Program Transformations for Configuring Components

Tan A. Mason

& Carolyn L. Talcott

<initials>@cs.stanford.edu

Abstract

In this paper we report progress in the devel-
opment of methods for reasoning about the
equivalence of objects with memory, and the
use of these methods to describe sound oper-
ations on objects in terms of formal program
transformations. We also formalize three dif-
ferent aspects of objects: their specification,
their behavior, and their canonical represen-
tation. Formal connections among these as-
pects provide methods for optimization and
reasoning about systems of objects. To il-
lustrate these ideas we give a formal deriva-
tion of an optimized specialized window edi-
tor from generic specifications of its compo-
nents. A new result in this paper enables one
to make use of symbolic evaluation (with re-
spect to a set of constraints) to establish the
equivalence of objects. This form of evalua-
tion is not only mechanizable, it is also gener-
alizes the conditions under which partial eval-
uation usually takes place.

1 Overview

In [19] a general challenge for partial evaluation tech-
nology was presented and illustrated by an example
using the concept of component configuration. Com-
ponent description and configuration are forms of pro-
gramming in the large. They provide great flexibility
in code reuse and in the configuring and reconfigur-
ing of systems. Components are related to modules
in Ada, to classes in traditional object oriented lan-
guages, and to modules for traditional linkers. Com-
ponent descriptions can express traditional concept
such as signatures, types, interfaces, modules, and
implementations, but are more general than any of
these traditional notions. The flexible nature of com-
ponents allows intermediate optimization stages and
their derivations to be easily saved; thus increasing
the opportunity for reuse of both the components and
the methods used for their development.

The example presented in [19] involved develop-
ing a simple two window editor from abstract descrip-
tions of generic components such as cursors, screens,
character displays, and windows. The derivation pro-
cess 1llustrated a variety of operations on components.
Objects with free parameters were created (partial
application). Messages were sent to these objects
in order to attain a given internal state. Informa-
tion about the context of use was specified and some
simplifications based on that information were made.
Objects were opened up to expose the representation
of internal state, and simplifications in the represen-
tation of the combined internal state were made. Fi-
nally the free parameters were abstracted to produce
the desired specialized editor constructor.

Components resulting from simple configuration
have the correct behavior, but need optimization. The
complexity and variety of component configurations
suggests that to realize the full potential for code
reuse, interactive computer aided configuration and
optimization tools are needed. This paper presents
a mathematical foundation for building these tools.
Symbolic evaluation with respect to a set of con-
straints 1s central to our approach. It can be thought
of as a form of partial evaluation, with the constraints
generalizing the usual dichotomy of known—unknown.

The paper is organized as follows. §2 describes our
syntactic and semantic framework. In §3 we describe
various forms of program equivalence and methods for
establishing them. §4 introduces the formal notions
of a specification, its corresponding behavior, and the
object so specified. In §5 we give several examples
of these notions and their use. §6 is devoted to the
formal derivation of the specialized window editor.
Concluding remarks are the subject of §7.

2 The Framework.

Formally our language is an extension of the call-by-
value lambda calculus obtained by adding primitive
operations that create, access, and modify memory

Page 1

cells (together with a collection of basic constants and
operations on these basic constants). Our language
can be thought of as untyped ML or as a variant
of Scheme in which naming of values and memory
allocation have been separated. Thus there are ex-
plicit memory operations (cons, car, setcar, eq, etc.)
but no assignment to bound variables. The reason
for this choice is that it simplifies the semantics and
allows one to neatly separate the functional aspects
from the imperative ones.

We fix a countably infinite set of variables, X, a
countable set of atoms, A, and a family of n-ary op-
eration symbols, F = {F, | n € N}, with X, A, T,
all pairwise disjoint. We assume A contains two dis-
tinct elements playing the role of booleans, t for true
and Nil for false. Operations are partitioned into
algebraic operations and memory operations. The
unary memory operations are {atom, cell, car, cdr}

cond is the usual Lisp conditional, (again tainted

sometimes by ML pattern matching). <eq,...,e,>
abbreviates the expression constructing a list with el-
ements described by eq,...,e,. A unary cell is the

analog of an ML reference. We define operations mk,
get, set to represent the constructor, access, and up-
date operations on unary cells.

An operational semantics based on memory struc-
tures and a purely syntactic operational semantics for
E are given in [11, 13]. We give a very brief outline
of the syntactic semantics here, as it provides a nat-
ural basis for reasoning about program equivalence.
Details may be found in [11, 13].

Computation is a process of stepwise reduction of
an expression to a canonical form. In order to de-
fine the reduction rules we introduce the notions of
memory context, reduction context, and redex. Mem-
ory contexts describe memory states and are contexts,

and binary memory operations are {eq, cons, setcar, setcdr}.I', of the form:

The n-ary algebraic operations are functions mapping
A" to A. From the given sets we define expressions,
value expressions, lambda abstractions, value substi-
tutions, and contexts.

Definition (U,IL,[E): The set of value expressions,
U, the set of lambda abstractions, 1., and the set of
expressions, [F, are the least sets satisfying the follow-
ing equations:

U=X+A+1L
IL:=AXE
E:=U+ if(E,E,F) + app(F, F) +] Fa (E*)
neN
We let a, ag, . .. range over A, x, g, y, z, . . . range over
X, u,uq,... range over U, and e,eq,... range over

E. e{z := €'} is the result of substituting e’ for z
in e taking care not to trap free variables of /. A
value substitution is a finite map from variables to

value expressions. We let o, g, ...range over value
substitutions. € is the result of simultaneously sub-
stituting free occurrences of z € Dom(o) in e by o(z),
again taking care not to trap free variables. Contexts
are expressions with holes. We use £ to denote a hole.
We let C, C' range over °E. (C[e] denotes the result
of replacing any holes in C' by e. Free variables of e
may become bound in this process.

In order to make programs easier to read we intro-
duce some abbreviations. Multi-ary application and
abstraction is obtained by currying, and application
is represented by juxtaposition rather than explicitly
writing out app. let is lambda-application (tainted
sometimes by ML pattern matching). seq(eq, ..., €,)
evaluates the expressions e; in order, returning the
value of the last expression. This can be represented
using let or if. We also write null(z) for eq(z,Nil).

let{z; := cons(Nil, Nil)}

let{z, := cons(Nil Nil)}
seq(setcar(z1, uf),

setedr(z1, ud),

setcar(zp, ul),

setedr(z,, ud),
€)

where z; # z; when i # j. As descriptions of mem-
ories we can view them as finite maps from variables
to pairs of value expressions. We define Dom(T') =
{z1,...,zn} and T(z) = [uf,uf] for 1 < i < n.
I'{z := [ua, uq]} is the memory context [/ such that
Dom(I") = Dom(T')U{z}, I'(z) = [tq, uq],and I'(2’) =
Iz if z # 2.

An expression is either a value expression or de-
composes uniquely into a redex placed in a reduction
context. Reduction contexts, R, identify the subex-
pression of an expression that is to be evaluated next,
we let R, R’ range over R. Redexes describe the prim-
itive computation steps. A primitive step is either
the application of a lambda abstraction to a value
(beta reduction), branching according to whether a
test value is Nil or not, or the application of a prim-
itive operation.

Single-step reduction (—) is a relation on pairs

I'; e consisting of a memory context and an expres-
sion, with FV(e) C Dom(T).
descriptions. The reduction relation +» is the reflex-
ive transitive closure of —. Two clauses in the defi-

We call such pairs

Page 2

nition of the Single-step reduction are:

(beta)
(delta)

T'; Rlapp(Az.e,u)] — T; Rle{z := u}]
T; R[§(u1, ..., un)] = T'; R[u']

where in (delta) we assume that either ¢ is an n-ary
algebraic operation, u1,...,u, € A”, §(u1,...,un) =
w',and T = IV or T; R[0(u1,...,un)] — I'; R[u']

and, for example,

I'; Rcons(ug, u1)] — T'{z := [uo, u1]}; R[2]
I'; R[[setcar(z,u)] — T'{z := [u, uq]}; R[2]

where in the cons rule z is fresh, and in the setcar
rule we assume z € Dom(T) and T'(z) = [uq, ud].

A value description is a memory context together
with a value expression. A description is defined just
if it reduces to a value description.

3 Notions of equivalence

Now we define two notions of program equivalence:
operational equivalence and constrained equivalence.
Two expressions are operationally equivalent if
they cannot be distinguished by any program context.
Operational equivalence enjoys many nice properties
such as being a congruence relation on expressions. It
subsumes the lambda-v-calculus [17] and the lambda-
c calculus [16]. The theory of operational equivalence
for the language used in this paper is presented in [13].
Constrained equivalence is a relation between sets
of constraints (on memory states) and pairs of expres-
sions. The interpretation is that in all contexts sat-
isfying the constraints, evaluation of the expressions
is either undefined or produces the same results and
has the same effect on memory (modulo garbage).
Constrained equivalence is a stronger relation than
operational equivalence and hence is often easier to
establish. A version of constrained equivalence for the
first-order subset of our language was studied in de-
tail in [9]. An inference system which is complete for
zero-order terms (first-order expressions not involving
recursively defined functions) is given in [10, 12, 14].
Constrained equivalence restricted to the empty set
of constraints implies operational equivalence and is
the same as operational equivalence in the first-order
case. Constrained equivalence naturally allows rea-
soning by cases and permits use of a variety of induc-
tion principles.
Two expressions are operationally equivalent, writ-
ten

60561,

Jjust if for any closing context C' either both C[eq] and
Ce1] are defined or both are undefined. Operational
equivalence is a congruence relation on expressions:

eo e — (VO € °E)(Cleo] = Cles])

To define constrained equivalence we need to de-
fine the the relevant notions of constraints and satis-
faction. A constraint is an expression of one of the fol-
Sup), Tp(u, .
u1, cdr(ug) ~ ui, ug ~ w1, and —(ug ~ u1), where p

lowing forms: p(u1, .. .y Up), car(ug) ~
is a predicate (for example cell and atom are pred-

icates). We let X, ¥’/ .. .denote finite sets of con-

straints.
A pair consisting of a memory context and value

substitution I'; o satisfies an equation eg ~ eq, written

T (e0 > e1)lo],

Just if both descriptions I'; €7 are undefined, or both
evaluate to the same value description modulo pro-
duction of garbage. Similarly we define the notion of
a memory context and value substitution satisfying a
set of constraints X, written

I S[o],

for details see [10, 12, 14]. Two expressions eg, €1 are
equivalent under constraints X, written

Y Eeg~ ey,

just if T |= X[o] implies T | (eqg ~ e1)[o] for any
T'; o (subject to simple conditions on free variables).
An important consequence of this definition is that
unconstrained equivalence implies operational equiv-
alence:

llEeg~e — eg ey,

In [10, 12, 14] we introduced a formal system for
proving judgements of the form

Th @,

where Y is a finite set of constraints and ® is an as-
sertion of the form eg ~ e1. One important use of the
formal system is the ability to symbolically evaluate
expressions with respect to a set of constraints. In-
deed the ability to define a computationally adequate
notion of reduction relative to a set of constraints,

*
€p =y €1

was central to the completeness proof in [10, 12, 14].

To facilitate the discussion of constrained equiva-
lence, we define the notion of an assertion ® holding
in a context C' as follows:

Cl[@() ~ 61]] = C[[@()]] ~ Cﬂel]]

Page 3

One difficulty with constrained equivalence is that it
is not a congruence. One cannot, in general, place
expressions equivalent under some non-empty set of
constraints into an arbitrary program context and
preserve equivalence. Informally, we say a context
C does not invalidate a set of constraints X if the
following principle is valid.

YEo

O 5¥ et

There are some simple examples of this phenomena.
The most trivial is when X is empty. To overcome
this difficulty we extend the system by developing a
constraint propagation logic. Here one derives asser-
tions of the form

Yo F CTXA].

The intended meaning of an assertion of the form
Yo F C[X4], is that if ¥3 holds when evaluation of
C[] begins, then ¥; will hold at the point in the pro-
gram text where the hole appears. One consequence
of the semantics of constraint propagation is that the
following context propagation rule is valid.

Yok C[E] Sik®
Yo F C[@]

(CP)

Notice that this rule is a variant of the invalid (CI)
principle. In particular the necessary side condition
to validate (CI) is that ¥ F C[X].

The full set of rules may be found in [15]. The
rule concerning lexical binding is:

Yk e~seq(e,u) Tt seq(e, C[E]{z :=u})
Y Flet{z = e}C[Eq U {z = u}]

where z € FV(X U Xy), and z, u € Traps(C).

The above system is central to developing a method
for establishing the equivalence of functional objects
with local store (henceforth called objects). Let p; =
Az.ej for j < 2. If two objects are equivalent,

Tolpo] = T1[p1],
then (assuming z ¢ Dom(T;))
Fofeo] = Ti[ea].

The question is, when is the converse true? Under
what conditions can we infer global equivalence from
local equivalence? Intuitively, it must be the case that
access to cells of I'; can not leak out in evaluation
of T;[e;] and it must not leak in from any external
(shared) memory. To capture this intuition we first
give a simple syntactic criteria that guarantees this
locality condition. We say that that e is Z-local, if the
following two conditions hold.

(a) elements of Z occur only as the argument to a
get, or the first argument to a set, and do not
occur inside a A abstraction (other than the body
of a let),

(b) the free variables of € not among z are examined
only as atoms (no gets or function applications).
A set of constraints X with free variables y is pure

if its semantics is independent of any memory context,

and if ¥ holds of some sequence of values v, then each
element of ¥ is either an atom or (equivalent to) a pure
object (one that mentions no memory operations).

The main result and principle tool in later sections
is the following.

Theorem (abstractable): Suppose that

I' =let{zo := mk(vo)}

let{z,,_1 1= mk(vy,-1)}

[1

and X is a set of pure constraints, with FV(X) disjoint
from FV(e;) and

1. e; are z-local for j < 2,
2. D FT[<z,e0> ~ <Z,e1>],
3. Xk I'[seq(eo, let{v; := get(zi) }i<m [X])].
Then
Y F C[Az.eo] = T[Az.eq].

The inclusion of z in 2. guarantees that the e;
have the same effect on local memory as well as ex-
ternally supplied memory.

4 Specifying Objects

We specify an object by a set of local parameters, a
message parameter, and a sequence of message han-
dlers. A message handler consists of a test function,

a reply function and a list of updating functions (one

for each parameter). The functions take as arguments
the message and current value of the local param-
eters. Upon receipt of a message, the first handler
whose test is true is invoked. The local parameters
are updated according to the update expressions and
the reply is computed by the reply function. (Evalua-
tion of the test, updating, and reply functions should
have no (visible) effect.) A specification S with k
local parameters Z, message parameter m, and ith
message handler with test function ¢;, reply function
r;, and a updating functions u; ; for 1 < j < k is

Page 4

written in the form:

S = (z)(m)[ti(z, m) =r;(z, m),

ui 1 (x, m),

ui g (7, m)|i<i<n

In order to make specifications concise we omit idem-
potent updating functions and content-free replies (r =
Nil). We associate to each specification S two pro-

Definition (b20):
b20(beh) + b2ox(mk(beh))
b20x(z) «+ A(m)let{<beh,r> := get(z)(m)}
seq(set(z, beh),r)
The relation between objects and behaviors, corre-
sponding to the same specification, is captured by the

following theorem.
Theorem (b2o0):

grams: the local behavior function beh g, and the canonical specﬁ%d ,(;‘b,]‘ec}zt5

obj ¢. The local behavior corresponding to S is purely
functional. It is a closure with local parameters corre-
sponding to those of the specification. When applied
to a message, the behavior function corresponding to
the updated local parameters is returned along with

the reply to the message.
Definition (behs):

behs(z)(m)

cond[...

ti(m,) = <behs(ui1(m,z),

U«iyk(7n7 .L))7

ri(m,z)>

t = <b6hs(i‘)7 nil>]1in

The object specified by S has the local parameters
stored in its local memory. When applied to a mes-
sage, the object updates the local parameter memory

and returns only the reply.
Definition (obj¢):

obj4(2)(m) «
let{z1 := get(z1)}...

cond[...

let{zx := gel(zx)}
t,-(m7 .L‘) = seq(set(zl, Uj 1 (m7 .L‘)),

set(zr, ui k(m, T)),

ri(m,))

t = nil]lS,;Sn

There is a protocol transforming operation 620 (behavior-

to-object) that maps the behavior corresponding to
S to the object specified by S. b20 allocates a cell
and stores the behavior function there. When ap-
plied to a message it looks up the behavior, applies it
to the message, stores the new behavior, and returns
the reply. (There is also an inverse operation, but
that is not needed here.) Behavior functions and ob-
Jects generalize the notions of reusable and onetime
streams studied in [13].

)) ~ let{z := mk(z1)}

let{z; = mk(zg)}
objs(2)

Note that it is easier to compose behaviors and rea-
son about them than it is with the corresponding ob-
jects. Using the connections established by the ab-
stract specification and the protocol transformation
one can obtain objects corresponding to the trans-
formed behaviors. Methods developed in [13, 15] can
be extended to further simplify and optimize the re-
sulting objects. The point is that different representa-
tions are better suited for carrying out different sorts
of transformations. Thus it is important to have ap-
propriate representations at hand and to be able to
move from one representation to another in a seman-
tically sound manner.

5 Component Specifications

We are working in the somewhat old fashioned world
of character oriented displays and simple text edi-
tors which can manage multiple windows (ala emacs).
Thus a display has a screen (two dimensional charac-
ter array) of some fixed dimension (width x height),
and a cursor centered at some point on the screen.
A window is some subregion of a host screen, and
as windows may overlap a window must have a lo-
cal representation of its contents (i.e. a local dis-
play). Positions p on a screen are vectors of numbers
[Pz, py] corresponding to the horizontal and vertical
coordinates: Pt = [N,N]. We assume that vectors
are atoms, (i.e. not cells, in particular not muta-
ble data) and make use of the usual operations on
them. 1In particular arithmetic operations are ex-
tended coordinate-wise to position vectors. We adopt
the convention that the upper left hand corner of a
screen is the origin [0,0] and [z,y] is the position
reached by moving y down and z to the right. The
predicate in(p, o, d) asserts that the point p lies in the

rectangle with origin o and dimension d.

in(p,0,d) «

Page 5

(O:L' pr<0z+d1‘)/\(0y Spy<0y+dy)

5.1 Cursor

A cursor of dimension d i1s a point p constrained to
be on a rectangular grid of dimension m — the set of
points p such that in(p, o, d) Tt responds to messages:
Pos — return the coordinates of the point; and L,
R, U, D — move cursor left, right, up, down (sticking
at the boundaries). For convenience we define the
following operations

mvL(p) « if(p; <0,p,p—[1,0])

mvR(p,d) « if(p, — 1> dy,p,p+[1,0])

We present the three alternate descriptions of cur-

sors as a concrete illustration of these concepts. In
later examples we will only present the most appro-

priate form.
Definition (Cursor specification):

curs = (d, p)(m)]
m=Pos=>r=p
m =L = u, = mvL(p)
m =R = u, = mvR(p, d)

]

Definition (Cursor behavior):
curB(d,p) +
Am.cond[

m = Pos = <curB(d, p), p>
m = L = <curB(d, mvL(p)),nil>
m =R = <curB(d, mvR(p, d)),nil>

t = <curB(d,p),nil>]
Definition (Canonical Cursor object):
curO(zq, zp)
Am.let{d := get(zaq)}let{p := gei(zp)}
cond[

m = Pos = seq(set(zd7 d), set(zp,p),p)
m = L = seq(set(z4, d), set(z,, mvL(p)),Nil)

m = R = seq(sel(z4, d), set(z,, muR(p, d)),Nil)

t = nil]

By applying basic laws of constrained equivalence,
assuming z, and zg are distinct cells, we can simplify
the cursor object description to the following.

Definition (Simplified Cursor object):
cur0'(d, zp) < Am.let{p := get(zp)}
cond|

m =Pos = p
m =L = seq(sel(z,, mvL(p)))
m =R = seq(sel(zp, mvR(p, d)))

t=>ni1]

Lemma (curob):
let{zq := mk(d)}let{z, = mk(p)}
[curO(za,) = cur0'(d, z,)]
Proof (curob): Let

X[d, p] = {Pt(d), Pt(p)}

[oc = let{zq :== mk(d)}let{z, := mk(p)}[]

Cloc = F10C|[<Zd, Zp, [[]]>]]

eg = curO(zq, zp)(m)

e1 = curO'(d, z,)(m)
We note that within the context I'ige the cells zg4
and z, are provably distinct. We will use the (ab-
stractable) theorem. First observe that the syntac-

tic locality conditions hold. Consequently we must
show the following.

(i) X[d,p]t Ciocleo =~ e1]
(i) X[d,p]tk
A .
let{d' := get(zq)}
let{p' := get(zp)}[E[d', p]]]

The proof of (i) uses the rules for let evaluation,
pushing contexts across the tests of a cond, and re-
moving redundant sets.

To prove (ii) it suffices to consider each branch of
the cond. For the messages under consideration we
have the following four simple subcases.

(ii.1) X[d, p] - seq(pos, [X[d, p]])
(ii.2) X[d, p] - seq(set(zp, mvL(p)),

let{p’ := get(zp)}[X[d, p']])
(ii.3) X[d, p] F seq(set(z,, mvR(p, d)),

let{p’ := get(zp)}[X[d, p']])
(ii.4) X[d, p] t seq(nil, [E[d, p]])

Ocurob

Page 6

5.2 Screen

A screen s of dimension d is a map from the rect-
angular grid of dimension d to the set of printable
characters, Char. It responds to messages: <Get,p>
— get the character at p; and <Set, p, char> — set
the character at p to be char. |, corresponds to the

blank character.
Definition (Screen specification):

serS = (d, p)(m)[
m = <Get, p> = r = if(in(p, [0,0], d), u(p), u)
m = <Set, p, x> = u, = if(in(p, [0,0], d),
Aq.if(p = g, =, p(p)),
n) |

where g maps each point in d to a character.

5.3 Display

An abstract display is built from two components: a
cursor and a screen. The messages a display responds
to include: Dim — return the dimension; Pos — re-
turn the cursor position; <Charo, char> — write char
at the cursor position and move the cursor right; Get
— return the character at the cursor position; and
the cursor motion commands L, R, U, D.

Definition (Display specification):

disS = (d, cur, scr)(m)]
m=Dim=r=4d
m = Pos =
r = let{<cur,p> := cur(Pos)}p
Ucur = let{<cur,p> := cur(Pos)}cur
m = Get =
r = let{<cur,p> := cur(Pos)}
let{<scr,z> := scr(<Get,p>)}

T
Upny = 1et{<cur,p> = cur(Pos)}cur

Uger = let{<cur,p>:= cur(Pos)}
let{<scr,z> := scr(<Get, p>)}
ser
m = <Charo, char> =
Ueyr = 1et{<cur7 *> 1= cur(R)}cur
Uger = let{<cur,p>:= cur(Pos)}
let{<scr,*> := scr(<Set, p, char>)}
scr

m =L = ucur = let{<cur,*> := cur(L)}cur

The local behavior of a display is given by disB(d, cur, scr)

and the canonical display object is disO (24, Zcur, Zser).
Now, using (abstractable) we replace the cell z4 by
its contents, and apply the protocol transformation.
As a result cells containing behaviors are replaced by
objects meeting the same specifications.
Definition (Display object with objects):
disO'(d, co, 30) + Am.cond|

m =Dim = d

m = Pos = co(Pos)

m = Get = so(<Get, co(Pos)>)

m = <Charo, char> =

seq(so(<Set, co(Pos), char>), co(R),nil)
m =L = co(L)

t = nil]

Theorem (display.xproto): For d, p ranging
over points and p ranging over character maps we
have

let{z4 := mk(d))}
let{zcy, := mk(curB(d,p))}
let{zscr = mk(sch(d, /’L))}
diSO(d,Zcur, Zscr)
=~ let{co := curO(mk(d), mk(p))}

let{so := scrO(mk(d), mk(p))}
disQ'(d, co, s0)

Proof (dx): The key step is to show that

let{zcur := mk(curB(d,p))}
let{zscr := mk(scrB(d, u))}
disO'(d, b20z (zcur), b20(zscr))
= let{zq := mk(d)}
let{zour := mk(curB(d, p))}
let{zser := mk(scrB(d, pn))}
disO(z4, Zeur, Zser)

For this we unfold b20z(z) in the body of disOQ’, sim-
plify, and use (abstractable). Let

Y[d, e, s] = {Pt(d), CurB(c), SerB(s)}
Toe = let{zq := mk(d)}
let{zcy, 1= mk(c)}
let{zser := mk(s)}[]
Croc = Docl<zd; zeur, Zser, [17]
eq = disO(zd, Zeur, Zser) (M)

el = disOl(d, b20z (zcur), b20x (2scr))(m)

Page 7

It is easy to see (after unfolding the definitions)
that the syntactic locality conditions hold. Thus what
we must show is the following.

(1) X[d, e 2]t Cocleo ~ e1]
(i) X[d, e, s]F Toe[let{r :=eg}
let{d' := get(zq)}
let{c := get(zcur)}
let{s’ := get(zser)}
=1, ¢, 1]

We push the initial lets into the branches of the
conds and consider cases on the form of m. For
(ii) we must show that the constraint X[d, ¢, s] prop-
agates. Using constrained equivalence we need only
show propagation for disQ’. Here we use the follow-
ing properties of CurB and ScrB

(ci) {CurB(c)} F let{z := mk(c)}
let{r := b20z(z)(m)}
let{c := get(z)}
[{CurB(¢)}]
(c.ii) {CurB(c)} F let{z := mk(c)}
let{r := b20z(z)(Pos)}
let{c := get(z)}
e~ ¢, Pt(r)}]
(si) {ScrB(s)} F let{z := mk(s)}
let{r := b20z(z)(m)}
let{s’ := get(z)}
[{SerB(s')}]
Dlax

5.4 Windows

A window is a display embedded in another (host)
display. It has an origin, and a local display to main-
tain an image of its abstract display. In addition to
the normal display commands, a window also accepts
the command to display itself. Since the host display
may be shared by other windows, a window must be
passed the current host behavior each time it is sent a
message, and it must return the resulting host behav-
ior in addition to its reply. To simplify the specifica-
tions we introduce the following auxiliary functions.
Hcharo(h, char, o, d) sends the character, char, to
the host, h, and insures that the cursor remains in
the window. For example, if the right window edge
is not at the display edge and the cursor is at the
right window edge, then the display cursor must be
moved left after printing the character. Similarly for
Hcurl. Mapdis(h, dis, o) maps the display, dis, onto

the host, h, screen displaced by the vector o. It re-
turns the modified h. setCur(h, p) sets the position
of the h cursor to be p, returning the modified h.
Definition (Window specification):

wdoS = (o, dis)(h, m)[
Pos = r = <h, let{<dis, p> := dis(Pos)}p>
uqis = let{<dis, p> := dis(Pos)}dis
Get = r = <h, let{<dis, z> := dis(Get)}z>
Ugis = 1et{<dz's,p> = dis(Get)}dis
Display = r = <Mapdis(h, dis, 0),nil>
<Charo, char> =
r = let{<dis, d> := dis(Dim)}
<Hcharo(h, char, 0, d),nil>
uais = let{<dis, *> := dis(<Charo, char>)}
dis
L = r =<Hcurl(h, 0),nil>
Udis = 1e1:{<dl's7 ¥> 1= dis(<Charo, chm‘>)}dl’s

]

6 Specializing a window editor

A two window editor has as parameter a host display
h, which may be shared by other applications. Our
specification of a window editor uses a parameter cn

to remember the current window name and two win-
dow parameters wy, wsy. It responds directly to the
message Toggle — select the other window. Other
messages are passed on to the current window. In
light of the possible sharing of h, the abstract spec-
ification of a window editor assumes that each invo-
cation consists of a host parameter and a message.
We define the toggle operation on window names by
tog(cn) = if(en = 1,2, 1).
Definition (2 window editor):
2wedS = (cn, wy, wa)(h, m)[
Toggle =
let{cw := if(nm =1, w2, w1)}
let{<cw,h>:= cw(h)(Display)}
r = <h,nil>
ucn = tog(cn)
uy, = if(cn =2, cw, wy)
Uy, = if(cn =1, cw, ws)
m = let{cw := if(cn =1, w1, w2)}
let{<cw,h,r>:= cw(h,m)}
r=<h,r>
Uen = €N
Uy, = if(cn =1, cw, w)

Uy, = if(cn =2, cw, wy) |

Page 8

We now specialize by assuming the two windows do
not overlap. To be concrete, we take the windows
to be of dimension [40, 24] and origin [0, 0], [40, 0], re-
spectively, and assume the host display has dimension
[80,24]. We take advantage of the special situation
and replace the local windows by cursors, thus elimi-
nating display duplication, redisplaying, etc. We keep
only the two cursor locations, current cp and other
op, the index of the current window c¢n and the host
h. The result is 2wedB’.
Definition (Non-overlap 2 window editor):
2wedB’(cn, cp, op, h) < A(m)cond|
m = Toggle =
<2wedB'(tog(cn), op, cp, setCur(h, op)),nil>)
m = Pos = <2wedB'(cn, cp, op, h),
if(¢n =1, ¢p, cp — [40,0])>
m = Get = let{<h,z> := h(Get)}
<2wedB'(cn, cp, op, h), z>
m = Display = <2wedB’(cn, cp, op, h),nil>
m = <Charo, char> =
let{<h,*> := h(<Charo, char>)}
if(ecn=1 A ¢p, = 39,
let{<h,*>:= h(L)}
<2wedB'(cn, cp, op, h),nil>
<2wedB'(cn, c¢p_py,.(cn, cp), op, h),nil>
m=L=
if(ecn =2 A cp, = 40,
<2wedB’(cn, cp, op, h),nil>
let{<h,*>:= h(L)}
<2wedB'(cn, cp;(cn, cp), op, h),nil>

t = <2wedB'(cn, cp, op, h),nil>]
where

cpcharo(c"7 (’p) —
if(cn =2 A ¢p, =79, cp, cp+ [1,0])

ep(cn, cp) « if(en=1 A ¢p, =0, cp, cp + [1,0])

Definition (Non-overlap hypothesis):
be the assumption that there exist p, p1, p2, 4, g1, g2 such
that the conjunction of the following holds.

in(p,[0,0], [80, 24])
in(p1,[0,0], [40, 24])

in(p2, [0, 0], [40, 24])
in(p, [0,0],[40,24]) = p(p) = p1(p) € Char
in(p, [40,0],[80,24]) = p(p) = p2(p—[40,0]) € Char
h = disB([80, 24],

curB([80, 24], p),

scrB([80,24], 1))

w1 =2 wdoB([0, 0],
disB([40, 24],
curB([40, 24], p1),
scrB([40,24], 11)))
wy = wdoB([0,0],
disB([40, 24],
curB([40, 24], p2),
scrB([40, 24], u2)))

cp = if(cn =1, p1,[40,0] + p2)
op = if(c¢n =1,[40,0] + p2, p1)

Using simulation induction, we can prove the spe-
cialization is correct.
Theorem (2wedb.opt):
we have that

2wedB (cn, wy, wa, h) = 2wedB'(cn, cp, op, h)

We should also point out that many of the steps in
the proof of (2wedb.opt) are similar to the partial
evaluation techniques of Berlin [2]. In particular they
make use of the fact that the shape of the data struc-
tures involved is known in advance.

To obtain a specialized 2 window editor object we
first consider what specification the behavior 2wedB’
realizes.

Definition (Specialized 2wed specification):

n2wedS = (cn, cp, op, h)(m)[
Toggle =
Uep = tog(cn)
Uep = OP
Uop = CP

up = let{<h,*> := h(<Setcur, op>)}h)
Pos = r = if(¢n = 1, ¢p, cp — [40,0])
Get = r = let{<h,z> := h(Get)}z
up = let{<h,z> := h(Get)}h
Display =
<Charo, char> =

Let H(h, cn, w1, w2, cp, &y = if(en =1 A cp, = 39, cp, cp +[1,0])

up = let{<h, x> := h(<Charo, char>)}
if(ecn =1 A cp, = 39,
let{<h,*> := h(L)}A,
)
L= ue = if(ecn =2 A cp, = 40,

cp,
if(en =1 A ¢p, =0, cp,cp+[1,0]))
Uop = OP
n = let{<h,+>:= if(cn =2 A ¢p, = 40,
h(L),
<h,nil>)}h

Page 9

Assuming H (h, cn, wy, ws, cp, op)

We call the corresponding object 2wedQ’. Now we
apply the protocol transformation as in the display
case to replace a host behavior by a host object. The
final object construction is given below.

Definition (Final 2 window editor object):

2wedO(zen, Zep, Zop, h)
A(m)let{cn := z¢p }let{cp := zcp}let{op := 2,5}
cond[
m = Toggle =

seq(h(<Setcur, op>),
set(zen, tog(cn)),

set(zcp, op),

set(zop cp)))

m = Pos = if(c¢n =1, ¢p, cp — [40,0])
m = Get = h(Get)
m = Display = nil
m = <Charo, char> =
seq(h(<Charo, char>),
if(en =1 A ¢cp, = 39,
W),
ez ep +[1,0])
m=L=
if(en =2 A cp, = 40,
nil
sealh(),
if(cn=1A ¢p, =0,
nil,
seq(set(zep, cp + [1,0])),nil)))
t = nil]

Lemma (2wedo.xproto):
let{zcpn := mk(cn)}
let{z.p := mk(cp)}
let{z,, := mk(op)}
let{zy := mk(h)}
2wedO' (2en, Zeps Zops 2h)
= let{z., := mk(cn)}
let{z.p := mk(cp)}
let{zop := mk(op)}
2wedO(zen, Zep, Zop, b20(h))
To summarize, we have transformed a 2 window ed-
itor object description obtained by gluing together
component behaviors to an equivalent and much more
efficient object by exploiting the information available

in the resulting context.

Theorem (2 window object): Assuming

H(h, cn, wi, wa, cp, op)

b20(2wedB (cn, wi, wa, h))

o~

let{zcn := mk(cn)}
let{zcp := mk(cp)}
let{z,, := mk(op)}
2wedO(zen, Zep, Zop, D20(h))

7 Concluding remarks

In Mason and Talcott [13, 15] we developed tech-
niques for establishing the equivalence of functional
programs with imperative features. In this paper we
have extended these techniques and applied them to
a non-trivial example in component based program-
ming.

Components, or objects, are self-contained enti-
ties with local state. The local state of an object
can only be changed by action of that object in re-
sponse to a message. In our framework objects are
represented as functions (closures) with mutable data
bound to local variables. The techniques for rea-
soning about objects include: rules for establishing
equivalence under a set of constraints; symbolic eval-
uation with respect to a set of constraints; propaga-
tion of constraints into program contexts; the method
of simulation induction, used to establish the equiva-
lence of objects.

The key new result presented in this paper is the
(abstractable) theorem. This result enables one
to make use of symbolic evaluation to establish the
equivalence of objects. In the current state of devel-
opment the framework treats only sequential compu-
tation. However, the techniques such as simulation
induction and constraint propagation, have been de-
signed with the goal in mind of treating objects which
exist in and communicate with other objects in an
open distributed system.

The example presented in this paper demonstrates
the use of our techniques in the derivation of a spe-
cialized two window editor object from the high-level
specifications of its generic components. Three al-
ternate methods of specification and their formal in-
terconnections were presented. This redundancy pro-
vides a wide range of representation of program trans-
formations and allows flexibility to choose the most
suitable representation for each kind of transforma-
tion. For example, the removal of duplicate storage
and redundant updating in the two window editor
was carried out in a purely functional framework.
The point is that different representations are better

Page 10

suited for carrying out different sorts of transforma-
tions, and one needs to have appropriate representa-
tions at hand and be able to move from one represen-
tation to another in a semantically sound manner.

The work, presented here, provides a basis for ex-
tending current methods of partial evaluation to the
richer world of objects and effects. In particular it
illustrates:

1. the use of symbolic evaluation, with respect to
a set of constraints, to simplify programs with
effects;

2. the use of constraints as a richer language for
expressing partial information; and

3. the use of the abstractable theorem as a method
for object specialization.

Symbolic evaluation is an important aspect of par-
tial evaluation, and methods for symbolic evaluation
in the presence of effects are necessary in order to ex-
tend partial evaluation techniques to such languages.
Symbolic evaluation of an expression with respect to
a set of constraints, as formalized by our inference
system [14] is not only mechanizable, it is also gener-
alizes the conditions under which partial evaluation
usually takes place (cf. [3, 5, 6]). In this sense it is
related the notion of generalized partial computation
proposed by Futamura and Nogi [4]. Constraints gen-
eralize the usual known—-unknown dichotomy of par-
tial evaluation and can be implemented by symbolic
values as in [20].

While we have by no means fully met the chal-
lenge presented in [19], we have laid the groundwork
for application of partial evaluation to the problem of
component manipulation and configuration. In the
process we have unearthed a number of new chal-
lenges. In particular, it is clear that methods of static
analysis, effect analysis and abstract interpretation
(cf. [1, 3, 7, 8, 18]) can be used to great benefit in
establishing conditions for the applicability of many
transformation rules. We plan to investigate these
matters and hope others will find the application of
these methods to languages that combine functional
and imperative features a stimulating challenge.

A cknowledgements

This research was partially supported by DARPA con-
tract N00039-84-C-0211 and by NSF grants CCR-
8718605 and CCR-8917606.

References

[1] S. Abramsky and C. Hankin. Abstract Interpre-
tation of Applicative Languages. Michael Hor-
wood, London, 1987.

[2] Andrew A. Berlin. Partial evaluation applied to
numerical computation. In ACM Conference on
Lisp and Functional Programming, pages 139-
150, 1990.

[3] A. Bondorf. Automatic autoprojection of higher
order recursive equations. In ESOP’90, 1990.

[4] Y. Futamura and K. Nogi. Generalized par-
tial computation. In D. Bjorner, A. P. Erschov,
and N. D. Jones, editors, Partial Fvaluation and
Mized Computation. North—Holland, 1988.

[6] N. D. Jones, C. Gomard, A. Bondorf, O. Danvy,
and T. Mogensen. A self-applicable partial eval-
uator for the lambda-calculus. In IEEE Com-
puter Society 1990 International Conference on
Computer Languages, 1989.

[6] N. D. Jones, P. Sestoft, and H. S¢ ndergaard.
Mix: A self-applicable partial evaluator for ex-

periments in compiler generation. Lisp and Sym-
bolic Computation, 2, 1989.

[7] J. M. Lucassen. Types and Effects, towards
the integration of functional and imperative pro-
gramming. PhD thesis, MIT, 1987. Also avail-
able as LCS TR-408.

[8] J. M. Lucassen and D. K. Gifford. Polymorphic
effect systems. In Conference record of the 16th
annual ACM symposium on principles of pro-
gramming languages, pages 47-57, 1988.

[9] 1. A. Mason. The Semantics of Destructive Lisp.
PhD thesis, Stanford University, 1986.

[10] I. A. Mason and C. L. Talcott. Axiomatizing
operational equivalence in the presence of side
effects. In Fourth Annual Symposium on logic in
computer science. IEEE, 1989.

[11] T. A. Mason and C. L. Talcott. Programming,
transforming, and proving with function abstrac-
tions and memories. In Proceedings of the 16th
EATCS Colloguium on Automata, Languages,
and Programming, Stresa, 1989.

[12] 1. A. Mason and C. L. Talcott. A sound and
complete axiomatization of operational equiva-
lence between programs with memory. Technical

Report STAN-CS-89-1250, Department of Com-
puter Science, Stanford University, 1989.

[13] I. A. Mason and C. L. Talcott. Equivalence
in functional languages with effects. Journal of
Functional Programming, to appear, 1997

Page 11

[14]

[19]

[20]

I. A. Mason and C. L. Talcott. Inferring the
equivalence of (first-order) functional programs
that mutate data. Theoretical Computer Science,
to appear, 1997

I. A. Mason and C. L. Talcott. Program trans-
formation via constraint propagation. 1997 sub-
mitted for publication.

E. Moggi. Computational lambda-calculus and
monads. In Fourth Annual Symposium on Logic
in Computer Science. IEEE, 1989.

G. Plotkin. Call-by-name, call-by-value and the
lambda-v-calculus. Theoretical Computer Sci-

ence, 1, 1975.

O. Shivers. Control flow analysis in Scheme.
In Proceedings of SIGPLAN ’88 Conference on
Programming Language Design and Implemen-
tation, 1988.

C. L. Talcott and R. W. Weyhrauch. Partial
evaluation, higher-order abstractions, and re-
flection principles as system building tools. In
D. Bjorner, A. P. Erschov, and N. D. Jones,
editors, Partial Evaluation and Mized Compu-
tation. North—Holland, 1988.

Daniel. Weise. Graphs as intermediate represen-
tation for partial evaluation. Technical Report
CSL-TR-90-421, Stanford University Computer
Systems Laboratory, 1990.

Page 12

