
 �# requiring a
copy of

��
and concurrently(* is invoked. Then we have the following possible scenario:(* decides

to mark
��

on () as
��
��� and*) decides to allocate

��
on () to �
 �# ; the notification from(*

reaches()�
 �() � first and all requests previously allocated to
��

complete so
��

becomes
��
��� ;

then the notification from*) arrives and now we have a request allocated to a
��
��� replica which can be

overwritten. Protocols and annotations that support increased concurrency of MM resource management are
the topic of current investigations.

5 Related Work and Future Research Directions
A preliminary implementation of the QoS broker and its associated components is discussed in [?]. Using
the two level multimedia metaarchitecture described in this paper, a QoS-enabled customizable middle-
ware framework, called

������� 	

is currently being developed at the University of California, Irvine

[?].
������� 	

includes modules that implement the 3 basic composable coreservices with specific
interface definitions and interaction constraints built in, common services built out of the core services -
object migration, distributed snapshot, directory services, scheduling etc. The

������� 	

environment

consists of the following components: (1) a programming environment based on concurrent objects (2) a
middleware library that manages execution of applicationson nodes, coordinates distribution and provides
services. (3) a compact runtime component that resides on the nodes of the distributed system which interacts
with the distributed component of the middleware.

Commercially available object-based middleware infrastructures such as CORBA and DCOM represent
a step toward compositional software architectures but do not support the development and maintenance
of large applications. Specifically, they do not deal with interactions of multiple object services executing
at the same time, or the implication of composing object services. For instance, the Electra framework [?]
extends CORBA to provide support for fault tolerance using group-communication facilities and protocols
like reliable multicast. Architectures that provide real-time extensions to CORBA [?,?] necessary to sup-
port timing-based QoS requirements [?] have been proposed. TAO is a framework that supports real-time
CORBA extensions to provide end-to-end QoS; it has been usedto study performance optimizations [?],
and patterns for extensible middleware [?]. Similarly, real-time method invocations have been explored by
transmitting timing information in CORBA data structures [?].

The Java Development Environment is a distributed object implementation framework that provides mo-
bility; however the semantics of interaction with other customizations is dependent on the implementation.

The ability to deal with the management of thread prioritiesfor real-time thread management is dependent
on the underlying threads implementation, making QoS support complicated to achieve. Various systems
such as the Infospheres Infrastructure [?] and the Globe System [?] explore the construction of large scale
distributed systems using the paradigm of distributed objects. Globus, a metacomputing framework for net-
worked virtual machines defines a QoS component called Qualis [?] where low level QoS mechanisms can
be integrated and tested.Reflectionallows application objects to customize the system behavior [?] as in
Apertos [?] and 2K [?]. The Aspect Oriented Programming paradigm [?] makes it possible to express pro-
grams where design decisions can be appropriately isolatedpermitting composition and re-use. Some of
the more recent research on actors has focused on coordination structures and meta-architectures [?] and
runtime systems such as Broadway [?] and the Actor Foundry [?].

Multimedia QoS enforcement has been a topic of extensive research. The Omega architecture [?] devel-
oped end-to-end real-time communication protocols and QoSbrokers at the endpoints to supply end-to-end
QoS.QualMan[?] is a QoS aware resource management platform which containsa set of resource brokers
that provides negotiation, admission and reservation capabilities for sharing end-system resources such as
CPU, memory and network bandwidth. Work on resource management mechanisms for multimedia servers
has focussed on placement of media on disk to ensure real-time retrieval [?], admission control procedures
to maximize server throughput [?], replication and striping strategies for optimizing storage across disk ar-
rays [?], batching mechanisms that group closely spaced requests for the same objects [?], load balancing
mechanisms for effective utilization [?,?].

Much of the work on formal models for QoS has been in the context of QoS specification mechanisms
and constructs. In some implementation driven methods of QoS specification, the specification of QoS re-
quirements is intermixed with the service specification [?,?]. Other approaches address formal description
methodologies based on synchronous communication for specifying QoS via dual language techniques that
specify functional behavior and QoS constraints distinctly using two different languages [?]. add more cur-
rent work reference on multiparadigm representation, aspect oriented representation etc.Synchronizers [?]
allow us to express QoS constraints via coordination constraints in the actor model either as local synchro-
nization constraints or multi-actor coordination constraints. Real-time constraints are described by synchro-
nization code between the interfaces of actors [?] using a high-level programming language construct called
RTsynchronizer. A number of language independent formalisms have been developed for specifying and
reasoning about concurrent systems such as Unity [?] and I/O automata [?]. The TLAM approach models
runtime services and the application using a single framework and uses the framework to reason about in-
teractions between application actors, between metalevelservices as well as ensure the correct behavior of
base-meta interactions.

We are actively working on extending the existing meta-architecture to support more services. Modeling
client interaction requires a notion of session and resources within a session. Further work is required to
provide a generalized model that captures the architectural resources required in the server and network
to support the session connection.Dynamic negotiation protocolsinvolves negotiation of resources on the
fly to degrade QoS of ongoing requests in order to admit more requests. In addition to providing a clear
model of negotiation, this requires developing a mechanismto allow requests to decide when and how to
renegotiate. For end-to-end QoS, it is necessary to determine howreal-time schedulingstrategies for time
constrained task management interact with strategies for other tasks such as CPU intensive calculations, or
network communication with clients. Also, further work is required in order to model the request migration
service in the meta-architecture and develop strategies for its effective use.

In general, the dynamic nature of applications such as thoseof multimedia under varying network con-
ditions, request traffic, etc. imply that resource management policies must be dynamic and customizable.
Current mechanisms, which allow arbitrary objects to be plugged together, are not sufficient to capture the
richness of interactions between resource managers and application components. For example, they do not
allow customization of execution protocols for scheduling, replication, etc. This implies that the compo-

nents must be redefined to incorporate the different protocols representing such interaction. We believe that
a cleanly defined meta-architecture which supports customization and composition of protocols and services
is needed to support the flexible use of component based software.

