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In theory there is no difference between theory and practice; but in practice there is. ����� Anon.

1 Introduction
In this paper we report on the results of a sophisticated and substantial use of PVS to establish a recent result in
operational semantics. This is of interest not only because it requires the substantial development of current higher
order techniques in operational semantics, but also because it exposed several gaps in the published presentation
of the result. Thus this paper exemplifies the possible benefit of serious formalization in contrast to standard
mathematical practice which typically leaves much unsaid. We also take great pains to formalize the actual
theoretical treatment, rather than adapting it to the tastes of either the machine, and PVS. In this regard we were
almost completely successful, only on two occasions was it necessary to deviate, slightly, from the exact formal
treatment. We will mention them in the narrative. In this sense we made no use of the tricky representations that
McKinna and Pollack discuss [19]. In our earlier work [7, 5] we carried out in PVS, for the first time, a named
variable proof of the Church–Rosser result for Landin’s call-by-value Iswim, without eliminating � congruence by
tricky encodings. Thus our work can be seen as an attempt to reconcile theory, with formal verification in practice.
We should also point out that prior to this earlier work very little use of PVS’s inductive abstract data types had
been made. Thus this work also represents the first use of these aspects of PVS to verify a non-trivial recent result,
as opposed to a classic result that has been used somewhat as a benchmark, see [7] for a survey.

Thus this paper has several, hopefully complementary, purposes. On the one hand it is a detailed presentation of
the proof of the CIU theorem for uniform � -languages, on the other hand it is a road map for the actual mechanized
proof [6], and the issued raised in its development. We also try and address some of the issues that are raised in
presenting both a theoretical and the corresponding formal development. We will use the word theoretical to refer
to the treatment of the subject matter as it normally appears in journal publications such as [24, 17], to contrast
it with the word formal that refers to the analagous notion, as formalized in the corresponding PVS development.
Also in the body of the paper we use the notation �	��

����� line number � to refer to the particular line in the
unpacked file, whose name is ����

��� ����� , of [6]. So for example �	����� 210 is the actual statement of the main
theorem presented in this paper. We also extend this notation to include the name of the theorem, lemma, or
definition when this is of interest. Thus ��������������� 210 refers to the theorem ����� in the file ������� ����� that lies on
line 210 of the unpacked version of [6]. This system of presentation works well for the statements of the results
contained in the development, but not for the formal proofs. An area of PVS that needs more attention.

1.1 Historical Background
Much work has been done to develop methods for reasoning about operational approximation and equivalence.
Methods developed for reasoning about operational approximation and equivalence include: general schemes for
establishing equivalence; context lemmas (alternative characterizations that reduce the number of contexts to be
considered); and (bi)simulation relations (alternative characterizations or approximations based on co-inductively
defined relations). An early example is Robin Milner’s context lemma [20] which greatly simplifies the proof of
operational equivalence in the case of the typed � calculus by reducing the contexts to be considered to a simple
chain of applications. Carolyn Talcott [23] studies general notions of equivalence for languages based on the call-
by-value � calculus, and develops several schemes for establishing properties of such relations. Doug Howe [9]
develops a schema for proving congruence for a class of languages with a particular style of operational semantics.
This schema succeeds in capturing many simple functional programming language features. Building on this work,
Howe [10] uses an approach similar to the idea of uniform computation to define structured evaluation systems in
which the form of the evaluation rules guarantees that (bi)simulation relations are congruences. The form of the
rules is specified using meta variables with arities and higher-order substitutions. This syntax enrichment is very
similar to the notions of place-holder and filling used here to specify uniform semantics. The idea of using such
meta terms to specify classes of rules giving rise to reduction relations with special properties was used by Peter
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Aczel in [1] to prove a general Church-Rosser theorem and in Klop [11] to develop the theory of Combinatory
Reduction Systems. Meta terms are also used in describing a unification procedure for higher-order patterns by
Tobias Nipkow in [21]. Mason and Talcott [15, 16] introduced the CIU characterization of operational equivalence
which is a form of context lemma for imperative languages. This lemma was then generalized by Carolyn Talcott
to a very wide class of programming languages in [24]. It is this form of the lemma that we concentrate on in this
paper.

Notation
We conclude the introduction with a summary of our notation conventions. Let �����������	� be sets. We specify
meta-variable conventions in the form: let 
 range over � , which should be read as: the meta-variable 
 and
decorated variants such as 
�� , 

� , ����� , range over the set � . ��������� is the set of finite subsets of � . ��������� ������� ��!
is the set of finite maps from ��� to � � . To emphasize application as an binary operation, and to unify syntax, we
often write " � �#�%$���
#� for the application $��&
�� of the function $ to the argument 
 . We write ')(*�+�%$,� for the
domain of a function and -/.10��2$,� for its range. Thus if $435��������� �	�*��� �6! , then '7(��+�%$,�835�9�����:�;� . For any
function $ , $�<=
�>?@
��&A is the function $,� such that ')(*�B�2$#�C�EDF'7(��+�2$,�,G+<H
IA , $#�2��
#�JDF
K� , and $#�2�&LM�EDN$��%L�� forLPODQ
���LB3R')(*�B�2$,� . Also $TS�� is the restriction of $ to � : the function $I� such that ')(*�B�2$#�C�/DQ'7(����%$,��UV�
and $#�2��
���DW$��&
�� for 
X34')(*�+�%$#�C� . YZD[<H\1�=]��_^`�������6A is the set of natural numbers and a_�2b*��cd��c � � ����� range
over Y . In the defining equations for various syntactic classes we use two notational conventions: pointwise lifting
of syntax operations to syntax classes; and the Einstein summation convention that a phrase of the form eJf,�hg f �
abbreviates i fMj�k e�fI�hg f � . For example if l is a ranked set of operator symbols, then the terms over l can be
defined inductively by (as the least solution to) the equation: m�n�DNl f �&m fn � . Unabbreviated, this equation reads:

m n DpofMj�k <=q)��r � �������,��rsf1� qt3+luf�vFrswd3Vm n for ]�x4ayxzc�A �
Finally we use the traditional { symbol to indicate where the formal development uncovered gaps in the

theoretical development.

2 Syntax of Terms
2.1 Background
In this section we present both the general framework as described in [24], and more recently in [17]. Concurrently
we will describe how these notions are interpreted into PVS, as well as any interesting observations concerning
their formalization.

The operational theory is a small-step operational semantics, and is obtained by defining a notion of state and
a single step reduction relation on states. States consist of an expression and a state context. A state context
often describes dynamically created entities such as memory cells, arrays, files, etc. The form of state contexts
needed depends on the choice of primitive operations. There is an empty state context, and for each state there
is an associated expression representing that state. Value expressions are a subset of the set of expressions used
to represent semantic values. These include variables, atoms, and � s. If the expression component of a state is a
value, then the state is a value state and no reduction steps are possible. Otherwise, the expression decomposes
uniquely into a redex placed in a reduction context. A (call-by-value) redex is a primitive operator applied to a list
of values. There is one reduction rule for each primitive operator, and the single-step reduction relation on states
is determined by the reduction rule for the redex operator. Of course it may happen that a redex is ill-formed (a
runtime error) and no reduction step is possible. A state is defined just if it reduces (in a finite number of steps) to
a value state. Using these basic notions we define the operational approximation and equivalence relations in the
usual way in terms of definedness in all program contexts. This is the basic semantic framework, independent of
the choice of primitive operations. Within this framework we define the notion of uniform semantics.

The uniformity requirements are that each reduction rule hold not only for traditional expressions, but also
for expressions containing parameters or meta variables. This parametric notion of computation is best presented
using the idea of a context and the treatment here follows the general theory presented in [13].

2.2 The Syntax of Expressions
A particular � language requires a set of atoms, and a set of operations, to define the syntax. It then requires the
specification of the values and states. These however are just suitably uniform subsets of the basic syntax.



2.2.1 The Theoretical Treatment of Syntax

Fix two disjoint countably infinite sets, � , of variables, and � of parameters:

� D < 
Kw aJ3BY�A � DQ<=��w ay3VY�A
The basic syntax of a � -language is then determined by specifying three sets: a countable set of atoms, � , disjoint
from � and � ; a family of operation symbols �@D[<�� f c 3tY�A ( �	f is a set of c -ary operation symbols)
disjoint from �FG��FG � ; and the set of value expressions, a subset of expressions, � , that we will specify in more
detail immediately after the definition of the syntax.

We assume that � contains at least the binary operation "�� � (lambda application). By taking �ZD < A and
� D <;" � �KA we obtain the expressions of the pure call-by-value � calculus, ��� . Examples of ML style references
and escape operators such as the Scheme 	�"�
 
�
�	�	 can be found in [17].

Definition 2.1 ( 
 , � , � , � ): ������� � ������������������� 1–160
The set of expressions, 
 , and the set of � -abstractions, � , the set of value substitutions, � , and the set of parameter
substitutions (fillings), � are defined as the least sets satisfying the following equations:


 D � GV��! G"� G"� G#��f,�$
 f �%�4D �&� � 
 ��DN���:��� � ���'��!(� DN������� � �:�)
/!
We let * range over � , 
��'+#��L range over � , ���),J� g range over � , - range over 
 , . range over � ,/ range over � , and 0 range over � .� ! is the set of parameters, annotated or decorated by value substitutions. Value substitutions, � , are finite

maps from variables to value expressions. The domain of a substitution is written as ')(*�+� / � , and is defined in the
usual way. Parameter substitutions are finite maps from parameters to expressions. We write <=
 wE>?216w a �Nc�A
for the value substitution, / , with domain < 
#w a��Wc�A such that / �&
�wh�:D31_w for a �Wc . Similarly we write<=� w >?4- w a �tc�A for the parameter substitution, 0 , with domain < � w a �tc�A such that 0 ��� w �ED5- w for a �tc .
Note that a parameter decorated by a value substitution is an expression. This allows us to compute parametrically
with partially specified expressions, and thus our expressions generalize the usual notion of context. In this more
general setting we must be somewhat more careful to define certain basic notions.

2.2.2 The Formal Treatment of Syntax

In keeping with our attempt to be faithful to the theoretical treatment, we use finite maps in PVS to represent the
finite maps / and 0 . Also the entire development is parametric in a set of atoms and operations (which includes
the binary "�� � , together with the arities of those operations. This theory is appropriately named Landin, and can
be found in �����6� � ����� �������7����� 11 Implementation of the syntax within PVS is a straightforward use of the
datatype with subtypes facility. There are really only two technical issues that arise, and one design issue. We will
look at the technical issues first, then discuss the design issue.

The first technical issue arises because the set of variables are naturally a subtype of the set of expressions.
However they appear negatively in the domain (to the finite set constructor) of annotating substitution, and thus
some way of avoiding this must be found. The solution is relatively simple, and relatively painless in that it does
not cause a great divergence between the theoretical treatment and the formal one. We annotate parameters by
maps from finite sets of natirual numbers rather than variables. We then make use of the natural identification of a
variable and the index (in this case a natural number) from which it was contructed.

The second technical issue is how to deal with the argument lists to the operations in the language. On the
advice of Shankar we adopted the style of having a separate subtype for lists of expressions, and explicitly recursed
on this structure in all our defintions. This provides the PVS typechecker with additional information, that it would
not normally be entitled too, and as a result substantially reduces the number of TCC’s generated. We should point
out though, that adopting this strategy means that subsequent syntactic notions will reflect this minor difference.

Finally we made a design decision to fully develop the syntax prior to the introduction of the notion of values.
There are obvious and not so obvious reasons for this. The obvious is that by ommiting the value restrictions we are
developing a more general framework that one day may be put to good use. The not so obvious is that by adding
the restriction, at this stage, that the range of annotating substitutions be restricted to values would substantially
complicate the development of the basic syntatic operations such as renaming, substitution, and filling, especially in
the generated TCCs. Thus we chose to ignore values at this stage, and only later in the development ( 8`"�
�9���� � 19 )
define them by recursion, as a subtype of expressions with the desired feature.

2.2.3 Auxilliary Syntactic Notions

One of the real differences between theoretical and formal treatments now takes place. What can be glossed over
in a page or two in a theoretical treatment, can now take several person weeks and significant amounts of patience
and ingenuity.



Given the above implementation of the basic syntax, we must now develop the more basic auxilliary notions
that are glossed over rather tersely in any theoretical treatment. We must define the rank of an expression, so as to
be able to define by induction and recursion more complex notions. We must define derived notions such as the
free variables of an expression, and the set of parameters that occur in it. These sets will be finite, and this fact
itself must be verified, usually as TCCs.

We must define substitution, which itself entails developing the simpler notion of renaming. Filling similarly
must be defined, as must the notion of being equivalent modulo the renaming of bound variable ( � equivalence). We
must then also show that, the simple as well as, these important operations are functional modulo this equivalence
relation. As well as establishing that � equivalence is a congruence, and that it has all the properties that we assume
it to have (i.e. it is indeed a congruence: an equivalence relation preserved by the syntactic constructions).

2.2.4 Rank

The rank of an expression is defined using the reduce nat facilty that is automatically generated from the
representation of the syntax using PVS’s datatype with subtypes facility. Because of the particular choices made
in implementing the syntax, the theoretical and practical notions of rank do not coincide. The actual rank we
implement is:

Definition 2.2 ( �_��. � ���;� ): �1"���� � 1–87

�_��. � � - �JD
����	 ���

\ if -83 � G � ,

]��
�_��. � � -�� � if - D �

 � -�� ,
^��5�����I� <��6��. � � - w � ]9xzayx4c�A ���5c if - D��d�)-6���������,� - f � ,
]��5�����I� <��6��. � � / ��
#��� 
�3B')(*�+� / �_A�� if - D ���

2.2.5 Derived Syntactic Notions

The first notion needed in the formal development are the set of variables, free variables, and parameters that occur
in an expression. They are all simple recursive definitions, and in the actual formal treatment are sets of natural
numbers. Thus they are the indexes of the variables, free variables, and parameters respectively. We must also
establish rather obvious facts, such as that the free variables are a subset of the variables.

Definition 2.3 ( ���:���;� , ���7���;� ): 8`"���� � 1-95
The free variables, ������� � , and the parameters, ���)��� � , (which are always free) of an expression � are defined
inductively. The novel clauses are:

������� �w �ED o� j��! #"%$ ��&
���:� / ��
#��� ���)�&� �w �ED o� j��! '"%$ ��&

���7� / ��
#����G�<Ha6A
The free variables ���:���;� are defined in 8`"���� � 14 , while the parameters, ���7���;� , are defined in 81"��	� � 38 . We
extend these to substitutions is the obvious fashion:

������(:�ED o) j��! '"*$,+ &
������(V��-���� ���)��(:�JD o) j��! #"*$.+ &

���)��(V��-���� for ( 3 � G � .

One last derived piece of notation concerning annotated parameters appearing in expressions. The set of
trapped variables, /��_���10=���;� , is defined to be the smallest set of variables that contains the domains of any
substitution that annotates an occurrence of a parameter in � .
Definition 2.4 ( /��6���10 ��� � ): 2��1" � � � 1-35
These amount to a simple inductive definition, the interesting clause being:

/��6���10 �&� � �JD o� j��! '"%$ ��&
/3�_���10 � / ��
#����GV')(*�B� / � 2��1"�� � � 20

The set of traps, like the other notions described above, are the set of indexes of the appropriate variables, and
they satisfy simple properties, like being preserved under renamings.

2.2.6 Renaming

As a prelude to defining (capture avoiding) substitution, filling, and the companion notion of renaming of bound
variables (a.k.a � -conversion), as we pointed out in [7], careful treatments of the � -calculus will define, by
structural recursion, the notion of a variable renaming -54 �768:9<; . One nice property possessed by variable renamings
is that it preserves rank, unlike substitution, and to establish its totality we must build that fact into its type:

- 4 ��68:9�; �`<�-���3 
 �_��. � �)-s�;�ED��_��. � �)-H� A



Actually we must build much more information into its type. For example we must assert that renaming preserves
the subtypes used in defining the basic syntax. In other word it maps � expressions to � expression, applications to
applications etc. Even the simpler notion of renaming generates over twenty TCCs that must be verified. Renaming
itself is of interest because of the nested recursion that takes place in the � clause.

Definition 2.5 (Renaming -�4 �768:9<; ): ��9�� ��� � 26

� �KL	� - � 4 �768:9<; D �����C��� - 4�� 68
	�; � 4 ��68:9�; � for � fresh, i.e. � O3V����� - ��G+<H
 �'+�A .
Note that we always rename the � bound variables, regardless of whether or not a clash might have otherwise

occurred. To produce such fresh variables we posit a function � -
� that pulls them, or at least their indices, out of
a hat:

Definition 2.6 ( � -�� ): ������� � ����� ����������� � 112

� -
� �*�9���%Y��J>?@Y satisfying ����� 3V�����%Y���� ��� -
�8��� �7O3�� �
2.2.7 Substitution

We can now turn our attention to the glamour operations: substitution, and filling.

Definition 2.7 (Substitution -�� ): ��9������ � 110–182
-<� is the result of simultaneous substitution of free occurrences of 
R3�')(*�B� / � in - by / ��
�� , taking care not to

trap variables. Taking care not to trap variables amounts to defining simultaneous substitution into a � expression
by the following scheme, which makes use of the previously defined notion of renaming,

� �KL	� - � � D ��� � ��� - 4�� 68
	<; � � � for � fresh, i.e. � O3B�����)-H� G������ / � .
In the case of decorated parameters we define simultaneous substitution as follows, ��� ��� � � D � $ ���� & , where/ �� DQ< 
B>? / �M��
#� � 
+3+'7(��+� / � � A .

We also prove that our notation is not misleading; in the following lemma the left hand side is renaming, while
the right hand side is substitution.

Lemma 2.8 (Renaming): -�4 �768:9<; D -74 �768:9<; ��9�� ��� ����9������ � ���
"���� � 166

2.2.8 Filling

Definition 2.9 (Filling -�� ): ����
 
 � 1–73
-�� is the result of simultaneous substitution of decorated occurrences of � 3B'7(��+� 0u� in - by 0 ���P� instantiated

by the (suitably substituted) decoration, again taking care not to trap variables (other than those in the range of
the decoration). For decorated parameters it is defined as follows, ��� �`���RD 0 �&�P� �  if � 3 '7(��+� 0u� , and � �  
otherwise, where / � is defined point-wise: / � D <H
�>? / ��
#��� 
�3B')(*�B� / �_A . In the case of � -abstractions, we
define parameter substitution exactly as we would value substitution:

� �

 � - � � D �����C��� - 4 �768
	<; � � � for � fresh, i.e. ��O3+���:� - � GV��� � 0u� .
which again makes use of the previously defined notion of renaming.

2.2.9 � Equivalence

While the notion of being equivalent modulo the renaming of bound variables easily extends to this more general
setting [13] by simply clarifying what can and cannot be bound: parameters are never bound; variables in the
domain of an annotating substitution are never bound; variables in the range of an annotating substitution may be
bound. We begin by presenting the (proof) theoretical definition of

!" [13]:

Definition 2.10 (
!" ): #��M" ��$ 
 ��%
" � 1–108

�'&u� 0�( �
1
!" 1

provided 1�3"� G"� �*)7�K� - � !" -H�� ����� -�f !" -=�f
�d� -��*�������,� - f � !" ���)-H�� �������,� -=�f �

��+-,/.10�0_� '7(��+��( � �EDF'7(��+� ( � � ( � ��-�� !" ( � ��-��1� - 3B')(*�B� ( w2�
( � !" (�� ( �*� (��73 � or ( �*� (��73"�



���d�5�6���	� / � !" / �
��� � !" � ���

� � ��� .��1��� - 4
� � 68
	<;� !" - 4 � � 68
	�;� for � fresh.

�

 � � - � !" �

 � � - �
There is substantial leeway in the precise way one formalizes

!" . These issues are discussed at length in [19]
so we shall not dwell on them here. The main point to make is that we attempted two formalizations, in keeping
with the well tested rule of having weak introduction principles and strong elimination principles. The strong form
was developed in $�
 ��%
" � 1-450 where we actually formalized the notion of being a proof in the above system,

and defined
!" by

-�� !" -6� �D ���	� a proof in the above system � �
��� -�� !" -_� � $�
 ��%
" � 185

Establishing facts such as transitivity, symmetry, and reflexivity required the formal manipulation of proof objects.
The weak form was developed in #��M" ��$ 
 ��%
" � 1-48 and was a simple inductive definition along the lines we used
to prove the Church–Rosser theorem in [7]. The two forms were proved equivalent in #���" ��$�
 ��%
" � 85 . However
it was the weaker form that proved the most useful in the subsequent development of the CUI theorem.

Both the formal and theoretical treatment require the development of a large library of facts concerning this
relation. The most basic facts necessary are collected here together in a lemma.

Lemma 2.11 (
!" ): 1. - � !" - ��
 �6��. � �)- � �ED �6��. � �)- � � . #��M"5��$�
 ��%1" ��#��M" � �`"���� � 76

2.
!" is reflexive. #���" ��$�
 ��%
" ��#��M" � � �
� 

��� � � � � 88

3.
!" is symmetric. #���" ��$�
 ��%
" ��#��M" �-������� � ��� ��	 � 94

4.
!" is reflexive. #��M" ��$�
 ��%
" ��#��M" � 2��1"�� ����� � � � � 97

5. -�� !" -_� 
 ����� -��;�EDF���:� -_� � . #��M" ��$ 
 ��%
" ��$�
 ��%
" ��8 � 104

2.2.10 Substitution preserves � Equivalence

The main result concerning the relationship between � equivalence and substitution is that the latter preserves the
former:

Lemma 2.12 (AlphaSubst): $ 
 ��%
"���9�� ��� � $ 
 ��%
"���9�� ��� 2�% ����� ��� � 132
- � !" - � v / � !" / ��
 - ���� !" - � �� {

As pointed out by Mason in [13] the proof of this is somewhat delicate, actually it is even more delicate than
suggested there. Since the proof presented there does not stand up to the test of formalizing in PVS. In [13] the
suggested proof requires establishing, directly, the following three properties by simultaneous induction.

Lemma 2.13 (Alpha): $�
 ��%
"���9������ ��$�
 ��%
"���9������ ���
"�� � 132

1. �)-�� !" -6� v -=�� !" -H�� � 
 - 4 ��68����� ;� !" - 4 �768����� ;�
2. �*� �:O3+��� �)- ��v � �:ODF
 OD ��� � 
 �)- 4 	 � 68 	 � ;� �#4 ��68��#; !" � - 4 ��68��';� �#4 	 � 68
	 � ;
3. �)- 4 ��68
	�;� � 4 	 68:9�; !" - 4 �768:9<;� for � O3+��� �)-�� �
However the actual proof first must establish (by simultaneous induction) the corresponding three properties

for renaming rather than substitution $�
 ��%
"���9������ ��$�
 ��%
" ��� ��� �������#" � 70 . Then using these facts concerning
renaming establish the first two properties above, again by simultaneous induction. Note that the third property of
lemma 2.13 is actually a property of renaming. It is now relatively simple to prove that substitution preserves �
congruence.

The formal development and proof of the CIU theorem also requires some other relatively simple properties of
substitution and � congruence. They are summarized in the following lemma.

Lemma 2.14 (SubstProps):

1. �%')(*�+� / � � �R'7(��+� / � ���IUV���:� - �JD�� 
 � -�� � � � � !" - $ � � �� & $�
 ��%
"���9������ ��$�
 ��%
"���9������ � ������� � 136

2. 
RO3B����� - � 
 � -�4 9 68 �7; �'4 �768�� � ; !" -74 9 68�� � ; $�
 ��%
"���9�� ��� ��$�
 ��%
"���9�� ��� ���������1" 	�� � 140

3. ���:� - � U�'7(���� / �yD�� 
 -
!" -�� $�
 ��%
"���9�� ��� � ��9�� ��� ��8 � 149



2.2.11 Filling preserves � Equivalence

We must now establish similar properties of filling, the principle being that filling also preserves � congruence.

Lemma 2.15 (AlphaFill): $ 
 ��%
"�����
 
 ��$�
 ��%
"�� � 
 
 2�%������ ����� 51
-�� !" -6�:v 0y� !" 0T� 
 - ���� !" - � ��

This is proved by simultaneous induction along with the following fact.

Lemma 2.16 (FillSwap): $ 
 ��%
"�����
 
 ��$�
 ��%
"�� ��


 ���
"�� � 47

RO3+��� � 0u� 
 � -����#4 ��68:9�; !" � -�4 ��68 9<; ���

As in the case of substitution the development and proof of the CIU theorem requires establishing several
simple facts concerning filling. These we collect together in the following lemma.

Lemma 2.17 (FillProps): $�
 ��%
"�� � 
 
 � 65–82

1. '7(��+� 0u�IU ���7� - �JD�� 
 -
!" -�� .

2. - � !" - � 
 ���7� - � �EDN���)� - � � .
3. � � w���� ���)�)- w �JD��BvN�:�:ODX� � � 
 �)-74�� � 68�� � ; �#4�� � 68�� � ; !" - 4��
	 68�� 	 w���� ;
4. � � w���� ���)�)- w �JD��BvN�:�:ODX� � � 
 -�4�� � 68�� � ;�
 4�� � 68�� � ; !" -�4�� � 68�� � ;�
 4�� � 68�� � ;

Definition 2.18 (Term, Closed): � 
�������� � 1-27
We adopt the convention that an expression with no parameters is called a term. Furthermore a term with no free
variables is closed. Thus being closed implies having no parameters.

These notions are used heavily in the statement and proof of the CIU theorem, and consequently we must also
establish simple facts concerning them, such as that they are preserved by � equivalence, and that they are both
preserved under filling (since they remain unchanged).

2.2.12 Values

Definition 2.19 (Value Expressions ( � )): 81" 
�9���� � 1-122 {
The set of value expressions, � , contains all variables, atoms, and � s. It may in addition contain expressions of

the form �d� 1 f � . Operators, � , that produce value expressions, are called constructors. A binary (non-mutable)
pairing operation is a prototypical constructor. � must also satisfy:

(triv) � is closed under
!" 8`"�
�9���� � 75

(vsub) 1�3"� 
 1 � 3 � 8`"�
�9���� � 81

(inst) 1�3#� 
 1 � 3 � 8`"�
�9���� � 84

(dich) - � 3#� 
 � - 3 �+��� � -9DX� � v 0 ����� 3"�+� 8`"�
�9���� � 87

We let 1 range over � .

We can now define 81"�
�9�� � ��� ����� � 37 the subtype of expressions that we will restrict our attention to in the
sequel. Those expressions that only contain parameters annotated by value substitutions, substitutions whose range
is a subset of � . We will continue to denote this new set by 
 , though in the formal treatment it is called � ����� .
Once defined we must also show that renaming, value substitution, and filling all preserve the defining property of
� ����� . This is done via judgements to enable the PVS typechecker to use them in the typechecking process.

The following lemma simply points out a simple consequence of the closure conditions on values.

Lemma 2.20 (inv): 8`"�
�9���� ��81" 
�9���� ��9�� ��� � �����#" � 99
-���3 � 
 -83#�

Proof: Pick -�� such that -7�� 3"� , and let � be a fresh parameter. Put -9DX� � , 0tDQ<=� >?2-s��A . Then

- � D �&� � � � D 0 ���P� $ �  & D 0 ����� � D - �� 3"�
since � ��O3#� we can use (dich) to conclude that - � 3"� .



3 Semantics of Terms
3.1 Operational Semantics
In a � -language computation state is represented as a class of expressions. Each particular language will possess
it’s own class of state expressions, reflecting the nature of the primitive operations that it is based on. In what
follows we fix a distinguished parameter � to designate the position at which effects are to be observed in a context
representing a computation state. We call this the state parameter.

Definition 3.1 (State expressions (
�

)): ��������9-�`" � ����� � 19 {
For a particular � -language

�
is assumed to be a subset of 
 . We call

�
the set of state expressions.

�
is assumed

to satisfy the following uniformity conditions:

(triv)
�

is closed under
!" ����� ��9-�1" ��������� 27

(par) �:3 � 
 � 3B���)����� ��������9-�1" � ����� � 31

(vsub) �:3 � 
 � � 3 �
assuming �	O3B���/� / � ��������9��1" � ������� 34

(inst) ��3 � 
 � � 3 �
assuming �	O3R�%')(*�+� 0u�IGV���/� 0u��� ��������9��1" � ������� 37

� ranges over
�

and � 3 �
is the empty state expression.

Definition 3.2 (Computation States ( � � )): ��������9-�1" � ����� � 46

� � �D � � 
 is the set of computation states. We let � range over � � and let � ��- be the state with state
context � and expression - . The computation state � � - is said to be a value state iff -43 � . Given a state
� � - , we associate a corresponding expression by filling the state parameter in the context with the expression,
i.e. � 4�� 68��'; . A state is closed just if its corresponding expression is closed, in other words if � 4�� 68��'; has no free
parameters or variables. Application of value and parameter substitutions to states is defined by in the obvious
way: ��� � - � � D	� � � - � and ��� � - � � D
� � � - � . Note that by (vsub) (inst) these are only meaningful if
� O3B')(*�B� / � and � O3R�&'7(���� 0u�IGV���/� 0u��� .
Definition 3.3 (Reduction ( �K? , �K?�� ) and Definedness ( 
 )): � ����"��-� ��	
� � 28
Given a reduction relation for a � -language: � �&-6��?��*� �&-H� , the following definitions are standard. The transitive
closure of ��? is ��?��
Definedness: � ���#"��-� ��	 � � 38

��� �&- ��
�� �)-83"�+��� �����&-��#?���� � � 1��
Approximation: �
���#"��-����	 � � 42

��� � �&-��H��� ���=� �&-_� ��� ���_� �&-s�;��
 
 ��� � �&-6�=��

Equidefined: � ���#"��-� ��	 � � 45

��� � �&-��H�������=� �&-_� ��� �����_� � -��H��
�� ��� � �&-_� ��
M�
Equivalued: � ���#"��-� ��	 � � 48

��� � �&- � ��� ��� � � - � ��� ��� � �&- � ���	��� � � - � ��v ��� � �&- � ��
 
 ��� 1	3 ������3 � � � �! ��� ��� w �&-�w2� �#?��"��� 1M�
Length: � ���#"��-� ��	 � � 55# ���&- # is the least c�3+Y such that ���&- reduces to a value state in c steps, if � �&-$
 .

The formal treatment of the transitive closure of a relation, and its rank (used in defining the length of a
computation) are theories that we were able to reuse from our proof of the Church–Rosser theorem [7]. They are
treated in � ��
 � 1–210 . To define reduction rules for general � -languages, and formulate the central properties
of reduction and equivalence, we introduce the notions of redex and reduction context. Since evaluation is call-
by-value, a redex is simply an non-constructor operator applied to the appropriate number of value expressions.
Redexes and value expressions must be disjoint, thus we must account for the fact that some expressions of the
form �d� 1 ���������,� 1 f � may be value expressions.

Definition 3.4 (Redexes ( 
&% )): ��������9-�1" � ����� � 65
The set of redexes, 
'% , is defined by:


 % D � f � � f � � �



Note that redexes in our framework may or may not reduce. The point is that they are simply expressions of
a particular shape, in other words: candidates for reduction. The set of redexes is closed under the following
uniformity conditions.

Lemma 3.5 (Redex Uniformity): ��������9-�1" � ����� � ??
Redexes satisfy the following uniformity conditions:

(triv) 
 % is closed under
!" ��������9-�1" � ����� � ??

(vsub) � 3 
 % 
 � � 3#
 % ����� ��9-�1" ��������� 88

(inst) � 3 
 % 
 � � 3#
 % ��������9-�1" � ����� � ??

We use the distinguished parameter � to denote the evaluation parameter (or hole), and we define the notion of
a reduction context,

�
, accordingly. Reduction contexts (also called evaluation contexts in the literature) identify

the subexpression of an expression in which reduction to a value must occur next. They themselves represent the
remainder of the computation, i.e the continuation. In our approach they correspond to the left-first, call-by-value
reduction strategy of [22] and were first introduced by [3].

Definition 3.6 (Reduction Contexts ( � )): ��������9-�1" � ����� � 70
The set of reduction contexts, � , is the subset of 
 defined by

� D <���AJG �����If�� � � <�1�3 � � O3B���)� 1M�_A � �	��� <�-83#
 � O3B���)�)-H� A f �
We let

�
range over � . We adopt the convention of writing

�
[ - ] instead of

� 4	
 68�� � ; .
Observe that both the definition of redex, and the definition of reduction contexts depend on the particular choice
of values, and thus vary from one � -language to another. Also note that � will satisfy a similar set of uniformity
conditions as those satisfied by states (Definition 3.1):

Lemma 3.7 (Rcx Uniformity): ��������9-�1" � ����� � 1-233
Reduction contexts satisfy the following uniformity conditions:

(triv) � is closed under
!" ��������9-�1" � ����� � 109

(par)
� 3�� 
 � 3B���)� � � ��������9-�1" � ����� � 94

(vsub)
� 3�� 
 � � 3�� assuming ��O3+���/� / � ��������9-�1" � ����� � 189

(inst)
� 3�� 
 � � 3�� assuming ��O3 �%')(*�B� 0u�IGV���)� 0u��� ��������9-�1" � ����� � 224

A term, an expression without parameters, is either a value expression or decomposes uniquely into a redex
placed in a reduction context. This generalizes to the present situation in the following fashion.

Lemma 3.8 (Decomposition): ��������9��1" � ����� �5� 	�� 
 � 	������ ������� ����� 2 %������ ����� 179
For any � -language, if -�3 
 then either -�3#� or - can be written uniquely as either

(i)
�
[ � ] where

�
is a reduction context and � 3 
'% , or else

(ii)
�
[ � � ] where

�
is a reduction context, and � �	3+� ! is a decorated parameter.

In the latter case we say that the expression is touching the parameter, while in the former we say that the
expression may be reducible. The requirement that the evaluation parameter does not occur in either the leading
value expressions, or the trailing expressions is necessary for the uniquenss aspect of this lemma. A simple
counterexample is the following:

� � D������M����� � � D �d���M����� � � [ � ] D �d���M�����ED � � [ � ] �
3.2 Uniform Semantics
We now specify what we mean by a � -language having uniform semantics. The key requirement is that reduction
steps that do not touch a parameter are uniformly independent of what the parameter might stand for. In addition,
we require that: single step reduction is essentially deterministic; reduction is preserved by value substitution; a
state, and its associated expression started in the empty state context, are equi-defined; and if one state reduces to
another then the two states are equi-defined and the reduct has shorter computation length, if defined.

Definition 3.9 (Uniformity (U)): � ���#"���� ��	 � � 1–121 {
A � -language is said to have uniform semantics if it satisfies the following:



(i) Functional modulo
!" and implicit bindings: � ���#"���� ��	 � � 70

� �! ��� ��� w � -�w2�
!" ��� �w �&- �w ��� 
 ����� � � - � ��? � � � - � � 
 ��� �� �&- �� �K?�� �� � - �� ���

� �! ��� � � -���? � w �&-�w2� 
 � 4 � 68�� � ;� !" � 4�� 68�� � ;� �

(ii) Uniform in value substitutions: � ����"��-� ��	
� � 75

���&-���?�� � �&- � 
 ��� �&- � � ��? ��� � � - � � �
provided ')(*�B� / �IU���/��6���10 ������G /��_���10 ��� � ���ED�� and �	O3+���/� / � .

(iii) State evaluation: �
���#"��-����	 � � 79

���&- � � � � 4�� 68��';
(iv) Well-founded: �
���#"��-����	 � � 82

��� �&-���? � � � - � v � �&-$
*� 
 ��� � � - � 
	v # � � �&- � # � # � � �&- � # �
(v) Parametric: � ���#"��-� ��	 � � 86

� � � - � ��? � � �&- ��
 ��� � � - � � � ��? ��� � �&- � � � for any 0 3#� with � O3R�&'7(���� 0u�IG����7� 0u��� .
(vi) Dichotomy: � ���#"��-� ��	 � � 90
Assuming � O3V'7(���� 0u� , if ����� -H� � �#?�� � �&- � then either

� �&- touches a parameter in the domain of 0 , or

� �&-��K? � � �&- � , for some � � � - � such that � � �&- � !" ��� � �&- � � � .

(vii) Closure: � ���#"��-� ��	 � � 95 & 100

(i) ��� � �&- � �K? � � � - � � 
 ���:��� 4�� 68�� � ;� ���X��� ��� 4�� 68�� � ;� �
(ii) ��� � �&- � �K? � � � - � � 
 ���7��� � � - � ���t���7��� � � - � ��v ��� O3+���/�)- � � 
 � O3V���)�)- � ���

In the languages we consider (U) holds for the following reasons. (U.i) holds because the only non-determinism
in a reduction step is the choice of names used in the state context. (U.ii) holds because reductions that do not
depend on the values of free variables, are parametric in the values that those variables take. (U.iii) holds because
reduction of � � � 4�� 68��'; essentially recreates the state context � . (U.iv) follows since if a state is defined, then
any reduction makes progress. Clearly if the reduct state is defined, then the original state is defined. (U.v) and
(U.vi) formalizes the uniformity requirement for reduction steps. (U.vi) states that either computation touches a
parameter or is parametric. These are satisfied by reduction rules that treat the reduction context as an abstract
entity, and that depend on the kind of construction of a redex argument, but not on any information about subparts.
This is easily expressed using the parameters. Finally, (U.vii) holds because computation neither introduces new
parameters, nor new free variables. Furthermore the state parameter does not propagate into the expression being
evaluated.

3.3 Approximation and Equivalence
Now we define operational approximation and equivalence on terms and lay the ground work for studying prop-
erties of these relations. In what follows we fix a particular distinguished parameter, � , distinct from � and � .
We let � range over expressions with � as the only free parameter. Such expressions play the role of traditional
� -calculus contexts, and we extend our convention, stated in definition 3.6, of sometimes writing � [ - ] instead of
� 4�� 68��'; . Note however that for example the traditional context �KL�� "�� �#� +�� �1
 � "�� �,� [] ��LM��� does not correspond
to �
L	� " � �,� +#� �

 � "�� �#�&����LM��� but rather to one where the trappings have been made explicit at the occurrence of the� parameter: �
L	� " � �#� +#� �

 � "��
�I�&� 4 �768:��� � 68 � ; ��LM��� �
Definition 3.10 (Approximation -���� -6� , Equivalence -�� �D -_� ): $
� ��������� 1–76
For terms -�� , -6� define

- � � - � � � ��� � [ - � ] ��� [ - � ]closed � ��� ��� [ - � ] � � �	� [ - � ] �
- � �D - � � - � � - � v - � � - �
Note that we are restricting our attention to terms, rather than arbitrary expressions. It is easy to see that operational
approximation is a congruence on terms: if -6�
� -6� , then � [ -�� ] ��� [ -_� ]. Similarly for operational equivalence.



4 The CIU Theorem and it’s Proof
4.1 The CIU Theorem
We may now state the main result concerning languages with uniform semantics, the CIU theorem.

Theorem 4.1 (CIU): �	����� �	����� 210 {
For a � -language with uniform semantics:

- � � - � � � � �1� � � / �! ��� � �
�
[ - �! ] closed � ��� � � [ - �� ] �	� � � [ - �� ] �

under the assumption that ����� - � �EDN��� �)- � � .
CIU is an acronym for closed instances of uses, since the value substitution, / , closes the - w , while the reduction

context,
�

, represents a use of the value returned, in the appropriate state, � . Thus only the value of the expressions,
-�w , are observed. Although the theorem holds without the added assumption that ���:�)- � �7D ���:�)- � � , we have as
yet been unable to verify this using PVS. This is the subject of ongoing work, and we hope to be able to remove
this assumption shortly.

This assumption is used in the following lemma, which guarantees that we may preserve closedness by replac-
ing some number of occurrences of -�� by -6� .
Lemma 4.2 (Closed): ����� � �	� 9 � 
���������� 83 {
Suppose - satifies ����� - �zD � , ���)�)-H� � <H�:�*��� �HA , ����� -��H�tD ����� -_� � , - 4�� � 68�� � � � � 68�� � ; is closed, and
-�4�� � 68�� � � � � 68�� � ; is closed. Then -�4�� � 68�� � � � � 68�� � ; is also closed.

To see that the first two conditions (without the third) are necessary consider the following:

-7D � + � � � + � � � 4 9 � 68:9 � � 9 � 68 �
���
� �� � ��� � � ��	� ��
� ;�

- 4�� � 68:9 � � � � 68:9 � ; D � +�� � � +�� � +���� - 4�� � 68 9 � � � � 68:9 � ; D � +��
� � +�� � +��;� but - 4�� � 68 9 � � � � 68:9 � ; D � +�� � � +�� � - � �
To see that the first three are all necessary consider:

-7D � + � � � 4 9 � 68:9 � � 9 � 68
��9����
�
���
� �� � � � � � ���� ����� � � 
� ;�

- 4�� � 68:9 � � � � 68:9 � ; D � +�� � � + � � +�� � - 4�� � 68 9 � � � � 68:9 � ; D � +�� � +M� � but - 4�� � 68 9 � � � � 68:9 � ; D � +�� � � + � � � +�� � +��
�
Another useful lemma in the PVS proof allows us, ahead of time, to replace a parameter, by what it is about to

be filled with.

Lemma 4.3 (Delay): ����������� 9 
 ��
�"�� � 100
If - is a term, then

�
[ ��� ] 4�� 68��'; D �

[ -�� ] 4 � 68��#; �
4.2 The CIU Proof
The fact that one can present a syntactic reduction system for imperative � -calculi was discovered independently
in 1986-1987 in [16], and in [4]. As well as being conceptually elegant, it has also provided the necessary tools
for several key results and proofs. In addition to eliminating messy isomorphism considerations, to deal with
arbitrary choice of names of newly allocated structures, it also was a key step leading to the formulation of the
CIU theorem, first presented in [15]. There are now several proofs of this result in the literature. The theorem
first appeared in [16] and the proof (sketch) presented there used techniques similar to those developed here. A
somewhat more detailed and general version of this same technique appeared in [24]. A second, distinct, proof
was presented in [8] that simply shows that the CIU relation is a congruence. This proof also appears in a more
general setting in [14].
Proof: (CIU 
 ) ����� � ����� � � 153
The (CIU 
 ) direction is relatively simple, and requires producing a context

�
such that

�
[ - w ] evaluates to

��� � [ -<�� ]. Suppose that -�� � -_� , and choose �1� � � / such that ��� � [ -7�! ] is closed for \�xtb � ^ . Since these
expressions are closed, we may assume that the only free parameter in � is � , and that / �&
�� is a term, for each
�3�')(*��� / � . Extend / to �/ by mapping each 
�3 /3�_���10=���*� � '7(��+� / � to itself. Note that -���w D -��w . Choose an

new parameter � and consider the expression
� D ��4�� 68�� �� �� �"!� 
 ; .

Lemma 4.4: ����� � ����� � # ��
 � ���%$ � 129
�
[ - ! ] D ��� 4�� 68�� �& �� � !� 
 ; � 4�� 68��(' ; D � 4�� 68�� �& ��	� !�	 
 ;



Now by this lemma � � � [ - ! ] are closed, thus by definition 3.10 we have that

� �	� [ -�� ] � � ��� [ -_� ] �
Then � � � [ - ! ] � � � � [ -<�! ] by lemma 4.4, and (Unif.iii). Thus ��� � [ -��� ] �	��� � [ -��� ] as desired.

Proof: (CIU � ) ����� � ����� ��� 206

Assume that

(ciu) � � �`� � � / �! ��� � �
�
[ - �! ] closed � ����� � [ - �� ] �	� � � [ - �� ] � �

We prove

� � �`� - �! ��� ��� �&- � 4��
68�� ' ;

closed � ����� �&- � 4�� 68�� � ; � �����&- � 4�� 68�� � ; �
by induction on the length of the computation of �����&- � 4�� 68�� � ; .

The proof is relatively straightforward modulo the hard case. The hard case is when - � is a value, and��� � -H�#4�� 68�� � ; non-trivially reduces to a value. This case itself must be proved by another induction. This
induction is on the number of non-nested occurrences of � that occur to the left, or below, where the computation
is currently taking place. An occurrence of � in - is said to be non-nested if it is not in the scope of a � -expression,
or in the range of a substitution annotating a parameter.
(CIU � ) Base Case: ������������� � �
"���� � 156
Suppose that ��� � - �#4�� 68�� � ; is a value state. Thus -�4�� 68�� � ; must be a value. Thus by (dich) of definition 2.19,
either - is a value or else it is of the form � � for some / , and -�� itself must be a value. In the case where - is a
value, we have that -�4�� 68�� � ; is also a value by (fill) of definition 2.19, and hence �����&- � 4�� 68�� � ; is also value state
(note that � 4�� 68�� � ; 3 �

is implicit in the hypothesis). So suppose that -6� is a value, and that - is of the form ���
for some / . Also let � ! D � 4�� 68�� ' ; and / ! D / 4�� 68�� ' ; for \ xRb �t^ . Then in this case

��� �&- � 4�� 68�� � ; D � 4�� 68�� � ; �&- � � � �� � � 
� D � � �&- � ��
is a value state, and hence

� 4�� 68�� � ; � - � �&� �� � � 
� D � � �&- � ��
must also be a value state by (fill) of definition 2.19. We also claim that � � � - � �� is closed by lemma 4.2. By
assumption � � � - � �� is closed. Thus we may use the (ciu) hypothesis with � D � � , � D � , and / D / � to conclude
that

� 4�� 68�� � ; � - � �&� �� � � 
� D � � �&- � �� �	� � � - � �� D � 4�� 68�� � ; �&- � � � �� � � 
�
Now simply observe that

��� �&- � 4�� 68�� � ; D ��� ��� � � 4�� 68�� � ; D � 4 � 68�� � ; �&- � ��� �� � � 
� D � � � - ���� �

So �����&- � 4�� 68�� � ; 
 .
(CIU � ) Induction Case: ����� � �	��� � � # � 166
Now suppose that ����� -H� 4�� 68�� � ; 
 non-trivially. Thus there is a ����� � -��=� such that ��� � - �#4�� 68�� � ; �#? ����� � -�� �
and

# ����� �&-��=� # � # �����&- �'4�� 68�� � ; # . Hence by (Unif.vi) either

(i) there is a state ������� -=� � such that ��� �&- ����? ����� �&-H� � and ������� -=� �#4 � 68�� � ; D ����� � -��=� , or else

(ii) ��� �&- � touches the parameter � .

(CIU � ) Induction Case (i): ����� � ����� ��� 221
In (i) we have by the induction hypothesis that ����� � -H�C�#4�� 68�� � ; � ����� � -=� �#4 � 68�� � ; , and thus by hypothesis����� � -H� �#4�� 68�� � ; 
 . This case is completed by observing that since ����� -H� ��?p����� � -=� � , by (Unif.v) we have that��� �&- �'4�� 68�� � ; ��? ����� �&-H�C�#4�� 68�� � ; . Thus �����&- �#4�� 68�� � ; 
 as desired.

We are left with case (ii) where ����� - � touches the parameter � . Without loss of generality let - D �
[ � � ].

We consider two cases depending on whether or not -6�83"� :



(CIU � ) Induction Case (ii) ( -���O3 � ): ����� � ����� ��� 221
Since -���O3 � we have by (Decomposition) (i.e. lemma 3.8) that either -6� uniquely decomposes into

� � [ � � ], or
else

� � [ � � �� ]. However the latter case is ruled out since - � is a term. So - � D � � [ � � ]. Now by lemma (delay)

��� � � [ � � ] � 4�� 68�� � ; D ��� � � [ - �� ] � 4�� 68�� � ; D ����� � [ � � [ � � ] � ] � 4�� 68�� � ; D ��� � � [ � �� [ � �� ]] � 4�� 68�� � ;
Now since

�
[
� �� ] is a reduction context, and �5�� is still a redex by (inv) (i.e. lemma 2.20), we have that ��� ��

[ - �� ] � does not touch the parameter � and so reduces uniformly by (Unif.vi). Thus ��� � � [ - �� ] � ��? ��� � � - � �
for some ����� � -=� � . Thus by (Unif.v) ��� � � [ -7�� ] �'4�� 68�� � ; �K? ����� � -H�C�#4�� 68�� � ; and hence ����� � -H� �#4�� 68�� � ; 
 , so
by the induction hypothesis ���*� � -H� �'4�� 68�� � ; 
 . Now also by (Unif.v) ����� � [ -7�� ] �'4�� 68�� � ; ��?p����� � -H� �'4�� 68�� � ; ,
consequently we may conclude that ��� � � [ -��� ] �'4�� 68�� � ; 
 . Now put � � D � 4�� 68�� � ; , � � D � 4�� 68�� � ; , and/ � D / 4�� 68�� � ; . Then by lemma 4.2 we may instantiate (ciu) and conclude

� � � � � [ - � �� ] �	� � � � � [ - ���� ] �
Consequently �=� � � � [ - ���� ] 
 , as is ����� -H�#4�� 68�� � ; 
 since they are identical.
(CIU � ) Induction Case (ii) ( -��83 � ): ������������� � 81"�
�9 � � 182
Since we are assuming that ��� � -H� 4�� 68�� � ; 
 non-trivially, we know that the term -54�� 68�� � ; is not a value, and so
must decompose uniquely into

�
� [ � � ]. Furthermore since -�� is a value we can find a

�
containing both � and

� , and an � such that:

�
� D � 4 � 68�� � ; � � D � 4�� 68�� � ; -9D � 4	
 68�� ;

Although � need not be a redex, and
�

need not be a reduction context, since in general both could contain
occurrences of � .

We say an non-nested occurrence of � is touched in - if it occurs either in � , or to the left of the � in
�

. In
what follows we shall write

-��+�������������#���� ��� �

all touched occurrences

all other occurrences� ��� ��������������,��� �
to indicate the occurrences that are touched and those that are not. We also assume that the touched occurrences
are correctly ordered from left to right. In that the leftmost touched occurrence corresponds to the first � in this
list, while the right most touched occurrence corresponds to the � just before the .

Now the induction hypothesis can be used to show that

��� �&-�� - � � - � �������I� - � �����������������P��� 4�� 68�� � ; �Z�����&-��)- � � - � �������,� - � �������������,���P��� 4 � 68�� � ;
since by construction -��)-���� -����������,� -�� �������������#����� does not touch a hole, but rather decomposes into the
partially filled

�
and � . The partial filling of

�
and � are now, also by construction, a reduction context and

a redex. Thus both sides will reduce uniformly by a single step, and the induction hypothesis applies to these
reduced expressions.

Thus putting � �)D � 4�� 68�� � ; we may conclude that

���=� �&-�� -��*� -s���������,� -s� -6�;� -_�;�������,� -_� ����

We now prove, by induction on the number occurrences of parameters in -���� �����������,��� - � � - � �������,� - � � , that

��� � �&-�� - � � - � �������,� - � - � � - � �������,� - � ����� ��� � � -*�)- � � - � �������,� - � - � � - � �������I� - � ���
The base case is trivial, since if there are no parameters to the left of the , the lefthand side state is identical to
the right hand side state. Thus we need only show how we may reduce the number occurrences of parameters in
-����������������,��� -6��� -_� �������,� -_� � by one.

We do this by considering the expression:

-�� - � � - � �������I� - � ��� - � � - � �������,� - � �
obtained by filling all but the right most non-nested occurrence of � in -����������������I��� - � � - � �������I� - � � . By
construction this expression is touching the parameter � and thus can be written as

� � [ � � ]. Thus we may use
(ciu) to conclude

���=� � � � [ - �� ] ��� ��� � � � � [ - �� ] �



Or in other words:

��� � �&-�� - � � - � �������,� - � � - � - � � - � �������,� - � ����� ��� � �&-�� - � � - � �������I� - � � - � - � � - � �������,� - � ���
It then only remains to show that -*�&����� �������I��� � - � -6��� -_� �������I� -_� � satisfies the induction hypothesis, and
has one less occurrence of the parameter � . Clearly the number of non-nested parameters decreases by one. To
see that - � D -����������������I����� -_� -6��� -_� �������,� -_� � has the desired decomposition, and reduces non-trivially we
consider two cases, depending on whether or not - � is a value or not. When - � is a value the same decomposition
remains valid, and as the computation is uniform, non-triviality follows. If - � is not a value, then since it is a term
it must be of the form:

� � [ � � ]. Then
� ��D -��&�������������I����� � � - � � - � �������I� - � � and � �KD � � suffices.

5 Conclusions
The most obvious conclusion to draw from the work reported here is that it is possible to use PVS as a tool in the
development of modern operational techniques, and a productive tool at that. It is not hard to see that tools like
PVS will, in the future, play an important part in language design, implementation, and even program development
itself.

The formalization of the annotated holes technique is also a highlight of the work. Providing the unusual
technique with a unquestionable basis. However the most important aspect of the work reported here is the way it
used PVS to put the paper [24] through a fine tooth comb. The final product [17] is certainly the better for it. To
recap: the process of formalizing the CIU theorem revealed three major categories of problems with the published
theoretical versions. Unstated closure conditions on the set of values, and set of states. Unstated but necessary
uniformity requirements needed for the proof to be carried out. Finally some extra conditions on the terms or
contexts considered in the actual CIU proof to ensure that replacing one expression preserves the closedness of the
computation states involved.

5.1 PVS Statistics
The actual proof of CIU in PVS took the authors (mainly the first one) approximately four months (July 00
through early November 00). The actual machine checked proof involves the proving of two hundred and sixty
six (266) distinct facts, and takes PVS two thousand six hundred and sixty six (2662) seconds (44 minutes) of
CPU time running on a Linux machine configured with 2 GBytes of main memory and 4 � 550 MHz Xeon PIII
processors. The dump file containing all the PVS definitions, facts, and proofs is 8.362 MBytes and is available
from http://mcs.une.edu.au/˜pvs/ [6]. It thus represents roughly four times as much work as was
required to prove the Church–Rosser theorem in PVS, as reported in [7].

5.2 Acknowledgements
Prior to this work and the earlier work reported in [7], little use had been made of the abstract datatype facility in
PVS. In the course of our work we uncovered several bugs in its implementation. We wish to thank explicitly
Sam Owre and Shankar at SRI in Menlo Park for promptly fixing these bugs, providing timely advice, and
encouragement, and thus allowing our work to reach fruition.

Our work also made heavy use of the finite set libraries in PVS that have been made freely available by Ricky
W. Butler et al [2] and we thank them for their effort.

We also like to thank Carolyn Talcott for encouraging our use of PVS in the style presented here.
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