Reasoning about programs with effects

Ian Mason Carolyn Talcott
Stanford University Stanford University
IAM@SAIL.STANFORD.EDU CLT@SAIL.STANFORD.EDU

1. Introduction

Real programs have effects—creating new structures, examining and modifying
existing structures, altering flow of control, etc. Such facilities are important not only
for optimization, but also for communication, clarity, and simplicity in programming.
Thus it 1s important to be able to reason both informally and formally about programs
with effects, and not to sweep effects either to the side or under the store parameter
rug. To accomplish this it is necessary to identify structures and constructs that provide
expressive power and at the same time facilitate mathematical reasoning. Here we
focus on a language with function abstractions and operations for creating, accessing,
and modifying memory. In this setting features of algorithmic, functional, and object-
oriented language can be treated. Central to our approach is the study of various useful
notions of program equivalence. Notions of program equivalence are fundamental for
the process of program specification, derivation, and transformation, as well as other
forms of code generation and optimization.

In this paper we give several examples that illustrate our techniques for reasoning
about programs with effects. Techniques illustrated include the following: (i) removing
inessential (non-visible) effects such as replacing assignment to local variables by let-
binding; (ii) introducing a parameter to make single threaded store explicit; (iii) moving
expressions that effect common structure together and simplifying to express the cu-
mulative effect; (iv) moving an expression describing the computation of a value closer
to its point of use (possibly modifying the description to make the move valid); (v)
representing mutable structure in abstract objects to encapsulate effects and potential
interference in a controlled way and to maintain invariants and representation integrity;
and (vi) formulating induction principles that are valid in the presence of effects.

The remainder of the paper is organized as follows. In section 2. we review the
syntax and semantics of our language, define notions of program equivalence and state
some key theorems. In section 3. we give a simple example illustrating the benefits
of functional style programming for defining operations with effects. This illustrates
the removal of inessential effects. In section 4. we show how structure copying and
structural induction can be used to prove properties of programs. Structure copying is
a method of moving descriptions of values closer to the point of use. In section 5. we
introduce the notion of an abstract object and illustrate the use of abstract objects for
specifying and reasoning about programs. In section 6. we discuss some additional ideas
and related work that will help to further ease the burden of understanding program
behavior. We generally use Common Lisp names for functions and do not include these
definitions in the text, they are collected in an appendix for completeness.

2. Computation over Memory Structures.

Formally our language is an extension of the call-by-value lambda calculus obtained
by adding primitive operations that create, access, and modify memory cells (together
with a collection of basic constants and operations on these basic constants). Our
language can be thought of as untyped ML or as a variant of Scheme in which naming
of values and memory allocation have been separated. Thus there are explicit memory
operations (cons, car, setcar, eq, etc.) but no assignment to bound variables. The
reason for the choice is that it simplifies the semantics and allows one to separate the
functional aspects from the imperative ones in a clean way.

2.1. Syntax

We fix a countably infinite set of variables, X, a countable set of atoms, A, and
a family of operation symbols F = {F, ‘ n € N} (F, is a set of n-ary operation sym-
bols) with X, A, F,, for n € N all pairwise disjoint. We assume A contains two distinct
elements playing the role of booleans, T for true and Nil for false. Operations are parti-
tioned into algebraic operations and memory operations. The unary memory operations
are {atom, cell, car, cdr} and binary memory operations are {eq, cons, setcar, setedr }.
The n-ary algebraic operations are functions mapping A" to A. From the given sets
we define expressions, value expressions, lambda abstractions, value substitutions, and
contexts.

Definition (V, L, E): The set of value expressions, V, the set of lambda abstractions,
L, and the set of expressions, E, are the least sets satisfying the following equations:

Vi=X+A+L L:=)X.E E:=V+if(EEE)+app(EE)+ |] F.(E")
neN

We let a,aq, ... range over A, z,zg,y,z,... range over X, v, vg,... range over V, and
€, €o, - . . range over K.) is a binding operator and free and bound variables of expressions
are defined as usual. FV(e) is the set of free variables of e. Two expressions are
considered equal if they are the same up to renaming of bound variables. e{z := €'} is
the result of substituting ¢’ for z in e taking care not to trap free variables of ¢/. A value
substitution is a finite map from variables to value expressions. We let o, og, ...range
over value substitutions. €7 is the result of simultaneously substituting free occurrences
of + € Dom(o) in € by o(z), again taking care not to trap free variables.

Contexts are expressions with holes. We use ¢ to denote a hole. We let E, E’ range
over °E. E[e] denotes the result of replacing any holes in E by e. Free variables of e
may become bound in this process.

2.2. Operational semantics

An operational semantics based on memory structures and a purely syntactic oper-
ational semantics for E are given in [Mason and Talcott 89c]. We outline the syntactic
semantics here, as it provides a natural basis for reasoning about program equivalence.

Computation is a process of stepwise reduction of an expression to a canonical
form. In order to define the reduction rules we introduce the notions of memory context,
reduction context, and primitive expression. Memory contexts describe memory states
and are contexts I' of the form:

let{zs := cons(Nil,Nil)} o letdz, = cons(Nil,Nil)}

a

seq(setcar(z1,v7), setcdr(zl,vf), ooy setear(zq, v), setedr (zn, vg), €)

where z; # z; when ¢ # 7. As descriptions of memories we can view them as finite
maps from variables to pairs of value expressions. We define Dom(I') = {z1,...,2n}
and T'(z;) = [vf,vd] for 1 <1 < n. T'{z := [va,va]} is the memory context T’ such that
Dom(I'") = Dom(I") U {z}, I'(2) = [va, vaq], and I(2') = T'(2') if = # 2'.

An expression is either a value expression or decomposes uniquely into a primitive
expression placed in a reduction context. Reduction contexts identify the subexpression
of an expression that is to be evaluated next. The set of reduction contexts, R, is the

subset of °[E defined by

R = {c} + app(R,E) + app(V,R) + if(R,EE) + | Fmynt1(V" R,E")
n,meN

We let R, R’ range over R.

Primitive expressions describe the primitive computation steps. A primitive step
is either the application of a lambda abstraction to a value (beta reduction), branch-
ing according to whether a test value is Nil or not, or the application of a primitive
operation. The set of primitive expressions, Eyrim, 1s defined as

Eprim = if(V,E E) + app(V, V) + | J Fa (V")
neN

Single-step reduction () is a relation on pairs I'; e consisting of a memory context
and an expression, with FV(e) C Dom(T'). We call such pairs descriptions. The reduc-

tion relation +» is the reflexive transitive closure of —. Single-step reduction is the least
relation such that

(beta) T R[app(Az.e,v)] — T'; R[e{z := v}]

R < e

(delta) T;R[§(v1,...,vn)] = T'; R[v']

where in (delta) we assume that either § is an n-ary algebraic operation, vq,...,v, €

A" 6(v1,...,v,) =", and T' =T or T'; R[6(v1, ... ,v,)] — I'; R[v'] and, for example,

. T; R[T] if v € Dom(T)
I Rlcell(v)] — {I‘;RﬂNil]] otherwise

. T; R[T] if vg = vy and v; € AU Dom(T") for 1 < 2
T; Rl eq(vo, v1)] — {F; R[Nil] otherwise

['; R[cons(vg, v1)] — T'{z := [vg, v1]}; R[#]
T; Rcar(2)] — T'; R[vd]
T'; R[setcar(z,v)] — T'{z := [v,vq]}; R[2]

where in the cons rule z € Dom(T') UFV(R[v;]), ¢ <2, and in the car, cdr, setcar, and
setedr rules we assume z € Dom(I') and I'(z) = [vq, va).

A value description i1s a memory context together with a value expression. A
description 1s defined just if it reduces to a value description. When expressions are
used where descriptions are expected we take the memory context to be empty.

In order to make programs easier to read we introduce some abbreviations. Multi-
ary application and abstraction is obtained by currying as usual and application is
usually represented by juxtaposition rather than explicitly writing out app. let is
lammbda-application as usual. seq(eg, ..., ¢,) evaluates the expressions ¢; in order, re-
turning the value of the last expression. This can be represented using let or if. We
also write null(z) for eq(z,Nil).

2.3. Notions of equivalence

Now we define two notions of program equivalence: operational equivalence and
constrained equivalence.

Two expressions are operationally equivalent if they cannot be distinguished by any
program context. Operational equivalence enjoys many nice properties such as being
a congruence relation on expressions. It subsumes the lambda-v-calculus [Plotkin 73]
and the lambda-c calculus [Moggi 89]. The theory of operational equivalence for the
language used in this paper is presented in [Mason and Talcott 89c].

Constrained equivalence is a relation between sets of constraints (on memory states)
and pairs of expressions. The interpretation is that in all contexts satistfying the con-
straints, evaluation of the expressions is either undefined or produces the same results
and has the same effect on memory (modulo garbage).

Constrained equivalence is a stronger relation than operational equivalence and
hence is often easier to establish. A version of constrained equivalence for the first-order
subset of our language was studied in detail in [Mason 86| and a powerful collection of
tools was developed there for reasoning about this relation. An inference system that is
complete for zero-order terms (first-order expressions not involving recursively defined
functions) is given in [Mason and Talcott 89a,b]. Constrained equivalence restricted
to the empty set of constraints implies operational equivalence and is the same as
operational equivalence in the first-order case. Constrained equivalence naturally allows
reasoning by cases and permits use of a variety of induction principles.

Definition (&): Two expressions are operationally equivalent, written e = ey just if
for any closing context E either both E[eg] and E[eq] are defined or both are undefined.

By definition operational equivalence is a congruence relation on expressions.
Theorem (Congruence): ey = ey = (VE € °E)(E[eo] = Efeq])

To define constrained equivalence we need to define notions of predicate, constraint,
and satisfaction. A predicate computes a total function with range {T,Nil} and has no
visible effect (i.e. its application leaves existing memory unchanged). For example, atom
and A\z.and(listp(x), eq(length(x), n)) are predicates. A constraint is an expression of one

of the following forms: p(vi,...,v,) = T, p(v1,...,v,) = Nil, car(vg) >~ vy, edr(vg) =~
v1, Vg ~ vy, and ~(vg ~ vy), where p is a predicate. We let ¢, ', ... denote constraints
and ¥, ¥/, ...denote finite sets of constraints. To emphasize the logical nature of

predicates we abbreviate p(vy,...,v,) ~ T by p(v1,...,v,) and p(vq,...,v,) ~ Nil by
—p(v1,...,00).

A pair consisting of a memory context and value substitution I';o satisfies an
equation eg ~ ey (written I', o |= eg = €1) just if both descriptions T'; e7 are undefined,
or both evaluate to the same value description modulo production of garbage. Similarly
we define the notion of a memory context and value substitution satisfying a set of
constraints X (written I'; o = X)), for details see [Mason and Talcott 89a,b].

Definition (constrained equivalence): Two expressions eg, €1 are equivalent un-
der constraints ¥ (written ¥ = eg >~ e1) just if ['; o |= 3 implies ['; 0 |= €9 =~ ey for any
I'; o (subject to simple conditions on free variables).

Since constraint sets define classes of memory contexts we define the notion of
domain of a constraint set: = € Dom(X) just if ¥ |= cell(z). We write = eg ~ ¢ (or
just eg > eq when no confusion is possible) for) = e ~ €.

Theorem (striso): Unconstrained equivalence implies operational equivalence: eq ~
ey implies eg = ey.

Recursive functions can be defined using definable fixed-point operators (cf. [Tal-
cott and Mason 89c|). We use the usual recursion equation syntax for such definitions.

Theorem (recdef): If f has been defined by f(z,y) « e then we have f(eg,e1) =~
let{z := ep}let{y := ey }e (assuming z not free in e; which can easily be arranged by
renaming).

The following is a sampling of facts regarding the constrained equivalence relation
(cf. [Mason and Talcott 89a,b]) (set.cons) and (gc) allow for the simplification of
memory descriptions to canonical form. (set.set), (let.rex), (commutes) provide
mechanisms for rearranging expressions prior to the simplification process mentioned
above.

Theorem (Rules of constrained equivalence): Let ® denote an equation of the
form ejns ™~ erns. Then

(cases) SU{p(v)} =® and X U{=(p(v))} =® implies T E &
(car) YU {car(z) ~ 2z} E® implies X =@ z € FV(®)UFV(Y) and € Dom ()
(Ri) Y E® implies X E R[®]

(let.cnv) ¥ | efr:=v} ~ let{z :=v}e

(let.rex) ¥ = R[let{z := ep}ter] ~ let{z := o} R[eq] r ¢ FV(R)

(let.id) Y Eex~let{z:=c}lx

(set.set) ¥ | seq(setedr(xg,x1), setcar(xa, x3), €) ~ seq(setcar (x2,x3), setedr(xo, x1), €)
(

Set.cons) Y E setcar(cons(z,y),x) ~ (:ons(.r,y)

Theorem (Garbage collection rule): If T'is memory context such that Dom(I") N
FV(e) = 0 then I'[e] ~ e.

In the presence of effects one is not free to change the order of evaluation of expres-
sions. However expressions that do not ‘interfere’ with one another can be interchanged.
For example two expressions do not interfere if neither one makes use of any write oper-
ations or if one of the expressions has only allocate effect (makes no use of read or write
operations). More precisely we have the following.

Definition (commutes): ¢g and e; commute if for all e
let{zo = eo}let{21 = 61}6 ~ let{21 = el}let{zo = eo}e

provided zg not free in e; and z; not free in eg.

Definition (effect classes): The sets of operations with read, write, and allocate
effect are: Freqq = {car, cdr}, Fyprite = {setcar, setedr}, and Fopipeare = {cons}.

Theorem (commutes): ¢y and e; commute if one of the following conditions holds.
(1) eo, e are built from F — Fypige
(ii) eg is built from F — (Fyrite U Freqq)

Although operational equivalence is a congruence relation, constrained equivalence
is not preserved by placement into an arbitrary context. Context introduction is only
valid if the context does not invalidate the constraints.

Definition (Invalidation): A E does not invalidate ¥ if ¥ | ey ~ e; implies
Y E Efeo] =~ E[e1] for any eg,eq.

Theorem (Context introduction): E does not invalidate ¥ in the following cases:
(1) X is the empty set of constraints and E is any context,

(ii) ¥ contains only assertions of the form atomn(z), -atom(z), * ~ y, or =(z ~ y),
and E is any context that does not trap the free variables of ¥, or

(iii) ¥ is any constraint set and E is of the form let{z := e}¢ where (under constraint
Y) ¢ has no write effect (evaluation of ¢ will not execute any operations in Fyite)
and z 1s not free in X.

Many Lisp computations are defined by recursion on lists, trees (S-expressions), and
other structures. It is natural to reason about such programs using corresponding rules
for structural induction. In the presence of effects, one has to be careful in formulating

the induction scheme. In particular one must avoid assuming some property of the
computation for the edr of a list that is mutated into a longer or cyclic list.

As an example of a correct induction rule we give the rule for List-induction. The
predicate List(z) means that atom(cdr™(z)) ~ T for some number n. Let £ be a set of
pairs of expressions (€ C E x E).

Theorem (List-induction): To prove that S(x)U{List(z)} | eo = €1 for (eg,e1) €
& it suffices to prove that for each (eg,e1) € € the following two conditions hold.
(at) X(z) U{length(z) ~ 0} = eg ~ ey, and

(nonat) for each number n, if for each (e, €}) in €
S(x)US(xq) U{length(x) n+ 1,24 ~ cdr(z)} E eg{r = xa} = i {z = x4}

then ¥(z) U {length(z) ~n + 1} = eg ~ €.
Note that {length(z) ~ 0} |= null(z) and {length(z) ~n + 1} E =(null(z)). Induction

is treated in more detail in the extended version of [Mason and Talcott 89h].

3. Dreconcing

Our first example is the optimization of the Lisp function dreconc (due to Jon
L White [private communication|, cf. [Gabriel 85|, p. 18]). dreconc takes two lists,
destructively reverses the first and attaches it onto the second. The first program for
computing dreconc is [using ¢ for current, n for next, and p for previous|
dreconc(c,p) < prog{n}
b :cond(null(c), return(p))

setq(n, cdr(c))

rplacd(c, p)

setq(p, ¢)

setq(c,n)

go(b)
The optimization is based on observing a three-fold symmery in the use of the program
variables. By unrolling the loop twice and doing some setq shuffling this program can

be transformed into the following equivalent but more efficient version.

dreconc(c,p) < prog{n}

b :cond(null(c), return(p))
setq(n, cdr(c))
rplacd(c, p)
cond(null(n),return(c))
setq(p, cdr(n))
rplacd(n, c)
cond(null(p), return(n))

setq(c, edr(p))
rplacd (p,n)

go(b)

Formalizing the informal argument for the correctness of this transformation is rather
messy although it really only involves the assignments to local variables (program struc-
ture) and not the effects on list arguments. An alternative approach is to express the
algorithm in an equivalent but more functional form (a mechanical transformation),
replacing prog and setq by tail recursion and let binding. Thus we define fdreconc (f
for functional)

fdreconc(c,p) + if(null(c),p,let{n := cdr(c)}seq(setedr(c, p), fdreconc(n,c)))

We can now carry out a corresponding optimization: unfold the recursive call and
rename the inner bound n to p (which is no longer used); unfold the call again and
rename inner bound n to ¢. This gives the following definition.

fdreconc(c, p) ~ if(null(c), p,
let{n := cdr(c)}seq(setedr(c, p),
if(null(n),c,
let{p := cdr(n)}seq(setedr(n,c),
if(null(p),n,
let{c:= cdr(p)}seq(setedr(p,n),
firecone(c,p)))))

Verifying the correctness of the latter transformation requires only the use of the simple
rules (recdef) and (let.cnv). This approach can be viewed either as a better program-
ming style (relying on the compiler to produce efficient code), or as the application of
mechanical transformation tools to move between the imperative and functional ver-
sions.

4. Structural copying and traversal

The fact that a function only depends on the elements of a list argument (and not
on the list structure itself) can be expressed by f(z) ~ f(copy-list(z)) and the fact that
f produces new list structure can be expressed by copy-list(f(z)) ~ f(z). Similarly for
tree structures. Examples are given by the following theorem (function definitions can
be found in the appendix).

Theorem (copying):

(ap.copy.x) append(copy-list(x),y) ~ append(z,y)

(ap.copy.y) append(z, copy-list(y)) ~ copy-list(append(z,y))

(fr.copy) fringe(x) ~ fringe(copy-tree(x)) =~ copy-list(fringe(z))

Proof (ap.copy.x): To illustrate our methods we prove by list induction on = that
append (copy-list(x),y) ~ append(x,y). If length(z) ~ 0 then copy-list(z) ~ z and we

are done by (Ri). Assume length(z) ~ n + 1 and let =, ~ car(z), x4 =~ cdr(z). Then
by the definition of copy-list

append (copy-list(x),y) =~ let{zq := copy-list(xq)}let{z := cons(x,, zq) tappend(z,y).
Now by the definition of append, rules for cons, and (gc)
let{z := cons(z,,zq) tappend(z,y)
~ let{z := cons(x,,zq)}cons(x,, append(zq,y))
~ cons(xq, append (z4,y))
and consequently
let{zq := copy-list(zq)}let{z := cons(z,,zq) }append(z,y)
~ let{zq := copy-list(zq)}cons(z,, append(zq,y)) by context introduction
~ cons(x, append (copy-list(zq),y)) by the let rules
~ cons(zq, append (z4,y)) by the induction hypothesis
~ append(z,y) by the definition of append
Oap.copy .x
Some further examples of what can be expressed via copying are the following.
Theorem (more copying):
(nconc.ap) ncone(copy-list(z),y) ~ append(z,y)

(map.ap) mape(f, append (x,y)) ~ seq(mapc(f, copy-list(z)), mape(f,y))

10

Lists with copy-list and S-expressions with copy-tree are special cases of structures
with copy functions. The idea is that by copying the structure, we can reason about
recursion on that structure as if there were no operations with write effect.

Definition (delayable traverse): We say an n-ary operation f traverses structures
with recognizers S; (for example List) and copy functions ¢; (for example copy-list) in
a delayable manner if

Si(x1),... S0 (xn) |
let{z := f(7)}seq(en, 1) ~ let{y; := ci(wi) }1<i<nseq(eo, let{z := f(y)}er)

for any eg, e; such that z is not free in eg and the y; are fresh. Note that if f traverses
in a delayable manner then f(z1,...,2,) ~ f(c1(z1),...,¢cn(zy)). A trivial case is
where f does not ‘touch’ an argument and the copy function is the identity function
identity ~ Ax.x.

Theorem (delaying): The following are examples of delayable traversal: f = cons,
c1 = ¢o = identity; f = length, ¢c1 = copy-list; f = size, ¢1 = copy-tree; f = append,
c1 = copy-list, co = identity; and f = fringe, ¢1 = copy-tree.

Delaying is an additional tool for rearranging expressions. It is used in combination
with the copy theorems to eliminate redundant copies. An application of the delaying
tecnique is in the proof of the following theorem.

Theorem (tr.map.fr): traverse(f, copy-tree(x)) and mapc(f, fringe(z)) have the
same effect. I.e. for any e

seq(traverse(f, copy-tree(z)), e) ~ seq(mapc(f, fringe(x)), €)
where traverse traverses a tree structure applying its first argument to each leaf.
Proof (tr.map.fr): We show by S-expression induction that
let{y := copy-tree(x)}seq(€, traverse(f,y),)
~ let{y := copy-tree(z)}seq(e', mape(f, fringe(y)), e)

for any €', e with y not free. (Note that if z is not an S-expression then copy-tree(z) is
undefined and we are done.)

(atom(z))

let{y := copy-tree(z)}seq(€, traverse(f,y),)
~let{y := (;()py-t'ree(w)}seq(e',f(y), €)

~ let{y = copy-t'r'ee(w)}seq_(e’, mapc(f, f'ringc(y)), e)
(ﬁatom(;v))

let{y := (;()py-t'ree(w)}seq(el, traverse(f,y),€)

11

~ let{y := copy-tree(x)}let{y, := car(y)}let{yq := cdr(y)}
seq(¢/, traverse(f,ya). traverse (f, ya). ¢
unfolding and context introduction
~ let{y := copy-tree(z)}let{y, := car(y)}let{yq := ecdr(y)}
seq(e’, mape(f, fringe(ya)), mape(f, fringe(ya)), €)
using the induction hypothesis twice
~ let{y := copy-tree(z)}let{y, := car(y)}let{yqs := cdr(y)}
let{z, := fringe(yq)}let{zq := fringe(ya)}
seq(e’, mape(f, za), mape(f,zq), €)
by (delaying) for fringe
~ let{y := copy-tree(z)}let{y, := car(y)}let{yqs := cdr(y)}
let{z, := fringe(yq)}let{zq := fringe(ya)}
seq(e’, mape(f, append(zq,24)), €)
by (map.app) and (fr.copy)
~ let{y := copy-tree(z)}let{y, := car(y)}let{yqs := cdr(y)}
seq(€’, mapc(f, fringe(cons(ya,ya))), €)
by (delaying) for fringe
~ let{y := copy-tree(z)}seq(e’, mapc(f, fringe(y)), €)
by (delaying) for cons

Dtr.map.fr

5. Abstract objects

Abstract objects exhibit the non-inheritance aspects of object-oriented program-
ming. An abstract object is a function with local store. Abstract objects provide a
means of encapsulating features of a structure and controlling access to that structure.
The idea 1s that the local store can only be changed by sending a message to the object.
The operations on the encapsulated structure are determined by the messages accepted
by the object.

We 1llustrate these i1deas for the special case of accumulators. An accumulator
object accumulates a sequence of the things sent to it (via a <put,z> message) and
responds to a <get> message by returning the sequence collected. If mkac(y) creates
an accumulator object with initial contents the elements of y, then it mus satisfy the
following three laws:

Specification (Accumulator behavior):

(put) let{a := mkac(y)}seq(a(<put,z>),¢)

12

~ let{a := mkac(append(y, cons(x,Nil)))}e
(get) let{a := mkac(y)}let{z := a(<get>)}e

~ let{a := mkac(y)}let{z := copy-list(y)}e
(delay) let{a := mkac(y)}seq(eo,er)

~ let{y' := copy-list(y)}seq(eo, let{a := mkac(y')}e1)

if @ not free in eg and y’ fresh

A property that can be proved using only the above accumulator laws will hold for any
constructor that satisfies these laws. For example, from the accumulator laws we can
prove that an accumulator can be cloned and that traversing accumulates the fringe of
an S-expression.

Definition (traversing with an object):
tro(f,z) + seq(traverse(\y.f(<put,y>),z), f)

Theorem (accum): If mkac makes accumulator objects and x is an S-expression
then
(clone) mkac(y) ~ let{a := mkac(y)}mkac(a(<get>))

(tr) let{a := mkac(y)}tro(a,x) ~ mkac(append(y, fringe(z)))

There are many possibilities for constructing accumulator objects. One example is
the following.

Definition (accumulator object constructor):
let{z := cons(Nil, copy-list(z))}seq(setcar(z, last(z)), acob(z))

)
(<get>) ~ copy-list(cdr(z))
(
(

mkac (L
acob

(2)
acob(z)
(2)

z
<put, J;>) ~ seq(setedr(car(z), cons(x,Nil)), setcar (z, edr(car(z))),Nil)

acob(z)(?) ~ for any other message
Theorem (accum.mk): mkac as defined above satisfies the accumulator behavior
properties.

An alternative method for reasoning about abstract objects is to reason about their
corresponding behavior functions. Behavior functions are a generalization of streams.
In response to a message, a pair is returned consisting of a new behavior function
(representing the updated local store) together with the reply. The function bh20b
makes an object out of a behavior function. It stores the behavior function representing
the current local store in its memory.

bh20b(f) < bhob(cons(f,Nil))

13

bhob(z)(m) < let{y := car(z)(m)}let{f := car(y)}let{r := cdr(y)}
seq(setcar(z, f),r)

We can take behavior functions as specifications of classes of objects, defining an object
to be in the specified class just if it is equivalent to bh20b(f) for some f in the class.

As an example, if we replace traversal with an object (tro) by traversal with a
stream (trs) we can reason about the effect of traversal in terms of effect-free streams
and transfer the results to objects using the behavior transfer theorem.

Definition (traversing with a stream):
tT'S(S,.’L‘) — if(atom(l‘),

let{y = s(<put w>)}car(')
let{s = tm(a (,m())}tm(a (,dr()))

Theorem (behavior transfer): For S-expressions =
let{f := bh20b(s)}tro(f,x) ~ let{s := trs(s,z)}bh20b(s)

To continue the accumulator example, we define mkacstr(y) to be a constructor of
accumulator behavior functions.

mkacstr(y) < acstr(copy-list(y))

acstr(y)(<get>) « cons(acstr(y), copy-list(y))

<put, z>) < cons(acstr(append (y, cons(z,Nil))),Nil)

(

)
acstr(y)((
acstr(y)(?) « cons(acstr(y),Nil)
Now we can show (by an easy S-expression induction using effect-free reasoning) that
trs(mkacstr(y), z) ~ mkacstr(append(y, fringe(z))). Using this and the transfer theo-
rem gives an alternative proof of (accum.tr).

6. Discussion

In this paper we have presented techniques for reasoning about programs in a Lisp-
(Scheme-, ML-) like language with higher-order functions and objects with memory.
The techniques were based on equational theories developed for this language. Al-
though much work remains to develop informal reasoning methods that can readily
be expanded to formal proofs, we feel that much progress has been made. Further
applications of these methods can be found in the extended versions of [Mason and
Talcott 89b,c|. In particular, we have developed a method called simulation induction
for proving equivalence of abstract objects.

Another important language feature is the ability to express control abstractions
such as escape mechanisms, and coroutining. [Felleisen and Hieb 90] defines reduc-
tion calculi extending the call-by-value lambda calculus to languages with control and

14

assignment abstractions. This provides an important basis for axiomatizing program
equivalence, however the calculus by its very nature is too weak to support the kind
of reasoning we illustrated above. [Talcott 89] axiomatizes program equivalence for a
language with higher-order functions and control abstractions (no objects with mem-
ory) within a full first-order theory of operations and classes. This provides a very rich
theory for expressing and proving properties of programs and many examples includ-
ing behavior functions, streams, escape mechanisms, and coroutines are worked out in
detail.

We have used the notions of effect and interference informally to give intuitive
explanations of technical properties. These notions are not new. [Reynolds 89] gives
purely syntactic criteria for avoiding interference. Rather than prohibit interference
entirely the aim is to isolate occurrences of interference and to make them syntactically
obvious. This is accomplished by requiring that interference occur only within object
like entities. This is very similar is spirit to our use of abstract objects to encapsulate
access to structures. Our motivation is to be able to use this abstraction to facilitate
reasoning about programs. [Gifford and Lucassen 88] formalize notions of read, write,
and allocate effects for a language very similar to ours. An inference system for deducing
effect types 1s defined and based on this system criteria are given for determining when
expressions interfere, when results can be cached rather than being recomputed, etc.
These methods should be contrasted with the more restrictive approaches that have
recently been proposed. For example in [Wadler 90] a type system using linear logic is
used to enforce the single-threadedness of mutated objects. A similar goal is achieved
by somewhat different syntactic means in [Guzman and Hudak 90]. We expect that
combining the work on effect and interference with the work on program equivalence
will provide much more powerful tools for reasoning about programs as well as increasing
the utility of the effect systems for automatic manipulation of programs.

7. References

Felleisen, M. and Hieb, R. [1989] The Revised Report on the Syntactic Theories
of Sequential Control and State, Department of Computer Science, Rice University

Technical Report Rice COMP TR89-100.
Gabriel, R. P. [1985] Performance and Evaluation of Lisp Systems, (MIT Press).
Guzman, J. C. and Hudak. P [1990] Single-Threaded Polymorphic Lambda

Calculus. Fifth annual symposium on logic in computer science, (IEEE).

Lucasen, J. M. and Gifford, D. K. [1988] Polymorphic effect systems, in: 16th

annual ACM symposium on principles of programming languages, pp. 47-57.

Mason, I. A. [1986] The semantics of destructive Lisp, Ph.D. Thesis, Stanford

University.

Mason, I. A. and Talcott, C. L. [1989a] A Sound and Complete Axiomatization

of Operational Equivalence between Programs with Memory, Stanford University

15

Computer Science Department Report STAN-CS-89-1250. (Revised and extended

version to appear in Theoretical Computer Science).

Mason, I. A. and Talcott, C. L. [1989b] Axiomatizing Operational Equivalence
in the presence of Side Effects, in: 4th Symposium on logic in computer science,

Asilomar CA, (IEEE).

Mason, I. A. and Talcott, C. L. [1989¢] Programming, Transforming, and Prov-
ing with function abstractions and memories. in: Proceedings of the 16th EATCS
Colloguium on Automata, Languages and Programmang, Stresa Italy, Lecture notes
in computer science, 372, (Springer-Verlag). (Revised and extended version sub-
mitted for publication.)

Moggi, E. [1989] Computational lambda-calculus and monads, Fourth annual sym-
posium on logic in computer science, (IEEE).

Plotkin, G. [1975] Call-by-name, call-by-value and the lambda-v-calculus, Theoret-
wcal Computer Science, 1, pp. 125-159.

Reynolds, J. C. [1989] Syntactic Control of Interference, II in: Proceedings of the
16th EATCS Colloguium on Automata, Languages and Programming, Stresa Italy,
Lecture notes in computer science, 372, (Springer-Verlag)

Talcott, C. [1989] Programming and proving with function and control abstractions,
Stanford University Computer Science Department Technical report STAN-CS-89-
1288.

Wadler, P. [1990] Linear types can change the world! IFIP working conference on
programmang concepts and methods. Sea of Gallilee, Israel.

8. Appendix: function definitions

copy-tree(z) + if(atom(z), z, cons (copy-tree(car(x)), copy-tree(cdr(z))))
copy-list(z) if(atom(z), z, cons (car(z), copy-list(cdr(z))))

append (z,y) « if(atom(z),y, cons(car(z), append (cdr(z),y)))

fringe(z) if(atom(z), cons(x,Nil), append (fringe (car (z)), fringe (cdr (2))))
ncone(z,y) « if(atom(z),y, seq(nc(z,y), r))

ne(z,y) « if(atom(cdr(z)), setedr (z,y), ne(cdr(z), y))

mape(f,) « 1f(atom(z),Nil, seq(f(car(x)), mape(f, cdr(z))))

traverse(f,) « if(atom(z), f(z), seq(traverse(f, car(z)), traverse (f, cdr(z))))

tro(f,x) « seq(traverse(Ay.f(<put,y>),z), f)

