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2 G. Agha and others4.3 Partial Collapse 254.4 Equivalence of Con�gurations 275 Laws of Expression Equivalence 285.1 Functional Laws 295.2 Basic Laws for Actor Primitives 315.3 Introductory Examples Revisited 366 Proving Expression Equivalence 376.1 The General Method 386.2 Common Reduct Case 416.3 Equivalence by Two Stage Reduction 566.4 Equivalence of Reduction Contexts 597 Discussion 62References 638 Index of Notations 671 IntroductionThe modern computing environment is becoming increasingly open and distributed.Research on semantics to support reasoning about components and con�gurationsin open distributed systems is in its early stages. The main characteristics of an opendistributed system are that such systems allow the addition of new components,the replacement of existing components, and changes in interconnections betweencomponents, largely without disturbing the functioning of the system. Open dis-tributed systems require a discipline in which a component may not have any directcontrol over other components with which it is connected. Instead, the behavior ofa component is locally determined by its initial state and the history of its interac-tions with the environment. Moreover, interactions between components may occuronly through their interfaces. Thus, the internal state of a component must only beaccessible through operations provided by the interface.The actor model of computation has a built-in notion of local component andinterface, and thus it is a natural model to use as a basis for a theory of opendistributed computation. Speci�cally, we view actors as a model of coordinationbetween autonomous interacting components. The local computation carried outby the components may be speci�ed in any sequential language. However, we carryout the development of an actor semantics in a framework where local computa-tion is speci�ed using a functional language. We extend a functional programminglanguage with actor coordination primitives to model open distributed systems.Our semantic theory uses techniques �rst developed in a functional setting. Thetransition system operational semantics extends the reduction system semantics ofthe functional language. The notion of observational equivalence studied general-izes the now standard notion of operational equivalence for functional languages.The resulting equational theory embodies that of the computational lambda cal-culus and preserves many of the advantages provided by functional programmingfor reasoning about programs and program transformations. The actor language



Actor Computation 3we study provides an alternative approach to concurrent extensions of functionallanguages that is object based rather than channel/process based. Our componentsare reactive in contrast to the active processes more common in other models ofconcurrency. Active processes correspond to a thread of control that disappearswhen execution of the thread is complete; unlike reactive computational objects,activity in processes is not initiated by the receipt of a message. Note that receivinga message is analogous to a function being invoked.1.1 OverviewIn this paper we present a study of a particular actor language. Our actor languageis an extension of a simple call-by-value functional language (lambda calculus plusarithmetic and branching primitives and structure constructors, recognizers, anddestructors) by including primitives for creating and manipulating actors. Our ap-proach is motivated by a desire to bridge the gap between theory and practice. Thesemantic theory we develop is intended to be useful for justifying program transfor-mations for real languages, and for formalizing intuitive arguments and propertiesused by programmers.In our model we make explicit the notion of open system component throughthe notion of an actor con�guration. An actor con�guration is a collection of in-dividually named concurrently executing actors, a collection of messages en route,a set of receptionist names, and a set of external actor names. Receptionists arethe externally visible actors of the con�guration, and names of external actors arereferences to actors outside the con�guration. The receptionist and external actornames explicitly de�ne the interface to the environment.A common criticism of the actor model of computation is that actors do notcompose. However, actor con�gurations do compose. As a �rst step towards analgebra of operations on actor con�gurations, we de�ne a composition operator.Composition on con�gurations is associative, commutative, and has a unit. Thisallows large complex con�gurations to be studied in parts and composed to formlarger systems. Unlike most notions of modularity and composability, which arestatic, the notions we de�ne are fundamentally dynamic ones that allow for theinterface between components to evolve over time.Following the tradition of (Morris, 1968; Plotkin, 1975; Mason and Talcott, 1991;Felleisen and Hieb, 1992; Felleisen and Wright, 1991) we develop the semantics intwo stages. The �rst stage consists in giving an operational semantics for actorcon�gurations. In the second stage various notions of equivalence are investigated,both of expressions and of con�gurations. The operational semantics extends thatof the embedded functional language in such a way that the equational theory ofthe functional language is preserved. In particular the equational laws of the com-putational lambda calculus (Moggi, 1988) as well as the usual laws for pairing andarithmetic hold. This provides a basis for a rich set of equational reasoning prin-ciples. There are also numerous equational laws that relate to actor computations,for instance allowing two adjacent message sending operations to be permuted.The operational semantics of actor con�gurations is de�ned by a transition re-



4 G. Agha and otherslation on con�gurations. An important aspect of the actor model is the fairnessrequirement: message delivery is guaranteed, and individual actor computationsare guaranteed to progress. We make the fairness requirement explicit in our se-mantics by requiring in�nite sequences of transitions on actor con�gurations to befair. We include fairness in our semantic model because we are developing a se-mantic theory of actors, and fairness is a feature of actor computation. Althoughfairness makes some aspects of reasoning more complicated, it simpli�es others,and is essential in some cases. Certain classes of intuitively obvious equations failto hold without the fairness requirement. For example two expressions should beconsidered equal if they di�er only in that one of them creates an actor which hasan in�nite computation but never sends any messages: the additional actor createdwill have no observable e�ect. This equivalence fails to hold in the absence of afairness requirement.More generally, note that collection of active garbage does not preserve semanticswithout a fairness assumption. Although we only consider equational reasoning inthis paper, this work is intended as starting point for a semantic theory that sup-ports both equational reasoning and reasoning about safety and liveness propertiesof system components. The assumption of fairness allows equational speci�cationof some liveness properties, and it is particularly important for modular reasoningabout liveness properties. Without fairness, speci�cations fail to compose | a pro-cess may behave correctly in isolation, but fail to do so in the presence of otherprocesses. Consider for instance a collection of independently operating server ac-tors with identical functionality (we ignore the details of what service is provided).The speci�cation of a single server may require that the server always service re-quests in a �nite amount of time. Composing two servers with this property shouldcompose the speci�cations, meaning both servers will make progress. But withoutfairness, one server could starve out the other and composition of the speci�cationswill fail.Our equational theory is based on the notion of observational equivalence. Twoexpressions/con�gurations are said to be observationally equivalent if they give riseto the same observations, suitably de�ned, inside all observing contexts. This no-tion is closely related to testing equivalence (de Nicola and Hennessy, 1984). Weprove that in the presence of fairness, the three standard notions of observationalequivalence collapse to two. Observational equivalence provides a semantic basis fordeveloping sound transformation rules for expressions. In this paper we study thesemantics of our actor language, focusing on the equational theory and methods forestablishing equivalence. Results of this study will be useful in the development ofa sound proof calculus, but the development of a proof calculus is outside the scopeof this paper. The language we de�ne is not a full blown programming language,however our intent was to include enough features to bring out the technical prob-lems that might arise, so that something like this langauge could serve as a kernelfor a real implementatation.We emphasize that this paper is not about the actor model per se, but about aconcurrent extension of a simple functional language with concurrency primitivesbased on the actor model. The point is not to study an actor calculus analogous to



Actor Computation 5the �-calculus, but to de�ne the semantics of a higher level language and study itstheory of program equivalence. Thus we have sacri�ced some of the elegance andgenerality of a �-calculus-like approach for something more speci�c and closer toprogramming practice in order to study these laws more directly.There are many possible approaches for such a task. One possibility would beto give the higher level language a translational semantics based on a primitiveactor calculus. The lack of a well-developed primitive actor calculus makes thisapproach less appealing, as we would �rst have to develop the primitive calculusand its equational theory. An alternative might be translation to the �-calculus,but here the mismatch in the choice of primitives makes this problematic for ourobjective of studying program equivalence. Also, with a transalational semantics,much work would still remain to develop the directly induced equational theory andit is likely that many desirable equations would be lost in the translation. Thus wehave chosen to begin by directly de�ning an operational semantics for our languageand studying forms of observational equivalence.OutlineThe remainder of this paper is organized as follows. The rest of this section describesprevious work on Actors and related models of concurrent computation. x2 givesan informal introduction to our actor language. x3 gives the syntax and operationalsemantics of our actor language, and describes a composability result. In x4 westudy the notion of observational equivalence for actor expressions and prove thatin the presence of fairness two of the standard notions collapse to one. In x5 westate a variety of basic equational laws along with an intuitive explanation of howthese laws are established. The use of the laws is illustrated by establishing severalproperties of the programs given in x2. In x6 we develop methods for establishingexpression equivalence, and use these methods to prove the laws of x5. This sectioncontains many technical details and can be read at various levels of detail (includingzero) without greatly e�ecting the understanding of the remainder of the paper. Thesection begins with a local reading guide. x7 summarizes the highlights of this paper,and discusses future work. 1.2 Related WorkWe discuss related work in actors, process algebras, and concurrent functional lan-guages. 1.2.1 Research on ActorsWe may briey summarize the principles underlying the actor model of compu-tation that we use as follows. Actors are self-contained, concurrently interactingentities of a computing system. They communicate via message passing which isasynchronous and fair. Actors can be dynamically created and the topology of actorsystems can change dynamically. The actor model is a primitive model of compu-



6 G. Agha and otherstation which nonetheless easily expresses a wide range of computation paradigms.It directly supports encapsulation and sharing, and provides a natural extension ofboth functional programming and object style data abstraction to concurrent opensystems. See (Agha, 1986; Agha, 1990; Agha et al., 1993a) for more discussion ofthe actor model, and for many examples of programming with actors.The actor model was originally proposed by Hewitt and the meaning of the termhas evolved over time in the work of Hewitt and associates. We briey describe thehistory of actor research, necessarily omitting some of the signi�cant work.In his early work on planner (Hewitt, 1971), Hewitt used the term actor todescribe active entities which, unlike functions, went around looking for patternsto match in order to trigger activity. This concept was later developed into thescienti�c community metaphor where sprites examined facts and added to them ina monotonically growing knowledge base (Kornfeld and Hewitt, 1981). In (Hewittet al., 1973), the notion of actors was closer to that of an agent in DistributedArti�cial Intelligence: actors have intentions, resources, contain message monitorsand a scheduler. Irene Greif (Greif, 1975) developed an abstract model of actors interms of event diagrams which recorded local events at each actor and the causalrelations between events.Baker and Hewitt (Baker and Hewitt, 1977) then formalized a set of axioms forconcurrent computation which stated properties that events in actor systems mustobey in order to prevent causality violations. The work in (Hewitt, 1977) containsthe insight that the usual control structures could be represented as patterns ofmessage passing between simple actors which had a conditional construct but nolocal state. It demonstrated the use of continuation passing style in actor programs,which was carried over into Scheme (Steele and Sussman, 1975; Abelson and Suss-man, 1985).In (Hewitt and Atkinson, 1979), the concept of serializer is described: a serial-izer localizes conditions for resumption of waiting processes and thus improves onmonitors which require explicit signaling of dormant processes. A related notion,namely, that of guardians, was de�ned in (Attardi and Hewitt, 1978). A guardianregulates the use of shared resources, scheduling their access and providing protec-tion and \recovery" boundaries. Guardians thus explicitly incorporated the notionof state. Lieberman implemented an actor language, Act1, incorporating guardians,serializers, and `rock bottom' actors which is best described in (Lieberman, 1987).Will Clinger (Clinger, 1981) developed a semantics of actor systems, showing theconsistency of axioms proposed in (Baker and Hewitt, 1977). A key accomplishmentof Clinger's work was to show that a powerdomain semantics could be developeddespite the fact that the underlying domain is incomplete due to fairness. The workdid not develop a theory of actor systems { speci�cally, no notion of equivalence ofactor systems was de�ned.The semantic model of our actor language builds on that of (Agha, 1986) whichde�ned a simple transition system for actors, and developed a notion of con�g-urations, receptionists and external actors. This model was implemented by CarlManning at MIT in the Acore programming language (Manning, 1987) and by Tom-linson and others at the Microelectronics and Computer Technology Consortium in



Actor Computation 7the Rosette programming language (Tomlinson et al., 1989; Tomlinson et al., 1993).It has also provided a basis for dozens of other projects (Agha et al., 1989; Aghaet al., 1991; Agha et al., 1993b). Some of the more recent research on actors hasfocused on coordination structures and meta-architectures (Agha et al., 1993a).Yonezawa has developed the ABCL family (Yonezawa, 1990) of actor languages.The actor model has also been used as a foundation in designing a number of otherconcurrent object-oriented languages (c.f. (Yonezawa, 1990; Agha et al., 1989)).1.2.2 Process AlgebrasMuch existing research giving rigorous semantics to concurrent languages falls intowhat could loosely be called the process algebra school. The most well-known pro-cess algebras are Milner's Calculus for Communicating Systems (CCS) (Milner,1983), Hoare's CSP (Hoare, 1985), and Milner's �-calculus (Milner et al., 1989).Process algebra research focuses on understanding elementary communications be-tween processes, abstracting away other programming language issues. Three pointsof contrast between the basic actor model and process calculi are: the choice ofcommunication model, the choice of communicable values, and the issue of fairness.Process algebras typcially take synchronous communication as primitive instead ofasynchronous communication ((Honda and Tokoro, 1991) de�nes a variant of the�-calculus with asynchronous communication). Synchronous communication can besimulated with asynchronous primitives (Amadio, 1994) and vice-versa, and it isprobably the case that both will be required in any realistic concurrent program-ming language. In standard process algebra theory, processes can be dynamicallycreated, but they are not �rst class entities that can be directly manipulated. Oneprocess can communicate with another only if they happen to share a communica-tion channel. In general any number of di�erent processes can send or receive ona given channel, thus processes have the potential to inadvertantly interfere withone another. The �-calculus extends CCS in that it allows channels to be treatedas �rst class entities that can be dynamically created and communicated as values.In contrast, in actor and other object based models, the communication mediumis not explicitly represented. Actors/objects are �rst class, history sensitive enti-ties whose identity can be communicated and used for communication with theidenti�ed object. Again, to some degree each choice of primitives can simulate theother. Further work is needed to clarify precisely the relative expressive powers ofthe two approaches. A realistic programming language could very well need bothas primitive notions.An important distinction between actor and process algebra semantics is thatactor semantics presupposes a fairness assumption while process algebra semanticsdoes not.The main contribution made by the process algebra school is in the realm ofsemantics. A wide variety of equivalence relations for process algrebras have beende�ned and studied. These include bisimulation (Milner, 1983; Milner, 1989) whichde�nes a back-and-forth simulation relation between two processes, and trace-basedequivalence (Brookes et al., 1984). A detailed comparison of the various equivalence



8 G. Agha and othersrelations is given in (van Glabbeek, 1990). Numerous logics have been developed forprocess algebras, including (Hoare, 1985; Milner, 1989; Bergstra and Klop, 1986;Abramsky, 1991). 1.2.3 Concurrent Functional LanguagesBoth process algebras and primitive actor systems are too simple to be consid-ered programming languages, however. There have been a number of languagesdeveloped using the approach we follow in this paper| combining concurrencyprimitives with a functional language. These languages include Amber (Cardelli,1986), Facile (Giacalone et al., 1989; Prasad et al., 1990; Thomsen et al., 1992),CML (Reppy, 1991), Erlang (Armstrong et al., 1993), Obliq (Cardelli, 1994), andPict (Pierce and Turner, 1994). Erlang and Obliq are object based languages (Er-lang is essentially an actor language) while Facile, CML, and Pict have processalgebra concurrency primitives. Of these only CML and Erlang require fairness. Ex-cept for Facile, and to a small extent Obliq, these e�orts have focused on languagedesign, and type systems, with less attention given to semantics and equivalences.A structured operational semantics and type inference system for a small kernellanguage contained in CML is described in (Reppy, 1991) and a type safety theo-rem is proved. An equational calculus is given for a sequential core of Obliq (Abadiand Cardelli, 1994). The semantics of Pict is given by expansion into the pi-calculuscore, but no e�ort has been made so far to develop the induced equational theory.In this paper we focus on developing equational laws for our basic actor languageand leave to future work the study of richer actor language features; see (Aghaet al., 1993a) for an extensive repertoire of communication and protocol primitivesfor actors.The Facile project is perhaps the closest in spirit to our overall e�ort. Facile di�ersfrom our approach in that it uses the typed lambda calculus as the functional compo-nent and uses concurrency primitives inspired by process algebras. In (Prasad et al.,1990) an algebraic semantics for Facile is given based on an operational semantics.The central notion here is bisimulation relations. Bisimulations are indexed by setsof channels called windows. This explicitly accounts for the interface of a system toits environment in much the same way as receptionists do for actor systems. Basicprocess algebra equations, along with a few simple functional laws, are establishedusing bisimulations. The authors point out that establishing expression equivalenceusing bisimulations is much more complicated than establishing process algebraequations. An early version of the actor semantics presented in this paper appearedin (Agha et al., 1992). There we de�ned a notion of operational bisimulation thatincorporated fairness. Operational bisimulations were intended to serve as tools forestablishing observational equivalence, not as equivalence relations per se. We alsofound that operational bisimulations were not an e�ective tool for establishing ex-pression equivalence, since it was di�cult to �nd suitable bisimulations. This ledus to develop the alternative methods presented in this paper.



Actor Computation 92 Our Actor LanguageOur actor language is an extension of a simple functional language which providesprimitives for coordinating components which carry out local computation. Anindividual actor represents the smallest unit of coordination in the model. Ourlanguage provides a mechanism for specifying the creation and manipulation ofactors. An actor's behavior is described by a lambda abstraction which embodiesthe code to be executed when a message is received. The actor primitives are: send;become; and letactor.send is for sending messages; send(a; v) creates a new message with receiver a andcontents v and puts the message into the message delivery system.letactor is for actor creation. letactorfx := bge creates an actor with initialbehavior b, making the new address the value of the variable x. The expressione is evaluated in the extended environment. The variable x is also bound in theexpressions b, thus allowing an actor to refer to itself if so desired. Like the Schemeletrec construct, multiple actors can be created, each possibly knowing the other.For example, if f and g are ternary lambda expressions, then letactorfx :=�m:f(x; y;m); y := �m:g(x; y;m)gsend(x; z) creates two actors, referred to locallyas x, and y, and sends x a message containing the address of an already createdactor referred to as z. (When our intent is clear from the context, we simply say xto mean the actor referred to locally as x). x can send messages to itself and to y,and actor y can send messages to itself and to x. Moreover, x will be able to sendmessages to z as well, once the message is received.become is for changing behavior; become(b) creates an anonymous actor to carryout the rest of the current computation, alters the behavior of the actor executingthe become to be b, and frees that actor to accept another message. This providesadditional parallelism. The anonymous actor may send messages or create newactors in the process of completing its computation, but will never receive anymessages as its address can never be known.Note that in open distributed systems, the order of arrival of messages fromdi�erent external sources is nondeterministic. The become primitive is necessaryto provide the history-sensitive behavior necessary to model asynchronous accessto shared resources in such systems. A canonical example of the use of become isin modelling a shared bank account accessible by a two or more automatic tellermachines. Here become is used to model the e�ects of asynchronous deposits andwithdrawals. The letactor primitive cannot be used to model these e�ects as itwould destroy the possibility of indeterminate shared access. On the other hand, ob-serve that the current behavior of an actor always remains a deterministic functionof the sequence of messages that the actor has thus far received.



10 G. Agha and others2.1 Trivial ExamplesA simple actor behavior b that expects its message to be an actor address, sendsthe message 5 to that address, and becomes the same behavior, may be expressedas follows.b5 = rec(�y:�x:seq(send(x; 5); become(y)))where seq is syntactic sugar for expressing sequential composition, and rec is ade�nable (in the pure � fragment) call-by-value �xed-point combinator (cf. (Masonand Talcott, 1991)). An equivalent expression of this behavior is:b50 = rec(�y:�x:seq(become(y); send(x; 5)))since the order of executing the become and the send cannot be observed. Anexpression that would create an actor with behavior b5 and send it another actoraddress a ise = letactorfz := b5gsend(z; a):The behavior of a sink, an actor that ignores its messages and becomes this samebehavior, is de�ned bysink = rec(�b:�m:become(b)):2.2 Actor CellsIt is easy to represent objects with local state in our language. As an example ofthis we describe an actor akin to an ML reference cell. The actor responds to twosorts of messages. The �rst sort of message is a get message, recognized by the get?operation. A get message contains the address (customer) to which the response(i.e., the current contents of the cell) should be sent. This address is accessed viathe cust operation. A mkget(a) constructs a get message with customer a. Thesecond message is a set message, recognized by the set? operation. A set messageshould contain the desired new contents of the cell-actor. This value is accessed viathe contents operation. A mkset(c) constructs a set message with new contentsc. Using these operations, the behavior of a cell is given by:Bcell = rec(�b:�c:�m:if(get?(m);seq(become(b(c)); send(cust(m); c))if(set?(m);become(b(contents(m)));become(b(c)))))Evaluatingletactorfa := Bcell(0)ge wheree = seq(send(a; mkset(3)); send(a; mkset(4)); send(a; mkget(a)))



Actor Computation 11will result in the actor a receiving a message containing either 0, 3 or 4, dependingon the arrival order. A cell is one of the simplest kinds of history sensitive object.The become primitive is the key to expressing history sensitivity by allowing newbehaviors to be installed in response to messages. Accumulators, counters and new-symbol generators are easily constructed in a similar manner.2.3 Join ContinuationsSimple forms of recursion are often amenable to concurrent execution. A typicalexample is tree recursion. Consider the problem of determining the product ofthe leaves of a tree (whose leaves are numbers). The problem can be recursivelysubdivided into the problem of computing the result for the two subtrees, andmultiplying the results. The product is then returned.treeprod = rec(�f:�tree:if(isnat(tree);tree;f(left(tree)) � f(right(tree))))In the above code, a tree is passed to treeprod which tests to see if the treeis a number (i.e., a leaf). If so it returns the tree, otherwise it subdivides theproblem into two recursive calls. The functions left and right pick o� the leftand right branches of the tree. It is clear that the arguments to � may be evaluatedconcurrently. It is also clear that if a zero is encountered then the computationcan terminate. In this example we only deal with the former optimization. Thelatter optimization, made using continuations, is treated in detail in (Talcott, 1993a;Talcott, 1985; Agha, 1990)Such concurrency can be implemented by using a join continuation which syn-chronizes the evaluation of the di�erent arguments. For example, the treeprodprogram given above can be expressed in terms of actor primitives as:Btreeprod =rec(�b:�self :�m:seq(become(b(self ));if(isnat(tree(m));send(cust(m); tree(m));letactorfnewcust := Bjoincont (cust(m); 0; nil)gseq(send(self ; pr(left(tree(m)); newcust));send(self ; pr(right(tree(m)); newcust ))))))



12 G. Agha and othersBjoincont = rec(�b:�cust :�nargs:��rstnum:�numif(eq(nargs; 0);become(b(cust ; 1; num));seq(become(sink);send(cust ; �rstnum � num))))When a tree product actor (with behavior Btreeprod ) receives a tree of numbersthat is not a leaf it creates a customer, called a join continuation, and sends twomessages to itself to evaluate the two halves of the tree. These messages have the joincontinuation as customer. The join continuation (with behavior Bjoincont ) expects toreceive two numbers representing the computation of the products of each of the twosubtrees. When both numbers have arrived, the join continuation multiplies themand sends the result to its customer. Figure 1 shows some stages in the computationof a tree production. The join continuation's customer can be the original requester(root of the tree), or the join continuation of a higher branch point. Note thatafter receiving the �rst number, the join continuation must modify its behavior toremember that result while waiting for the second number. This is an example ofwhere it is essential to use become to modify the existing actors behavior rather thansimply creating a new actor with the desired behavior. Because multiplication iscommutative, we need not be concerned about matching the responses to the orderof the parameters. If we were dealing with an operator which was not commutative,we would need to tag the message corresponding to each argument and this tagwould be returned with the response from the corresponding subcomputation. Thereplacement behavior of the join continuation would then depend on the order inwhich the evaluation of arguments was completed.An advantage of explicit join continuations is that they provide considerableexibility|they can be used to control the evaluation order, to do partial com-putations, and to handle special cases or errors. For example, if the number 0is encountered, the join continuation can immediately return a 0|in some caseswithout waiting for the results of evaluating the other subtree.The above program may not be optimal in other respects. For example sendsmay be quite expensive. Consequently it may be prudent to check that the sub-computation is worth dispatching. This observation together with the fact, provedin x5, that sends of values commute leads to the possibly faster version:
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Fig. 1. The leaves of tree, contain numbers to be multiplied and Cust is the actor towhich the product is to be sent. (b) the tree is subdivided and two asynchronousmessages are sent to compute the product on the two halves (concurrently). JCrepresents a newly created actor to which the two results should be sent. Each subtreewill be recursively subdivided and new join-continuations will be successively created. (c)When the product of one of the subtrees has been computed, the value is sent to JC. (d)JC does a become to store the �rst number it receives. (e) The second product sends avalue to JC. (f) JC multiplies the second number it receives with the number it hadstored earlier and sends the result to Cust.



14 G. Agha and othersB1treeprod =rec(�b:�self :�m:seq(become(b);if(isnat(tree(m));send(cust(m); tree(m));letfl := left(tree(m)); r := right(tree(m))gletactorfnewcust := Bjoincont (cust(m); 0; nil)gif(or(isnat(l); isnat(r));send(cust(m); treeprod(l) � treeprod(r));seq(send(self ; pr(l; newcust));send(self ; pr(r; newcust)))))))By observing that join continuation is only used in one of the if branches we cantransform B1treeprod to a slightly more frugal version B2treeprod .B2treeprod =rec(�b:�self :�m:seq(become(b);if(isnat(tree(m));send(cust(m); tree(m));letfl := left(tree(m)); r := right(tree(m))gif(or(isnat(l); isnat(r));send(cust(m); treeprod(l) � treeprod(r));letactorfnewcust := Bjoincont (cust(m); 0; nil)gseq(send(self ; pr(l; newcust));send(self ; pr(r; newcust)))))))Simple transformations such as this one are justi�ed by the properties of the un-derlying actor primitives. We return to this example in x5.2.4 Notation.We use the usual notation for set membership and function application. Let Y; Y0; Y1be sets. We specify meta-variable conventions in the form: let y range over Y , whichshould be read as: the meta-variable y and decorated variants such as y0, y0, . . . ,range over the set Y . Y n is the set of sequences of elements of Y of length n. Y � isthe set of �nite sequences of elements of Y . �y = [y1; : : : ; yn] is the sequence of lengthLen(�y) = n with ith element yi. (Thus [ ] is the empty sequence.) u � v denotes theconcatenation of the sequences u and v. If u is a non-empty sequence, then Last(u)



Actor Computation 15is the last element of u. P![Y ] is the set of �nite subsets of Y . M! [Y ] is the set of(�nite) multi-sets with elements in Y . Y0 f! Y1 is the set of �nite maps from Y0 toY1. [Y0 ! Y1] is the set of total functions, f , with domain Y0 and range containedin Y1. We write Dom(f) for the domain of a function and Rng(f) for its range. Forany function f : ffy := y0g is the function f 0 such that Dom(f 0) = Dom(f) [ fyg,f 0(y) = y0, and f 0(z) = f(z) for z 6= y; z 2 Dom(f); and fcY is the restriction of fto the set Y . 3 A Simple Lambda-Based Actor LanguageIn this section we give the syntax and operational semantics of our actor language.In the core language, we replace the letactor construct for actor creation by twoprimitives: newadr and initbeh. This obeys the principle that � is the only bindingconstruct, and also permits simpler basic reduction rules. We treat letactor as anabbreviation along with let and others. newadr() creates a new (uninitialized) ac-tor and returns its address. initbeh(a; b) initializes the behavior of a newly createdactor with address a to be b. The allocation of a new address and initialization ofthe actor's behavior are separated in order to allow an actor to learn its own ad-dress upon initialization. An uninitialized actor can only be initialized by the actorwhich created it. Without this restriction composability of actor con�gurations isproblematic, as it would permit an external actor to initialize an internally createdactor. 3.1 SyntaxWe take as given countable sets X(variables) and A t (atoms). In addition we assumegiven a (possibly empty) set of n-ary operations, Gn on A t for each n 2 N. Fn isthe set of primitive operations of arity n, which includes Gn , and F = Sn2NFn. Weassume A t contains t; nil for booleans, as well as constants for natural numbers, N.F contains arithmetic operations, recognizers isatom for atoms, isnat for numbers,and ispr for pairs (arities 1, 1, 1), branching br (arity 3), pairing pr; 1st; 2nd (arities2, 1, 1), and actor primitives newadr, initbeh, send, and become (arities 0, 2, 2,1). The sets of expressions, E, value expressions (or just values), V, and contexts(expressions with holes), C , are de�ned inductively as follows.De�nition (E V C ):V= A t [X[ �X:E [ pr(V;V)E = A t [X[ �X:E [ app(E; E) [ Fn(En )C = A t [X[ �X:C [ app(C ; C ) [ Fn(Cn ) [ f�gWe let x; y; z range over X, v range over V, e range over E, and C range over C .Since we are working with a syntactic reduction semantics, there is no distinctionbetween a value expression and the value it denotes. Hence we use the terms valueand value expression interchangeably. �x:e binds the variable x in the expression e.Two expressions are considered equal if they are the same up to � renaming (that



16 G. Agha and othersis, renaming of bound variables). We say that a variable is fresh with respect to acontext of use if it does not occur free or bound in any syntactic entity. We writeFV(e) for the set of free variables of e. We write e[x := e0] to denote the expressionobtained from e by replacing all free occurrences of x by e0, avoiding the captureof free variables in e0. Contexts are expressions with holes. We use � to denote ahole. C[e] denotes the result of replacing any holes in C by e. Free variables of emay become bound in this process.br is a strict conditional, and the usual conditional construct if can be consid-ered an abbreviation following Landin (Landin, 1964). let and seq are the usualsyntactic sugar, seq being a sequencing primitive.if(e0; e1; e2) abbreviates app(br(e0; �z:e1; �z:e2); nil) for z freshletfx := e0ge1 abbreviates app(�x:e1; e0)seq(e0; e1) abbreviates app(app(�z:�x:x; e0); e1)letactor is de�ned it terms of newadr and initbeh as follows:letactorfx1 := e1; : : : ; xn := enge abbreviatesletfx1 := newadr()g : : :letfxn := newadr()gseq(initbeh(x1; e1); : : : ; initbeh(xn; en); e)Note that free occurrences of the xi in ei and in e are bound in the letactorconstruct (to newly created actors). We will sometimes use the convention thatletactorf�x := �ege abbreviates letactorfx1 := e1; : : : ; xn := enge3.2 Reduction Semantics for Actor Con�gurationsThe operational semantics for actor systems is given by a transition relation oncon�gurations. A con�guration can be thought of as representing a global snapshotof an actor system with respect to some idealized observer (Agha, 1986). It containsa collection of actors, messages, external actor names, and receptionist names. Thesets of receptionists and external actors are the interface of an actor con�gurationto its environment. They specify what actors are visible and what actor connectionsmust be provided for the con�guration to function. Both the set of receptionistsand the set of external actors may grow as the con�guration evolves.The state of the actors in a con�guration is given by an actor map. An actor mapis a �nite map from actor addresses to actor states. Each actor state is one of(?a) uninitialized, having been newly created by an actor named a;(b) ready to accept a message, where b is its behavior, a lambda abstraction; or[e] busy executing e, here e represents the actor's current (local) processing state.A message m contains the address of the actor to whom it is sent and the mes-sage contents, <a ( v>. We restrict the contents v to be any value constructedfrom atoms and actor addresses using the pairing constructor. We call these valuescommunicable values. Lambda abstractions and structures containing lambda ab-stractions are not allowed to be communicated in messages. There are two reasons



Actor Computation 17for this restriction. Firstly, allowing lambda abstractions to be communicated invalues violates the actor principle that only an actor can change its own behavior,because a become in a lambda message may change the receiving actor behavior.Secondly, if lambda abstractions are communicated to external actors, there is noprecise way to establish what actor addresses are actually exported. This has un-pleasant consequences in reasoning about equivalence, amongst other things. Thisrestriction is not a serious limitation since the address of an actor whose behavioris the desired lambda abstraction can be passed in a message. The �-calculus hasa similar restriction on values that can be communicated, in that it does not allowprocesses to be communicated.The transition relation determines the set of possible future con�gurations. Weclassify actor con�guration transitions as internal or external to the con�guration.The internal transitions are:rcv: receipt of a message by an actor not currently busy computing; andexec: an actor executing a step of its current computation.The internal transitions involve a single active actor, which we call the focusactor for the transition. exec transitions may be purely local (a �-transition), ora message may be sent, or a new actor may be created, or a newly created actormay be initialized. rcv transitions consume a message, putting the focus actor ina busy state.In addition to the internal transitions of a con�guration, there are i=o transitionsthat correspond to interactions with external agents:in: arrival of a message to a receptionist from the outside; andout: passing a message out to an external actor.3.2.1 Actor Con�gurationsWe assume that we are given a countable set A d of actor addresses. To simplifynotation, we identify A d with Xand call variables used in this way actor names.This pun is useful for two reasons: it allows us to use expressions to describe actorstates and message contents; and it allows us to avoid problems of choice of namesfor newly created actors by appealing to an extended form of alpha conversion.(See (Mason and Talcott, 1991; Felleisen and Hieb, 1992) for use of this pun torepresent reference cells.)De�nition (cV A s M): The set of communicable values, cV, the set of actorstates, A s, and the set of messages, M , are de�ned as follows.cV= A t [X[ pr(cV; cV) A s = (?X) [ (V)[ [E] M = <V(V>We let cv range over cV and m range over M . Note that actor behaviors are notsyntactically restricted to be lambda abstractions, nor are messages syntacticallyrestricted to be of the form <A d ( cV>. The reduction system will prevent use ofany ill-formed behavior or message. This is in keeping with the untyped nature ofour language.De�nition (Actor Con�gurations (K)): An actor con�guration with actor



18 G. Agha and othersmap, �, multi-set of messages, �, receptionists, �, and external actors, �, is writtenDD� �EE��where �; � 2 P![X], � 2 X f! A s, and � 2 M![M ]. Further, it is required that,letting A = Dom(�), the following constraints are satis�ed:(0) � � A and A \ � = ;,(1) if �(a) = (?a 0), then a 0 2 A,(2) if a 2 A, then FV(�(a)) � A [ �, and if <v0 ( v1> 2 �, then FV(vi) � A [ �for i < 2.We let K denote the set of actor con�gurations and let � range over K. The recep-tionists � are names of actors within the con�guration that are externally visible;all other actors in the (actor) con�guration are local and thus inaccessible fromthe outside. The external actors � are names of actors that are outside this con-�guration but to which messages may be directed. A con�guration in which boththe receptionist and external actor sets are empty is said to be closed. For closedcon�gurations we may omit explicit mention of the empty � and � sets. The actormap portion of a con�guration is presented as a list of actor states each subscriptedby the actor address which is mapped to this state. If �0(a) = (b), and � is �0 witha omitted from its domain, we write �0 as (�; (b)a ) to focus attention on a. Wefollow a similar convention for other states subscripted with addresses.The set of possible computations of an actor con�guration is de�ned in terms ofthe labelled transition relation 7! on con�gurations. Although this is, on the surfacean interleaving semantics, it is easy to modify our transition system to obtaina truly concurrent semantics either by forming a labelled transition system withindependence (Sassone et al., 1993), or by using concurrent rewriting (Meseguer,1992). 3.2.2 Decomposition and ReductionTo describe the internal transitions other than message receipt, a non-value expres-sion is decomposed uniquely into a reduction context �lled with a redex. Reduc-tion contexts identify the subexpression of an expression that is to be evaluatednext, they correspond to the standard reduction strategy (left-�rst, call-by-value)of (Plotkin, 1975) and were �rst introduced in (Felleisen and Friedman, 1986). Forfurther discussion of this method of de�ning reduction relations see (Honsell et al.,1995). In order to distinguish holes used for di�erent purposes, we use the sign forthe hole occurring in a reduction context, and call such holes redex holes (althoughthey may in fact be �lled with non-redex expressions).De�nition (Erdx R): The set of redexes, Erdx , and the set of reduction contexts,R, are de�ned byErdx = app(V;V)[ (Fn(Vn)� pr(V;V))R= f g [ app(R;E) [ app(V;R)[ Fn+m+1(Vn;R; Em)We let R range over R and r range over Erdx .



Actor Computation 19An expression e is either a value or it can be decomposed uniquely into a reductioncontext �lled with a redex. Thus, local actor computation is deterministic.Lemma (Unique decomposition):(0) e 2V; or(1) (9!R; r)(e = R[r ])Proof : An easy induction on the structure of e.Redexes can be split into two classes, purely functional and actor redexes. Theactor redexes are newadr(), initbeh(v0; v1), become(v), and send(v0; v1). Reductionrules for the purely functional case is given by a relation �7!X on expressions. X is a�nite collection of variables indicating the currently de�ned actor addresses, whichhence are not atoms, pairs, or functions.De�nition ( �7!X): Assume that X �Xis a �nite set of variables.(beta-v) R[app(�x:e; v)] �7!X R[e[x := v ]](delta) R[�(v1; : : : ; vn)] �7!X R[v 0]where � 2 Gn , v1; : : : ; vn 2 A tn , and �(v1; : : : ; vn) = v 0.(br) R[br(v ; v1; v2)] �7!X �R[v1] if v 2V� ((X�X) [ fnilg)R[v2] if v = nil(ispr) R[ispr(v)] �7!X �R[t] if v 2 pr(V;V)R[nil] if v 2V� ((X�X) [ pr(V;V))(fst) R[1st(pr(v0; v1))] �7!X R[v0](snd) R[2nd(pr(v0; v1))] �7!X R[v1](eq) R[eq(v0; v1)] �7!X �R[t] if v0 = v1 2 A tR[nil] if v0; v1 2 A t and v0 6= v1The rules for isatom and isnat are analogous to that for ispr, in particular el-ements of X are not atoms and not numbers. If the set X is empty we write �7!rather than �7!;. The single-step transition relation 7! on actor con�gurations isgenerated by the following rules.De�nition ( 7!):<fun : a>e �7!X e0 ) DD�; [e]a �EE�� 7! DD�; [e0]a �EE��where X = Dom(�) [ fag [ �<new : a; a0>DD�; [R[newadr()]]a �EE�� 7! DD�; [R[a 0]]a ; (?a)a 0 �EE�� a 0 fresh<init : a; a 0>



20 G. Agha and othersDD�; [R[initbeh(a 0; v)]]a ; (?a)a 0 �EE�� 7! DD�; [R[nil]]a ; (v)a 0 �EE��<bec : a; a0>DD�; [R[become(v)]]a �EE�� 7! DD�; [R[nil]]a 0; (v)a �EE�� a 0 fresh<send : a;m>DD�; [R[send(v0; v1)]]a �EE�� 7! DD�; [R[nil]]a �;m EE��m = <v0 ( v1><rcv : a; cv>DD�; (v)a <a ( cv>; �EE�� 7! DD�; [app(v ; cv )]a �EE��<out : m>DD� �;m EE�� 7! DD� �EE�0�if m = <a ( cv>, a 2 �, and �0 = � [ (FV(cv ) \Dom(�))<in : m>DD� �EE�� 7! DD� �;m EE��[(FV(cv)�Dom(�))if m = <a ( cv>, a 2 � and FV(cv ) \Dom(�) � �In the lambda reduction rule, expressions are reduced under the assumption thatDom(�) [ fag [ � are in fact actor addresses. In the rules for newadr and become,a 0 fresh abbreviates a 0 62 Dom(�) [ fag [ �. Each rule is given a label l consistingof a tag indicating the primitive instruction, and additional parameters. We write�0 l�! �1 if �0 7! �1 according to the rule labelled by l . We call this triple alabelled transition.i=o transitions are transitions with tags in or out. In all cases other than i=otransitions the �rst parameter names the focus actor of the transition. rcv tran-sitions are transitions with tag rcv. The remaining transitions are called exectransitions. The exec transitions correspond to the execution of functional or ac-tor redexes. The transitions are labelled to allow us to reason about sequences oftransitions in terms of the rules applied, and to allow for alternative representa-tion of computations, including: sequences of con�gurations; sequences of labelledtransitions; and sequences of labels. Note that we have chosen the labels to includesu�cient information that �0 is uniquely determined by � and l .De�nition (Enabled(�; l)): A transition l is said to be enabled in the con�gura-tion �, written Enabled(�; l), i� there is a con�guration �0 such that � l�! �0. Thetransition is said to be disabled i� it is not enabled. FormallyEnabled(�; l) , (9�0 2 K)(� l�! �0)Note that of the eight particular forms of con�guration transitions, only the<in : m> transition is always enabled (provided the message is of the correct form).



Actor Computation 21As mentioned above, we allow ill-formed messages to be created, but such mes-sages can never be delivered. The last three rules assure this by restricting the formof the message: the target must be an actor and the contents must be a communi-cable value. In the case of input, the actor is further restricted to be a receptionist.We could easily prevent the formation of ill-formed messages and actor states ifso desired. We chose not to, in order to have a consistently lazy dynamic errorchecking policy.A clone produced to carry on after a become is not allowed to initialize an actorcreated by its cloner. Of course it can initialize any actor that it created. This isa technical simpli�cation. With some additional bookkeeping we could keep trackof cloners and allow clones to initialize. Alternatively, this technical detail woulddisappear if we used the letactor construct for actor creation.These choices a�ect the details of expression equivalence, but not the basic prop-erties. Such choices will become more important if we want to model an implementedlanguage and consider matters such as signaling of exceptions.3.2.3 Computation Sequences and PathsDe�nition (Computation trees): If � is a con�guration, then we de�ne thecomputation tree for �, T (�), to be the set of all �nite sequences of labelled transi-tions of the form [�i li�! �i+1 i < n] for some n 2 N, with � = �0. We call suchsequences computation sequences and let � range over them.Lemma (Anonymity): If � <bec : a; a0>�! �0 and � is any computation sequencein the computation tree, T (�0), then � contains no transitions with label of theform <send : a 0; v>.De�nition (Computation paths � 2 T 1(�)): The sequences of a computa-tion tree are partially ordered by the initial segment relation. An in�nite computa-tion path from � is a maximal linearly ordered set of computation sequences in thecomputation tree, T (�). A �nite computation path from � is a linearly ordered setof computation sequences in the computation tree, T (�), which is maximal withrespect to transitions other than in. The reason for this minor distinction is that, asnoted before, in transitions are always enabled and unconditional maximality wouldeliminate the possibility of �nite computation paths. Note that a path can also beregarded as a (possibly in�nite) sequence of labelled transitions. We use T 1(�) todenote the set of all paths from �, and let � range over computation paths. Whenthinking of a path as a possibly in�nite sequence we write [�i li�! �i+1 i < ./]where ./ 2 N[ f!g is the length of the sequence.Since the result of a transition is uniquely determined by the starting con�gu-ration and the transition label, computation sequences and paths can be equallyrepresented by their initial con�guration and the sequence of transition labels. Thesequence of con�gurations can be computed by induction on the index of occur-rence.De�nition (C�g): Let � be a con�guration and let L = [li i < ./] be asequence of labels corresponding to a computation from �. The ith con�guration of



22 G. Agha and othersthe computation from � determined by L, C�g(�; L; i), is de�ned by induction oni as follows.(0) C�g(�; L; 0) = �(1) C�g(�; L � [li]; i + 1) = �0 where C�g(�; L; i) li�! �0.Thus, the path � determined by �; L is the sequence[C�g(�; L; i) li�! C�g(�; L; i + 1) i < ./]This notation has the advantage that when an initial starting con�guration is �xed,either implicitly or explicitly, computation sequences in the computation tree can beidenti�ed with sequences of labels. When the sequence L is �nite we let C�g(�; L)denote the �nal con�guration: C�g(�; L) = C�g(�; L;Len(L)). Note that label se-quences are related to CSP-like traces, but di�er in that they are possibly in�nite,and that our labels include more information than simply communication.De�nition (multi-step transition): Let L = [lj j < n] be a �nite sequenceof transition labels (possibly empty). L is a multi-step transition � L�! �0 just ifC�g(�; L) = �0. Or in other words, we can �nd a [�j j � n] such that � = �0,�0 = �n, and [�j lj�! �j+1 j < n].3.2.4 FairnessWe do not consider all paths admissible. We rule out those computations that areunfair, i.e. those in which there is some transition that should eventually happenbut does not. We begin by making the notion of fairness more formal.De�nition (Fair(�)): A path � = [�i li�! �i+1 i < ./] in the computation treeT 1(�) is fair, written Fair(�) if each enabled transition (other than in transitions)eventually happens or becomes permanently disabled.Fair(�) , (8i < ./)(9l)((Enabled(�i; l) ^ :(9m 2 M )(l = <in : m>)) )((9j � i)(�j l�! �j+1) _ (9j > i)(8k > j)(:Enabled(�k; l))))The transition system has the property that if l is enabled in �i then either itremains enabled in every subsequent con�guration until it is executed, or else l hasthe form <rcv : a; cv> and for some j � i a is busy and never again becomes readyto accept a message.De�nition (F(�)): For a con�guration � we de�ne F(�) to be the subset ofT 1(�) that are fair.F(�) = f� 2 T 1(�) Fair(�)gNote that �nite computation paths are fair, since by maximality all of the enabledtransitions must have happened.Lemma (Fairness): A �nite path is fair.Proof (fairness): If � = [�i li�! �i+1 i < M�1], then by maximality we musthave that (8l 6= <in : m>):Enabled(�M ; l). Consequently the path is fair, since allenabled transitions have either occurred or become disabled.



Actor Computation 233.3 Composition of Actor Con�gurationsActor con�gurations can be composed to form new actor con�gurations. This com-position operation is commutative, associative, and has the empty con�guration asunit. This is made precise by the following de�nitions and lemmas.De�nition (Composable): Two con�gurations �i = DD�i �i EE�i�i , i < 2 arecomposable if Dom(�0)\Dom(�1) = ;, �0\Dom(�1) � �1, and �1\Dom(�0) � �0.De�nition (Composition, decomposition): The composition �0 k �1 of com-posable con�gurations �i = DD�i �i EE�i�i , i < 2 is de�ned by�0 k �1 = DD�0 [ �1 �0 [ �1 EE�0[�1(�0[�1)�(�0[�1)(�0; �1) is a decomposition of � if �i, i < 2 are composable con�gurations, and� = �0 k �1.Lemma (AC): Let �i = DD�i �i EE�i�i , i < 3 be pairwise composable con�gura-tions. And let �; = DD ; ;EE be the empty con�guration. Then�0 k �1 = �1 k �0�0 k �; = �0(�0 k �1) k �2 = �0 k (�1 k �2)Proof : Using the AC properties of set union, the only thing to check is theequality of external actors for the two associations. It is easy to see that(((�0 [ �1)� (�0 [ �1)) [ �2) � (�0 [ �1 [ �2)= (�0 [ �1 [ �2) � (�0 [ �1 [ �2)= (�0 [ ((�1 [ �2) � (�1 [ �2)))� (�0 [ �1 [ �2)Furthermore, it is possible to independently de�ne composition operations onsets P of computation sequences or pathsP0 k P1such that(1) The computation tree of the composition of actor con�gurations is the com-position of the computation trees of the components.T (�0 k �1) = T (�0) k T (�1)(2) The set of fair computation paths of the composition of actor con�gurationsis the composition of the fair computation paths of the components.F(�0 k �1) = F(�0) k F(�1)Details of this construction are omitted for space considerations.



24 G. Agha and others4 Equivalence of ExpressionsIn this section we study the equivalence of expressions of our actor language. Ournotion of equivalence is a combination of the now classic operational equivalenceof (Plotkin, 1975) and testing equivalence of (de Nicola and Hennessy, 1984). Forthe deterministic functional languages of the sort Plotkin studied, this equivalence isde�ned as follows. Two program expressions are said to be equivalent if they behavethe same when placed in any observing context. An observing context is somecomplete program with a hole, such that all of the free variables in the expressionsbeing observed are captured when the expressions are placed in the hole. The notionof \behave the same" is (for deterministic functional languages) typically that eitherboth converge or both diverge. 4.1 EventsThe �rst step is to �nd proper notions of \observing context" and \behave thesame" in an actor setting. The analogue of an observing context is an observingactor con�guration: a con�guration that contains an actor state with a hole. Sincetermination is not relevant for actor con�gurations, we instead introduce an ob-server primitive, event and observe whether or not in a given computation, eventis executed. Our approach is similar in spirit to that used in de�ning testing equiv-alence for CCS (de Nicola and Hennessy, 1984).De�nition (event): Formally, the language of observing contexts is obtainedby introducing a new 0-ary primitive operator, event. We extend the reductionrelation 7! by adding the following rule.<e : a> DD�; [R[event()]]a �EE�� 7! DD�; [R[nil]]a �EE��De�nition (O): The observing con�gurations are con�gurations over the ex-tended language of the form DD�; [C]a �EE. We use O to denote the set ofobserving con�gurations, and let O range over O. Placing an expression in an ob-serving con�guration is just �lling the holes of the context with that expression.Thus, if O is an observing con�guration as above, then O [e] = DD�; [C[e]]a �EE.For an given expression e, the observing con�gurations for e are those O 2 O suchthat O [e] a closed con�guration.In our de�nition of observing con�guration, the holes appear in the current stateof an single executing actor. It is not hard to see that allowing holes in any actorstate does not change the resulting notion of equivalence. A generalization of thisfact, (ocx) is proved in x6.Since the language is nondeterministic, three di�erent outcomes are possible inplace of the two in the deterministic case: either event occurs for all possible com-putation paths, it occurs in some computation paths but not others, or it neveroccurs. We observe event transitions in the fair paths. We say that a computationpath succeeds, s, if an event transition occurs in it. This is the basic unit of obser-vation; on top of this derived notions can be de�ned. We say a computation pathis observed to fail, f , if it is not observed to succeed. obs(�) is s if � succeeds, and



Actor Computation 25f otherwise, and Obs(�) encodes the set of observations possible for all paths of aclosed actor con�guration.De�nition (observations): Let � be a con�guration of the extended language,and let � = [�i li�! �i+1 i < ./] be a fair path, i.e. � 2 F(�). De�neobs(�) = � s if (9i < ./; a)(li = <e : a>)f otherwiseObs(�) = 8<: s if (8� 2 F(�))(obs (�) = s)sf if (9� 2 F(�))(obs (�) = s) and (9� 2 F(�))(obs(�) = f )f if (8� 2 F(�))(obs (�) = f )4.2 Three EquivalencesThe natural notion of observational equivalence is that equal observations are madein all closing con�guration contexts. However, it is possible in some cases to use aweaker equivalence. An sf observation may be considered as good as an s observa-tion, and a new equivalence arises if these observations are equated. Similarly, ansf observation may be as bad as an f observation. We de�ne the following threeequivalences.De�nition (�=1;2;3):(1) (testing or convex or Plotkin or Egli-Milner)e0 �=1 e1 i� Obs(O [e0]) = Obs(O [e1]) for all observing contexts O 2 O(2) (must or upper or Smyth)e0 �=2 e1 i� Obs(O [e0]) = s , Obs(O [e1]) = s for all observing contextsO 2 O(3) (may or lower or Hoare)e0 �=3 e1 i� Obs(O [e0]) = f , Obs(O [e1]) = f for all observing contextsO 2 OBy construction each of these equivalence relations is a congruence.Theorem (congruence):e0 �=j e1 ) C[e0] �=j C[e1] for j 2 f1; 2; 3g4.3 Partial CollapseNote that may-equivalence (�=3) is determined by computation trees (that is byquanti�cation over �nite sequences rather than paths), since all events are ob-served after some �nite amount of time. Consequently this relation is independentof whether or not fairness is required. Since fairness sometimes makes proving equiv-alences more di�cult, it is useful that may-equivalence can always be proved ignor-ing the fairness assumption. The other two equivalences are sensitive to choice ofpaths admitted as computations. In particular when fairness is required, as in ourmodel, �=2 is in fact the same as �=1. In models without the fairness requirement,they are distinct. In either case, �=3 is distinct from �=1 and �=2.Theorem (partial collapse):



26 G. Agha and others(1 = 2) e0 �=2 e1 i� e0 �=1 e1(1 ) 3) e0 �=1 e1 implies e0 �=3 e1(3 6) 1) e0 �=3 e1 does not imply e0 �=1 e1To demonstrate (1 = 2) we consider a �xed pair of expressions e0; e1 and cat-egorize their closing con�guration contexts O according to what observations aremade by O [e0] and O [e1]. We say O is labelled o : o0 for o; o0 2 fs; sf; fg just ifObs(O [e0]) = o and Obs(O [e1]) = o0. This partitions the observing con�gurationcontexts of e0 and e1 into nine sets labeled o : o0 for o; o0 2 fs; sf; fg.Lemma (sets) characterizes the various possibilities for equivalence in terms ofwhich sets must be empty.Lemma (sets):� e0 �=1 e1 i� at most the sets labeled s : s, sf : sf , and f : f are non-empty.� e0 �=2 e1 i� the sets labeled s : sf , sf : s, s : f , f : s are all empty.� e0 �=3 e1 i� the sets labeled s : f , f : s, sf : f , f : sf are all empty.This characterization is summarized in the picture below. Here � indicates that theset must be empty, and p indicates that the set might be non-empty. The two �'dcases in �=2 are cases in which sets are allowed to be non-empty by the de�nition,but lemma (f.sf) below shows they are in fact always empty.�=1e1s sf fs p � �e0 sf � p �f � � p �=2e1s sf fs p � �e0 sf � p �f � � p �=3e1s sf fs p p �e0 sf p p �f � � pThe key to collapsing �=2 into �=1 is the observation that if Obs(O [e0]) = f andObs(O [e1]) = sf it is always possible to construct a O� such that Obs(O�[e0]) = s,and Obs(O�[e1]) = sf .Lemma (f.sf): For some e0; e1, if the set labeled f : sf is non-empty then theset labeled s : sf is non-empty. Symmetrically, if the set labeled sf : f is non-emptythen the set labeled sf : s is non-empty.Proof (f.sf): Let O 2 f : sf . Form O 0 by replacing all occurrences of event() inO by send(a; nil) for some fresh variable a. Let O� be obtained by adding to O 0 amessage <a ( t> and an actor a where a has the following behavior: If a receivesthe message t, it executes event() and becomes a sink, and if a receives the messagenil, it just becomes a sink. Recall that a sink is an actor that ignores its messageand becomes a sink. We claim O� 2 s : sf . If O [e0] never executes event(), thenin any fair complete computation, the t message will be received by a, so O�[e0]will always execute event(). If O [e1] executes event() in some computation, thenin the corresponding computations for O�[e1], sometimes nil will be received by abefore t is received and sometimes it won't, hence O�[e1] will execute event() insome computations, but not in all.Proof (partial collapse):1 = 2 Assume e0 �=2 e1. Then by (sets) the sets labeled s : sf , sf : s, s : f , f : s



Actor Computation 27are all empty. By (f.sf) f : sf and sf : f must also be empty. Hence by (sets),e0 �=1 e1. 1 = 21 ) 3 By (sets) 1 ) 33 6 ) 1 We construct expressions e0; e1 such that e0 �=3 e1, but :(e0 �=2 e1).Let e0 create an actor that sends a message (say nil) to an external actor a andbecomes a sink, and let e1 create an actor that may or may not send a messagenil to a depending on a coin ip (there are numerous methods of constructing coinipping actors), and also then becomes a sink. Let O be an observing con�gurationcontext that with an actor a that executes event just if nil is received. ThenObs(O [e0]) = s but Obs(O [e1]) = sf , so :(e0 �=2 e1). To show that e0 �=3 e1, showfor arbitrary O that some path in the computation of O [e0] contains an event i�some path in the computation of O [e1] contains an event. This is easy, becausewhen e1's coin ip indicates nil is sent, the computation proceeds identically toe0's computation. 3 6 ) 1Hereafter, �= (observational equivalence) will be used as shorthand for either �=1or �=2.The fairness requirement is critical in the proof of (1 = 2). For example in CCS,where fairness is not assumed, no such collapse of �=2 to �=1 occurs. If we omitted thefairness requirement we could make more �=-distinctions between actors. For exam-ple, let a0 be a sink. Let a1 be an actor that also ignores its messages and becomesthe same behavior, but it continues executing an in�nite loop. The in�nite loopingactor could prevent the rest of the con�guration's computation from progressing.In the presence of fairness this could not happen, so the two are equivalent. Thusfairness allows modular reasoning about liveness properties: one can reason aboutthe behavior of individual actors without worrying about whether composition withanother would cause such failures.4.4 Equivalence of Con�gurationsNow we extend the notion of observational equivalence to con�gurations.De�nition (Observing Con�gurations): The observing con�gurations for anactor con�guration, � = DD� �EE��, are con�gurations over the extended languageof the form �0 = DD�0 �0 EE�� . Note that if �0 is an observing con�guration for �,then �' is composable (in the sense of x3.3) with �.We are interested in observing internal event transitions rather than interac-tions with the environment. Thus we de�ne an operation Hide(�) hiding all thereceptionists of a con�guration.De�nition (Hide(�)): Hide(DD� �EE��) = DD� �EE;�De�nition (�0 �= �1): For �0 = DD�0 �0 EE�� and �1 = DD�1 �1 EE��, �0 �= �1i� Obs(Hide(�0 k �0)) = Obs(Hide(�1 k �0)) for all observing con�gurations �0 for�j, j < 2.



28 G. Agha and othersWe observe that, no two closed con�gurations can be distinguished by an externalobserver.We can extend the property of congruence with respect to expression constructionto congruence with respect to con�guration construction. Namely, replacing anexpression occurring in a con�guration by an observationally equivalent one yieldsan equivalent con�guration.Theorem (exp-c�g): If e0 �= e1 then(i) �0 = DD�; [C[e0]]a �EE�� �= DD�; [C[e1]]a �EE�� = �1(ii) �00 = DD�; (�x:C[e0])a �EE�� �= DD�; (�x:C[e1])a �EE�� = �01Proof : (i) We need to show that Obs(Hide(�0 k �0)) = Obs(Hide(�1 k �0)) forany observing �0. Note however that Hide(�0 k �0) = O [e0] and Hide(�1 k �0) =O [e1]) for some O 2 O, so the result follows directly from the de�nition of �=.(ii) We need to show that Obs(Hide(�00 k �0)) = Obs(Hide(�01 k �0)) for any observ-ing �0. Pick any �0 2 F(Hide(�00 k �0)), then we must �nd �1 2 F(Hide(�01 k �0))such that obs(�0) = obs(�1). There are two cases to consider. Either actor a neverbecomes active, or it becomes active �rst after k steps of computation. In the �rstcase, the ei are never touched, so both computations proceed uniformly, thus theirobservation and fairness behavior both correspond. In the second case, consider thestep where a receives its �rst message:DD�0; (�x:C[e0])a �; <a ( cv>EE<rcv : a; cv>�! DD�0; [app(�x:C[e0]; cv)]a �EE = O [e0]Factor �0 = �[e0] � �00, where �00 2 F(O [e0]) and �[ ] denotes a sequence whereeach con�guration in the sequence contains a hole that computes uniformly in thehole. Thus, Obs(O [e0]) = Obs(O [e1]) because e0 �= e1 and O is a con�gurationcontext. This means by the de�nition of Obs there is a path �01 2 F(O [e1]), suchthat obs(�00) = obs(�01). Let �1 = �[e1] � �01. Then, �1 2 F(Hide(�1 k �0)), sinceby construction it is a computation for (Hide(�1 k �0)), and because � is fairimplies � � � is fair for any � such that � � � is a computation path. Moreover,obs(�0) = obs(�1) because any event transitions in �[e0] also occur in �[e1], andobs(�00) = obs(�01) by hypothesis.5 Laws of Expression EquivalenceWith a notion of equivalence on actor expressions de�ned, a library of useful equiv-alences can be established. The �rst part of this section contains a collection ofpurely functional laws that continue to hold in the actor setting. The second partcontains a collection of laws for manipulating expressions that involve actor prim-itives. These laws are established in x6. These laws are not intended as a proofsystem for reasoning about actor systems, but as illustrations of the laws that can



Actor Computation 29be established using the methods of x6. Much work remains to develop a usableproof system. We conclude the section by establishing properties of some of theexamples given in x2. 5.1 Functional LawsSince our reduction rules preserve the evaluation semantics of the embedded func-tional language, many of the equational laws for this language (cf. (Talcott, 1993a))continue to hold in the full actor language. A �rst simple observation is that twocommunicable values are observationally equivalent i� they are the same value ex-pression.Lemma (cv): cv0 �= cv1 , cv0 = cv1Proof : The if direction is trivial. The only-if direction is proved by exhibitingan observing context that distinguishes expressions that are not equal. Clearly bothmust be atoms, or variables, or pairs, otherwise they can be distinguished using eqand ispr. For example,O = DD [if(eq(cv0; �); event(); nil)]a EEdistinguishes the atom cv0 from any non-atom (and any other atom). Similarly,O = DD [letfx := 0gletfy := 1gif(eq(x; �); event(); nil)]a EEdistinguishes the variables x, y. Similarly, if both are pairs, we can construct con-texts to distinguish di�erences in the components.The laws of the untyped computational lambda calculus (Moggi, 1988), and thelaws for conditional and pairing continue to hold in the actor setting. The followingtheorem is a sample of such laws.Theorem (functional laws):(beta-v) app(�x:e; v) �= e[x := v ](ift) if(v ; e1; e2) �= e1 if v 2 (A t � fnilg) [ L[ pr(V;V)(ifn) if(nil; e1; e2) �= e2(ifelim) if(v ; e; e) �= e(iam) �x:if(v ; e1; e2) �= if(v ; �x:e1; �x:e2) x 62 FV(v)(isprt) ispr(pr(v0; v1)) �= t;(isprn) ispr(v) �= nil v 2 A t [ L(fst) 1st(pr(v0; v1)) �= v0(snd) 2nd(pr(v0; v1)) �= v1Each of these laws (except for (iam)) is a consequence of the following operationallaw, established in x6.2.6.



30 G. Agha and othersTheorem (red-exp):e0 �7! e1 ) e0 �= e1The law (iam) is established in x6.3.3. The theorem (rcx) is a special case of atheorem proved in (Talcott, 1989).Theorem (rcx): If R is a reduction context and x 62 FV(R), then(letx) letfx := egR[x] �= R[e](if.dist) R[if(e; e1; e2)] �= if(e;R[e1];R[e2])In fact (rcx) can be derived from (beta-v), the if laws and the following specialinstances.(app) e0(e1) �= (�f:f(e1))(e0)(cmps) f(g(e)) �= (�x:f(g(x)))(e)(id) app(�x:x; e) �= eSome useful corollaries of (rcx) are the following.Corollary (uni-rcx):(let.dist) R[letfx := ege0] �= letfx := egR[e0](let.arg) v(letfx := e0ge1) �= letfx := e0gv(e1)(if.if) if(if(e0; e1; e2); ea; eb) �= if(e0; if(e1; ea; eb); if(e2; ea; eb))The above laws are really about equivalence of reduction contexts. They are in-stances of the operational law (red-rcx), established in x6.4.4. Two reduction con-texts are considered equivalent if placing an arbitrary expression in the redex holeresults in equivalent expressions. The law (red-rcx) says that if two reduction con-texts have a common �-reduct when the redex hole is �lled with a fresh variable(standing for an arbitrary value expression), then they are equivalent.Theorem (red-rcx): If there is some e0 such that R0[x] �7! e 0 and R1[x] �7! e 0where x is a fresh variable, then R0[e] �= R1[e] for any e.We also note that any expressions that hang (reduce in a �nite number of lambdasteps to a stuck state) or have in�nite lambda computations are observationallyequivalent. Note that if the reductions involve non-lambda steps the result clearlyfails, since they could have di�erent e�ects such as the sending of messages thatother actors in the con�guration may detect. We let stuck 2 Hang be a prototyp-ical stuck expression, for example app(0; 0), and let bot 2 In�n be a prototypicalexpression with in�nite computation, for example app(�x:app(x; x); �x:app(x; x)).To make these ideas more precise we de�ne Hang and In�n as follows.De�nition (Hang): Let Hang be the set of non-value expressions such thatevery closed instance lambda reduces (i.e. �7! in possibly 0 steps) to a stuck state{ an expression e 0 that decomposes as R[r ] where r is a functional redex (i.e anynon-actor redex) that does not reduce.De�nition (In�n): Let In�n the set of (non-value) expressions e such that every



Actor Computation 31closed instance has an in�nite lambda reduction sequence. Thus e 2 In�n just ifwe can �nd ej for j 2 N such that e0 = e and ej �7! ej+1.The following theorem is established in x6.2.7.Theorem (hang-in�n): If e0; e1 2 Hang [ In�n , then e0 �= e1.5.2 Basic Laws for Actor PrimitivesNow we consider the equational properties of the actor primitives, send, letactor,become, newadr, and initbeh. These laws are established in x6.2.8 and x6.2.9. As isthe case for a language with operations that modify state, seq(e; e) �= e fails to holdbecause the evaluation of e can have e�ects such as message sends. A stronger anal-ogy exists between the actor primitives and the reference primitives fmk; get; setg(see (Mason and Talcott, 1991; Honsell et al., 1995)). The construct letactor (thatis, newadr combined with initbeh) is an allocation primitive analogous to mk. Theprimitive become updates state analogously to set. The e�ect of send depends onthe state in a way analogous to get. There are limits to this analogy, for examplesend does not return anything of interest. Since send, become, and initbeh allreturn nil as values we have the following law.(triv) #(�x) �= seq(#(�x); nil) for # 2 fsend; become; initbehgThat letactor is an allocation primitive analogous to mk manifests itself in thefollowing (delay) and (gc) laws.(delay) letfy := e0gletactorf�x := �vge �= letactorf�x := �vgletfy := e0ge(gc) letactorf�x := �vge �= ewhere in (delay) no xi is free in e0, and y is not free in �x; �v , and in (gc) no xi isfree in e. Note that, because we have not allowed clones to initialize newly spawnedactors, the analogous property for newadr alone fails to hold. Namely,(non-delay)letfy := e0gletfx := newadr()ge1 6�= letfx := newadr()gletfy := e0ge1where x is not free in e0. Since, if evaluation of e0 executes a become and e1 is ofthe form initbeh(x; v), then the left-hand side evaluation of e1 will succeed, whilethe right-hand side evaluation of e1 will suspend.A letactor law analogous to (if.dist) is the following(if.letact) letactorf�x := �vgif(e0; e1; e2) �= if(e0;letactorf�x := �vge1;letactorf�x := �vge2)if no xi is free in e0. As a simple application of the laws already presented we showhow (if.letact) follows from a slightly simpler version (if.letact.z) where the test



32 G. Agha and othersexpression of the if is assumed to be a variable:(if.letact.z) letactorf�x := �vgif(z; e1; e2) �= if(z;letactorf�x := �vge1;letactorf�x := �vge2)Proof (if.letact):letactorf�x := �vgif(e0; e1; e2)�= letactorf�x := �vgletfz := e0gif(z; e1; e2)by (rcx.letx) and (congruence)�= letfz := e0gletactorf�x := �vgif(z; e1; e2) by (delay)�= letfz := e0gif(z; letactorf�x := �vge1; letactorf�x := �vge2)by (if.letact.z) and (congruence)�= if(e0; letactorf�x := �vge1; letactorf�x := �vge2) by (rcx.letx)if :letactSome other simple properties of letactor are (perm) and (split):(perm) letactorfx1 := v1; : : : ; xn := vnge�=letactorfxp(1) := vp(1); : : : ; xp(n) := vp(n)geif p is a permutation of f1; : : : ; ng(split) letactorfx1 := v1; : : : ; xn+k := vn+kge�=letactorfx1 := v1; : : : ; xk := vkgletactorfxk+1 := vk+1; : : : ; xn+k := vn+kgeif fxk+1; : : : ; xn+kg \ FV(v1; : : : ; vk) = ;And immediate consequence of (perm) and (split) is(perm-split) letactorfxk+1 := vk+1; : : : ; xn+k := vn+kgletactorfx1 := v1; : : : ; xk := vkge�=letactorfx1 := v1; : : : ; xk := vkgletactorfxk+1 := vk+1; : : : ; xn+k := vn+kgeif fxk+1; : : : ; xn+kg \ FV(v1; : : : ; vk) = ;, andfx1; : : : ; xkg \ FV(vk+1; : : : ; vn+k) = ;.Once allocated, an actor behavior is initialized by initbeh and updated bybecome. In analogy with set both become and initbeh satisfy certain, slightly



Actor Computation 33di�erent, cancellation laws:(can-b) seq(become(v0); become(v1)) �= seq(become(v0); nil) �= become(v0)(can-i) seq(initbeh(v ; v0); initbeh(v ; v1))�= seq(initbeh(v ; v0); stuck)�= seq(initbeh(v ; v0); bot)Note the di�erence between these two principles. In the case of become the secondcall is equivalent to nil, while in the case of initbeh it is stuck (which is equivalentto diverging). 5.2.1 Commuting OperationsHow the e�ects of the actor primitives interact with one another is of paramountimportance. We have seen some aspects of this interaction above. We now studythe interactions more systematically.De�nition (commutes): We say two operations #0 and #1 commute ifletfx0 := #0(�y)gletfx1 := #1(�z)ge �= letfx1 := #1(�z)gletfx0 := #0(�y)gefor all e 2 E, x0 62 �z, x1 62 �y and x0 distinct from x1. Similarly we say two expresionse0 and e1 commute i�letfx0 := e0gletfx1 := e1ge �= letfx1 := e1gletfx0 := e0geprovided that x0 62 FV(e1) and x1 62 FV(e0).newadr commutes with every operation except become. For example the expres-sionse0 = letfy := newadr()gletfz := become(b)ginitbeh(y; b 0)e1 = letfz := become(b)gletfy := newadr()ginitbeh(y; b 0)are not equivalent, since the �rst will always fail to execute the initialization andthe second will always succeed. A distinguishing context isDD (�x:event())a0; [seq(�; send(a0; 0))]a ;EEIf we allowed clones to initialize, then newadr would also commute with become. Onthe other hand, by (can-b) and (can-1) neither become nor initbeh commute withthemselves, since this amounts to equivalence of two becomes (or initializations)with di�erent behaviors. The remaining operation send, like newadr, does commutewith itself:(com-ss) seq(send(v0; v1); send(v2; v3)) �= seq(send(v2; v3); send(v0; v1))send also commutes with become(com-sb) seq(send(a0; v0); become(v1)) �= seq(become(v1); send(a0; v0))The question of whether or not two distinct operations commute is simpli�ed bythe observation, captured in (partial), that a computation may have observablee�ects even if a subcomputation diverges. This is in contrast to the sequential



34 G. Agha and otherscase, where an e�ect of a subcomputation is only observable if the computationcompletes. We say that a primitive # is total if for any con�guration of the formDD�; [R[#(�v)]]a �EE�� there is a reduction step with a as the focus actor.Lemma (partial): If # is not a total operation, then # does not commute withsend, become or initbeh.Proof (partial): If #(�y) diverges, thenletfx := #(�y)gletfx1 := send(a; v)gewill not execute the send, whereasletfx1 := send(a; v)gletfx := #(�y)gewill execute the send. Consequently the two expressions are easily distinguished.Similarly with the two operations become and initbeh.Since initbeh is partial, it does not commute with either send or become. Forexamplee0 = seq(initbeh(a0; b0); send(a1; 0))e1 = seq(send(a1; 0); initbeh(a0; b0))are distinguished byO0 = DD (�x:event())a1 ; (?a1)a0; [�]a �EEfor a 6= a1, or byO1 = DD (�x:event())a1 ; (b)a0 ; [�]a �EEAlso,e0 = seq(initbeh(a0; b0); become(�x:send(a1; 0)))e1 = seq(become(�x:send(a1; 0)); initbeh(a0; b0))are distinguished by O0;O1 if � contains <a ( 0>.(partial) emphasizes that the valid equations for actor primitives are sensitive tothe details of when we check for ill-formed redexes. For example if we restricted thesend redex to avoid ill-formed messages (com-ss,com-sb) would no longer hold.We summarize these results in the following:Lemma (commutes): n s i bn + + + -s + + - +i + - - -b - + - -(n) newadr commutes with send, newadr, and initbeh, but not with become.(s) send commutes with send, become, and newadr, but not with initbeh.



Actor Computation 35(i) initbeh commutes with newadr, but not with send, become, and initbeh.(b) become commutes with send, but not with initbeh, newadr, or become.Note that the remaining operations in F (i.e. the arithmetic operations and otherelements of G , branching br, and the pairing operations ispr; pr; 1st; 2nd) are allcontext insensitive, and thus those that are total commute with all other operations.In the case of if it is perhaps worth pointing out the following law:Lemma (commutes-if): If # commutes with e0 and e1, then it also commuteswith if(z; e0; e1)Proof : This follows from (if-lam,if-dist).Using these basic principles we can prove more complex properties, the followingtheorem being the most obvious.Theorem (commutes): Suppose that e0 and e1 are built up from Vusing onlythe constructs, if and let. Furthermore suppose every operation occurring in e0commutes with every operation occurring in e1. Thenletfx0 := e0gletfx1 := e1ge �= letfx1 := e1gletfx0 := e0geprovided xj is not free in e1�j for j < 2,Proof (commutes): The proof is by induction on the complexity of e0. Wesketch the induction step. We may assume, without loss of generality, that e0 de-composes into R[#(�y)] with R being non-trivial. Thenletfx0 := e0gletfx1 := e1ge �=�= letfx0 := R[#(�y)]gletfx1 := e1geby hypothesis�= letfx0 := letfz := #(�y)gR[z]gletfx1 := e1geby (cong) and (letx)�= letfz := #(�y)gletfx0 := R[z]gletfx1 := e1geby (let.dis)�= letfz := #(�y)gletfx1 := e1gletfx0 := R[z]geby the induction hypothesis and (cong)�= letfx1 := e1gletfz := #(�y)gletfx0 := R[z]geby the induction hypothesis and (cong)�= letfx1 := e1gletfx0 := letfz := #(�y)gR[z]geby (let.dis)�= letfx1 := e1gletfx0 := e0geby (cong) and (letx)



36 G. Agha and othersNote that the theorem fails in the case when the expressions contain app and �due to the possibility of divergence.5.3 Introductory Examples RevisitedTo illustrate the application of the actor expression laws we establish some prop-erties of the actor behaviors introduced in x2. First we show that the behaviors b5and b50 from x2.1 are equivalent.Lemma (b5):b5 �= b50whereb5 = rec(�y:�x:seq(send(x; 5); become(y)))b50 = rec(�y:�x:seq(become(y); send(x; 5)))Proof : By (commutes) seq(send(x; 5); become(y))) �= seq(become(y); send(x; 5))).The result follows using the congruence property of �=.A generalization of the (gc) property of letactor is that allocation of an actorwith suitably restricted behavior followed by sending it a message and then forget-ting that actor is equivalent to the external e�ects of applying that behavior. Asimple example of this is the following property of cells. (Recall that the behaviorof a cell, Bcell, was de�ned in x2.2)(cellb) letactorfa := Bcell(0)gsend(a; mkget(c)) �= send(c; 0)This property is proved in x6.2.9.Three actor behaviors, Btreeprod , B1treeprod , and B2treeprod were de�ned in x2.3 forcomputing the treeprod function (also de�ned in x2.3). Note that Btreeprod andB1treeprod are not equivalent as lambda expressions. They are only equivalent underthe assumption that the self parameters are bound to the actor in which the codeis executing, or at least one of equivalent behavior. The statement of equivalencehas the form:letactorfa := Btreeprod (a)ga �= letactorfa := B1treeprod (a)gaProving this is beyond the scope of the methods developed this paper, as it re-quires reasoning about interactions with the enviornment, not simply isolated localcomputations. However, we can use the actor laws developed here to show that thethird variation, B2treeprod , is equivalent to B1treeprod .Lemma (tp.1.2):B1treeprod �= B2treeprodProof : This follows from the equivalence ofif(e0; e1; letactorfnewcust := bge2) �= letactorfnewcust := bgif(e0; e1; e2)where



Actor Computation 37e0 = or(isnat(l); isnat(r))e1 = send(cust(m); treeprod(l) � treeprod(r))b = Bjoincont (cust(m); 0; nil)e2 = seq(send(self ; pr(l; newcust)); send(self ; pr(r; newcust)))which in turn follows from (gc) and (if.letact).6 Proving Expression EquivalenceIn this section we develop methods for proving expressions observationally equiv-alent. In the remainder of this initial part we discuss informally some of the com-plications that arise to motivate our proof technique. In x6.1 we given an informaloutline of the general method and briey discuss the three special cases developedhere. This subsection concludes with some techical matters that can be skippedby the reader who wants only to understand the intuitions and not the technicaldetails. In x6.2 we treat the �rst special case { equivalence by common reduct. Theinitial subsections develop the necessary technical details. x6.2.6 contains the maintheorem for the case of �nite reduction involving no actor primitives. The statementand initial informal part of the proof can be understood without digging into thetechnical details by just thinking of the meta variables decorated with little circlesuperscripts as denoting syntactic entites with holes in which expressions to becompared can be placed and observing the presence of holes does not e�ect compu-tation except when a hole is exposed (touched). In the remainder of the subsectionwe give some technical details for extensions of the basic method for the commonreduct case. x6.2.7 treats stuck and in�nite (functional) computations. x6.2.8 ex-tends the proof of x6.2.6 to prove the delay theorem for letactor. x6.2.9 generalizesthe basic method to treat reductions involving actor primitives. The remaining twosubsections give the technical details for applying the general method to two stagereduction and equivalence of reduction contexts.To illustrate the complications that can arise in attempting to establish equiva-lences we consider a simple case: succ(0) �= 1. It is simple for two reasons: thereare no free variables occurring, and only one step of computation separates succ(0)and 1. By the de�nition of �=, we need to establishObs(O [succ(0)]) = Obs(O [1])for all observing contexts O . To establish this, we construct, for each computationpath �0 2 F(O [succ(0)]), a �1 2 F(O [1]) such that obs(�0) = obs(�1). Similarly foreach computation path �1 2 F(O [1]), we construct a �0 2 F(O [succ(0)]) such thatobs(�0) = obs(�1). We call such a construction a path correspondence. Informally,the path correspondence is constructed as follows. First consider how from a path�0 in F(O [succ(0)]) we obtain a path in F(O [1]). At each point in �0 wherethe succ(0) is reduced to 1, we remove this step, giving path �1. Describing thisoperation in detail requires care, for there could be other independent occurrencesof the reductions of succ(0) in �0 which are not to be removed. We then can



38 G. Agha and othersshow that �1 is a computation for O [1], with the same observable outcome andsame fairness property as �0. The converse construction is similar, except stepscomputing succ(0) are inserted into �0 each time the 1 �rst appears in a reductioncontext. Again this must be done only for occurrences of 1 arising from placing 1in the holes of O .These two expressions di�er by only one step of computation; in general theycould di�er by more than one step, and could both reduce to a common reductrather than one reducing to the other, e.g. pred(succ(1)) �= succ(0). The com-plication arising from this case is the two-step execution of pred(succ(1)) can beinterleaved with computations of other actors and thus a local replacement is notpossible. To solve this problem the computation path is put in an equivalent canoni-cal form with both steps adjacent. In general we may cluster together as many stepsof an individual actor as necessary.A complication also arises in proving equations that may contain free vari-ables, for instance 1st(pr(x; 0)) �= x. Such expressions may be self-substituted:if 1st(pr(x; 0)) occurs in the local context app(�y:app(y; y); �x:�), upon computingthe free x in 1st(pr(x; 0))) will be replaced with �x:1st(pr(x; 0))). This means thenecessary replacements are not at but may be nested. A notion of generalized holeis introduced to account for this nesting.In general we give methods for establishing three di�erent varieties of expressionequivalence; the above informal description describes only the �rst variant. Thethree variants are as follows.(1) The �rst variant treats equivalence of expressions that have a common reduct{ i.e. expressions that reduce in 0 or more steps to the same expression havingthe same e�ects (sends, becomes, creation of new actors, initializing new actors).This is called the common reduct case.(2) The second variant is an elaboration of the �rst, treating expressions that re-duce to lambda abstractions that are application equivalent { i.e. have a commonreduct when applied to any value. This is called the two-stage reduction case.(3) The third variant treats equivalence of reduction contexts. This is called theequivalence of reduction contexts case.We provide examples of the use of these techniques by using them to establish theequational laws stated in x5.6.1 The General MethodEach of these three methods is based on the idea of using con�guration templatesto establish a correspondence between the fair computations of con�gurations con-taining the entities to be proved equivalent. A con�guration template is simply acon�guration with holes, i.e. schematic variables, that may be instantiated by var-ious sorts of syntactic entities. Observing contexts correspond to a special case ofcon�guration templates.The �rst step then is to choose a class of con�guration templates CT such thate0 �= e1 if Obs(ct[e0]) = Obs(ct[e1]) for all templates ct 2 CT . To establish theequality of observations, it is su�cient to construct a path correspondence. That



Actor Computation 39is, to provide for each �0 2 F(ct[e0]), a �1 2 F(ct[e1]) such that obs(�0) = obs(�1)and conversely. The crucial fact concerning con�guration templates is that one cancompute symbolically with them in the sense that computation is parametric in theholes. We call this form of computation uniform computation or uniform reduction.A suitable class of con�guration templates is obtained by extending each syntacticclass to allow holes and de�ning appropriate notions of hole �lling. Decompositiontheorems and schematic reduction rules are then developed. In each of the threemethods the only essential di�erence is the type and number of holes needed:(1) For the common reduct case we de�ne templates by adding a single hole, �,for expressions. We call this hole an expression hole.(2) For the two stage reduction case we need not only a hole for expressions,but also a countable family of holes for lambda abstractions. We call these holesabstraction holes and they are denoted by .j for j 2 N. Note that these holes are�lled by values, speci�cally by lambda abstractions, not simply by expressions.Since the lambda abstractions may contain free variables, we need a family ofholes corresponding to the di�erent enviroments in which they are closed.(3) For the equivalence of reduction contexts we need an entirely new kind ofhole, �, for reduction contexts. We call it a reduction context hole. Note thatoccurrences of holes will be �lled by reduction contexts and are not to be confusedwith redex holes. As far as we are aware the introduction of holes that are �lledby contexts is completely novel.For each variant, syntactic classes X are annotated with the signs of the sorts ofholes they contain: �X for expression holes; �.X for expression and lambda abstrac-tion holes; and �X for reduction context holes. We pre�x the names of these classesby E-, LE-, or R- respectively. Thus E-expressions are expression templates withholes for expressions, �E is the set of E-expressions, and we let �e range over �E . Asimilar convention holds for the other syntactic classes and hole types.The idea underlying the construction of a path correspondence to establish equiv-alence is the same for each of the three cases. It relies on the ability to localizedi�erences in computations as multi-step transitions (x3.2.3), and to use holes toformalize the aspects of computation that are independent of the local di�erences.Consider the case of proving expressions equivalent using templates with expres-sion holes. We consider fair computation paths starting from an E-con�gurationwith holes �lled by one of the expressions, say e0. For each such path, �0, we showhow to obtain a sequence of E-con�gurations satisfying two conditions. The �rstis that �lling the holes in the sequence of E-con�gurations with e0 (and �lling intransition labels) yields �0. The second is that �lling the holes in the sequence ofE-con�gurations with e1 (and expanding multi-step transitions) yields a fair com-putation path with the same observation. The other two cases are simple variationson this idea. 6.1.1 Some Preliminary Technical DetailsOne of the keys requirements for uniform computation is to ensure that transitionscommute with hole �lling; except of course when the hole is touched, i.e. information



40 G. Agha and othersabout the contents of the hole is required to carry out the step. Consider theschematic redex app(�x:�; v). We need a notation that allows us to carry out thisreduction in such a way that �lling the hole and then reducing gives the same resultas reducing and then �lling the hole. For this purpose we associate with each holea substitution to be applied when the hole is �lled. The domain of the substitutionalso determines the variables of an expression that are trapped at the hole. Thislocalizes trapping and allows renaming of lambda-variables even in the presenceof holes (which is not the case for traditional notions of expression context). Adetailed development of this notation and discussion of related ideas can be foundin (Talcott, 1991; Talcott, 1993b). We use �[��] to denote an expression hole withassociated substitution �� (which may in turn have expressions holes in its range),a similar notation holds for the other classes of holes: .j[�.�] for abstraction holes,and �[��] for reduction context holes.To simplify de�nitions of syntactic classes we treat app on a par with elements ofF2. We use �n for syntactic operations of arity n, and �en to indicate the operationsof the extended language (i.e. �0 extended to include event). Thus:De�nition (�n �en):�2 = F2 [ fappg �n = Fn for n 6= 2�e0 = �0 [ feventg �en = �n for n 6= 0As the last technical detail, we make precise the sense in which we are able tolocalize di�erences in computations as multi-steps. We �rst de�ne the notion ofthread segment, and then show that any family of disjoint thread segments in acomputation path can be regrouped as multi-steps without e�ecting the fairness orobservation made of the path.A thread segment, I, at a in � is a �nite subsequence of exec transitions of �with focus actor a or a clone of a created by a become such that any gaps in thesequence are transitions with some other focus, or at a after a new message receipt.De�nition (thread segment): Let� = [�i li�! �i+1 i < ./], and � 2 F(�),I = [ij j < n] such that j < j0 < n ) ij < ij0 ,L(I; �) = [lij j < n], the transition sequence corresponding to I in �.Then I is a thread segment at a in � if(1) L(I; �) contains no rcv, in or out, and(2) L(I; �) is a computation for DD�i0cfag ;EEfagFV(�i0 (a)).As a consequence li0 has focus a. Note that condition (2) makes explicit that athread segment is essentially running the focus actor in a con�guration with onlyitself. With no rcvs, ins, or outs only that actor or its become clones can execute.Theorem (in�nite-macro-steps): Let � = [�i li�! �i+1 i < ./] 2 F(�). LetIj = [ij;0; : : : ij;nj ] for j < J � ./ be a (possibly in�nite) family of thread segmentsin � such that(a) if j < j0 then ij;0 < ij0;0, and(b) if j 6= j0 the Ij and Ij0 have empty intersection.



Actor Computation 41Then there is a bijection, �, on ./ such that letting �0 = C�g(�0; [l�(i) i < ./])(recall the de�nition of C�g from x3.2.3)(1) �0 2 F(�0)(2) �(ij;k+1) = �(ij;k) + 1 for j 2 J , and 0 � k < nj .Part (2) says that in �0 the thread segments of � marked by Ij for j 2 J occuras multi-steps, that is, with no interleaved computation steps. Note that obs(�0) =obs(�).Proof : � is constructed by induction on the index set, one permutes the execsteps of each successive segment across interleaved steps in the obvious way. Bythe de�nition of thread segment and the disjointness requirement, we see that per-mutations only involve moving exec steps before steps with distinct focus. Hencethe resulting sequence of labels de�nes a computation. Also the enabledness is note�ected by such permutations (except possibly enabling a transition earlier). Alltransitions that occur in � also occur in �0 this means that fairness is also preserved.The notion of thread segment I at an actor in a path � can be generalized toallow transitions of a subcon�guration { a group of actors and messages. The keyrequirements are as before that L(I; �) is a computation for the subcon�guration,and that none of the transitions involve interaction with exterior con�guration {i.e. no in or out transitions (receives of internal messages are allowed, but messagesfrom other parts of the con�guration are not allowed to come in).6.2 Common Reduct CaseWe now treat the common reduct case in depth. The other two cases follow in thesame manner and we allow ourselves to be a little more terse.6.2.1 E-SyntaxAs mentioned above, syntactic classes, X, with expression holes are indicated bythe mark �X. Metavariables ranging over these classes are indicated by the samemark, and we pre�x the names of these classes by E-. Thus we have E-expressionswhere �e ranges over �E , E-con�gurations where �� ranges over �K, etc. We �rstde�ne the E- analogs of expression, value expression, and value substitution.De�nition (�E �V �S):�V= A t [X[ �X:�E [ pr(�V; �V)�E = �V[�en(�En) [ �[�S]�S= X f! �VAs before, � is the only binding operator, and free variables of E-expressions arede�ned as follows:



42 G. Agha and othersDe�nition (FV(�e) FV(��)):FV(�e) = 8>><>>:FV(��) if �e = �[��]f�eg if �e 2XFV(�e0)� fzg if �e = �z:�e0FV(�e1) [ : : :[ FV(�en) if �e = �(�e1; : : : ; �en) and � 2 �enFV(��) = [x2Dom(��)FV(��(x))The variables in the domain of occurrences of �� are neither free or bound. Inparticular, renaming of bound variables only applies to the range of a substitutionassociated with a hole, not to its domain.De�nition (�e[��] ��1 � ��2): Substitution is extended to E-expressions asfollows:�e [��] = 8>>>><>>>>: �[�� � ��0] if �e = �[��0]�e if �e 2X� Dom(��)��(�e) if �e 2 Dom(��)�z:�e0[��c(Dom(��)� fzg)] if �e = �z:�e0 and z 62 FV(��)�(�e0[��]; : : : ; �en[��]) if �e = �(�e1; : : : ; �en) and � 2 �en��1 � ��2 = �x 2 Dom(��2):��2(x)[��1]As de�ned here substitution is a partial operation. Using renaming substitutionswe can de�ne � renaming in the usual way. We consider E-expressions (and entitiescontaining them) to be equivalent if they di�er only by � renaming. Thus, for anysubstitution we can always choose an � variant so that substitution is de�ned. Notethat such renaming is not possible in the case of traditional contexts where holeshave no associated substitution (c.f. (Talcott, 1993b)).Expression hole �lling is de�ned by induction on the structure of �e . We let�e[� := e] be the result of �lling expression holes in �e with e. Like substitution, weavoid capture of free variables in e by lambda binding. All capture is done at holeoccurrences by the associated substitution.De�nition (�e[� := e]):�e [� := e] = 8>><>>: e[��[� := e]] if �e = �[��]�(�e1[� := e]; : : : ; �en[� := e]) if �e = �(�e1; : : : ; �en) and � 2 �en�v if �e = �v 2 A t [X�x:�e0[� := e] if �e = �x:�e 0 and x not free in e��[� := e] = �x 2 Dom(��):��(x)[� := e]The following example illustrates hole �lling and variable scoping. Let�v = �x:if(x; �[fy := 0g]; z)�� = fy := �vg�e = �z: � [��]e = �(x; y):



Actor Computation 43Then�v [� := e] = �w:if(w; �[fy := 0g][� := e]; z) note the change in bound variable= �w:if(w; e[fy := 0g]; z)= �w:if(w; �(x; 0); z) = v��[� := e] = fy := �v [� := e]g= fy := �w:if(w; �(x; 0); z)g�e [� := e] = �z:(�[��][� := e])= �z:(e[��[� := e]])= �z:�(x; �w:if(w; �(x; 0); z))The following lemma is the key to developing a notion of uniform computation.Lemma (�l-subst): Hole �lling and substitution commute.�e [��][� := e0] = �e[� := e0][��[� := e 0]]if Dom(��) \ FV(e 0) = ;.Proof : By induction on the structure of �e. We assume the names of boundvariables in �e have been chosen not to conict with any free variables in e 0, or therange of ��, or the domain of ��. As examples, we consider the cases where �e is alambda abstraction or a hole. If �e = �z:�e0 then�e [��][� := e0]= (�z:�e0[��])[� := e 0]= �z:(�e0[��][� := e 0]) by hygiene assumptions= �z:(�e0[� := e0][��[� := e 0]]) by the Induction Hypothesis= (�z:�e0[� := e0])[��[� := e 0]] by hygiene assumptions= �e[� := e 0][��[� := e 0]]If �e = �[��0] then�e [��][� := e0]= �[��0][��][� := e 0]= (�[�z 2 Dom(��0):��0(z)[��]])[� := e 0]= e0[�z 2 Dom(��0):��0(z)[��][� := e 0]]= e0[�z 2 Dom(��0):��0(z)[� := e 0][��[� := e0]]] by the Induction Hypothesis= e0[��0[� := e 0]� ��[� := e0]]= �[��0][� := e0][��[� := e0]] by hygiene assumptions= �e[� := e 0][��[� := e 0]]Next we de�ne analogs of redex and reduction context.



44 G. Agha and othersDe�nition (�R �E rdx):�R= f g [�m+n+1(�Vm; �R; �En)�E rdx = �en(�Vn)By our conventions �r range over �E rdx and �R range over �R. Note that E-reductioncontexts possess two types of holes, consequently we must disambiguate the pro-cess of hole �lling. Note that the unique occurrence of a redex hole is not adornedwith a substitution, consequently the process of �lling the redex hole, , with theE-expression, �e , remains unchanged, and we denote it by �R[ := �e].In the case of multiple hole �lling we write �R[� := e0][ := e] for the result of�lling the expression holes with e0, and the redex hole with e.Lemma (E-properties):(1) �R[� := e0][ := e] = �R[ := e][� := e0](2) Filling an E-expression, E-reduction context, or E-redex with an expressionyields an expression, reduction context, or redex, respectively.6.2.2 E-Expression DecompositionWe now give a decomposition lemma for E-expressions: An E-expression �e is eitheran E-value (element of �V) or it can be decomposed uniquely into an E-reductioncontext �lled with either an E-redex or with an expression hole.Lemma (E-expression decomposition):(0) �e 2 �V; or(1) (9!�R; �r)(�e = �R[ := �r ]); or(2) (9!�R; ��)(�e = �R[ := �[��]])Proof : An easy induction on the structure of �e . We consider two example cases.First, suppose �e = �[��]. Then we have case (2) with �R = . Second, suppose�e = �(�e1; : : : ; �en). If �e i 2 �V for 1 � i � n, then we have case (1) with �R =(and �r = �e). If �e i 62 �V for some 1 � i � n, assume k to be the least such i.Then by the induction hypothesis, �ek decomposes either as (i) �R0[ := �r ], or as(ii) �R0[ := �[��]]. Taking �R = �(�e1; : : : ; �ek�1; �R0; �ek+1; : : : ; �en) we obtain thedesired decomposition of �e. 6.2.3 E-Con�gurationsAn E-con�guration, ��, is formed in the same manner as a simple con�guration,using E-expressions and E-values instead of simple expressions and values.De�nition (�K):�K = DD �A c �M EE��where�A c = A d f! �A s



Actor Computation 45�A s = (�V) [ [�E] [ f(?Ad)g�M = <�V( �V>and the constraints speci�ed in the de�nition of actor con�gurations in x3 aresatis�ed.y We let �� range over �K, and �� range over �A c. Filling expression holesof an E-con�guration, E-actor map, E-actor state, E-multiset of messages, and E-messages is de�ned in the obvious manner. Let �X stand generically for an elementof one of these E-syntactic classes, then we de�ne �X[� := e] as follows:De�nition (�X [� := e]):�X [� := e] = 8>>>>>>>>>><>>>>>>>>>>:DD ��[� := e] ��[� := e]EE�� if �X = DD �� ��EE���x 2 Dom(��):��(x)[� := e] if �X = ��((�x:�e)[� := e]) if �X = (�x:�e)[�e[� := e]] if �X = [�e](?a) if �X = (?a)f�m[� := e] �m 2 ��g if �X = ��<�v0[� := e] ( �v1[� := e]> if �X = <�v0 ( �v1>An E-con�guration, ��, is closing for e if ��[� := e] is a closed con�guration.Dually an expression e is a valid �lling for an E-con�guration, ��, if ��[� := e] is aclosed con�guration. As for atoms and variables, the notion of communicable valueremains unchanged and we do not introduce new notation for these. In particular,although messages may have holes, a message with a hole can e�ectively be ignored.This is because holes in E-values must occur inside �'s and hence �lling theseholes cannot yield communicable values or actor addresses. Thus a message witha hole can never be processed. The next lemma expresses the fact that closingE-con�gurations make just the same observations as simple observing contexts.Lemma (ocx): e0 �= e1 i� Obs(��[� := e0]) = Obs(��[� := e1]) for all �� thatclose e0; e1.Proof : The backward implication is easy to see, since O is (with suitable trans-lation to account for trapping at holes rather than at lambdas) a subset of �K.The idea for the proof of the forward implication is to de�ne for each con�gura-tion context ��, an observing context O whose computations give rise to the sameset of observations. In fact O evolves to �� in a �nite number of steps. For anE-expression �e we de�ne �e? to be the result of recursively replacing decoratedholes �[��] by applications app(: : :app(�x1: : : :�xn:�; ��(x1)?); : : : ; ��(xn)?) wherefx1; : : : ; xng = Dom(��). Let �� = DD �� �EE, let A = [ai i < n] = Dom(��), andde�ne O = DD [e��]â ;EE where â 62 A, and e�� is constructed as follows. LetE = fi < n (9�ei)(��(ai) = [�ei])g, and let nE be the cardinality of E.I = fi < n (9�v i)(��(ai) = (�v i))g.Bi(a0; : : : ; an�1) = �v?i , if ��(ai) = (�v i).y The only condition whose meaning is altered in this general setting is (2), where thefree variables of any hole occurrences (namely the free variables in the range of theassociated substitution) must be taken into consideration.



46 G. Agha and othersBi(a0; : : : ; an�1) = �a:seq(send(a; 0); �e?i ), if ��(ai) = [�ei].� = f<zj ( �v 0j> j < nMgDe�neW�� = rec(�b:�k:�m:if(eq(k; 0); seq(send(zj ; (�v 0j)?)j<nM ); become(b(k � 1))))e�� = letfai := newadr()gi<nseq(initbeh(ai; Bi(a0; : : : ; an�1))i2I[E ;send(ai; â)i2E ;become(W��(nE)))Now, we claim that for any computation of ��[� := e] there is a corresponding com-putation (with same observations) of O [e] obtained by accepting all the startupmessages, sending and accepting the acknowledgments, and completing the compu-tation of the initializing actor (which can then be ignored). Conversely any compu-tation of O [e] has a corresponding computation of ��[� := e] obtained by ignoringthe �nite amount of initializing activity. A more detailed proof can be given alongthe lines of the proof of the theorem (fun-red-eq) below.6.2.4 E-ReductionThe reduction relations �7!X and 7! are extended to the generalized domains in theobvious fashion, simply by liberally annotating metavariables with �'s, modulo theextension of substitution to E-expressions. As examples, we give the (beta-v), (br),and (eq) clauses of �7! and the internal transitions for 7! on closed E-con�gurations.De�nition ( �7!X):(beta-v) �R[ := app(�x:�e; �v )] �7!X �R[ := �e[x := �v ]](br) �R[ := br(�v ; �v1; �v2)] �7!X � �R[ := �v1] if �v 2 �V� ((X�X) [ fnilg)�R[ := �v2] if �v = nil(eq) �R[ := eq(�v0; �v1)] �7!X � �R[ := t] if �v0 = �v1 2 A t�R[ := nil] if �v0; �v1 2 A t and �v0 6= �v1De�nition ( 7!):<fun : a> �e �7!Dom(��)[fag �e 0 ) DD ��; [�e]a ��EE 7! DD ��; [�e 0]a ��EE<new : a; a0> DD ��; [�R[ := newadr()]]a ��EE 7!DD ��; [�R[ := a0]]a ; (?a)a 0 ��EE a0 fresh<init : a; a0> DD ��; [�R[ := initbeh(a 0; �v )]]a ; (?a)a 0 ��EE 7!DD ��; [�R[ := nil]]a ; (�v)a 0 ��EE<bec : a; a0> DD ��; [�R[ := become(�v )]]a ��EE 7!



Actor Computation 47DD ��; [�R[ := nil]]a 0; (�v)a ��EE a 0 fresh<send : a;m> DD ��; [�R[ := send(�v0; �v1)]]a ��EE 7!DD ��; [�R[ := nil]]a ��;m EE m = <�v0 ( �v1><rcv : a; cv> DD ��; (�v)a <a ( cv>; ��EE 7! DD ��; [app(�v ; cv)]a ��EE6.2.5 E-Uniform ComputationThe notion of E-uniform computation is made precise in the following de�nitionsand lemmas. The basic idea is that given a decomposition of a con�guration as anE-con�guration with holes �lled by a given expression, any transition step leadingfrom that con�guration is either independent of what appears in the holes, or itexplicitly uses information about the contents of some hole occurrence.De�nition (E-hole touching): Let �� = DD �� ��EE. We say that �� touches ahole at a if ��(a) = [�R[ := �[��]]] for some �R, ��.We say that a transition � l�! �0 touches a hole relative to a decomposition� = ��[� := e] if l has focus a and �� touches a hole at a.Lemma (E-Uniform Computation):(1) If �� l�! ��0, then ��[� := e] l�! ��0[� := e] for any valid �lling expression e.(2) If �� has no transition with focus a (and a is an actor of ��), then either ��touches a hole at a or ��[� := e] has no transition with focus a for any valid�lling expression e.(3) If � l�! �0 and � = ��[� := e], then either the transition touches a hole or wecan �nd ��0 such that �0 = ��0[� := e] and �� l�! ��0.Proof (1): This is proved by considering cases on the transition rule applied.The only interesting case is (beta-v). This follows from (�l-subst) 1Proof (2): Assume �� = DD �� ��EE has no transition with focus a, and �� doesnot touch a hole at a. Then one of the following holds:(i) ��(a) = (?a 0)(ii) ��(a) = (�v) and �� contains no messages deliverable to a(iii) ��(a) = [�v](iv) ��(a) = [�R[ := initbeh(�v0; �v1)]] where �v0 is not the address of anuninitialized actor created by a(v) ��(a) = [�R[ := �r ]] where �r is a non-actor redex that is stuck.In each of these cases, it easy to see that there will be no transition with focus aenabled when the expressions holes are �lled. 2Proof (3): Assume � = DD� �EE l�! �0 = DD�0 �0 EE, � = ��[� := e], and thetransition does not touch the hole. Thus �� = DD �� ��EE where � = ��[� := e] and� = ��[� := e]. We want to �nd ��0, ��0 such that �� l�! ��0 = DD ��0 ��0 EE, �0 =��0[� := e], and �0 = ��0[� := e]. Since we are considering closed con�gurations there



48 G. Agha and othersare no i=o transitions. Thus, we need to consider only two cases rcv transitions andexec transitions. We split the exec transitions into functional and actor primitives.Receive: l = <rcv : a; cv>, <a ( cv> 2 �, and �(a) = (v). Thus ��(a) = (�v)with v = �v [� := e]. Thus we let ��0 = ��fa := [app(�v ; cv)]g, and �� = ��0[f<a (cv>g.Execution-lambda: l = <fun : a>, �(a) = [R[ := r ]] and r �7!Dom(��)[fag e0.Thus ��(a) = [�R[ := �r ]] with R = �R[� := e], and r = �r [� := e]. Thus wewant to �nd �e 0 such that �r �7!Dom(��)[fag �e 0. Then ��0 = ��fa := [�R[ := �e 0]]gand ��0 = ��. If r = app(�z:e0; v) (z chosen fresh), then e 0 = e0[z := v ], and �r =app(�z:�e0; �v) where e0 = �e0[� := e] and v = �v [� := e]. Take �e 0 = �e0[z := �v ]and use (�l-subst). If r = eq(v0; v1), then �r = eq(�v0; �v1) where vj = �v j[� := e]for j < 2. e 0 is t or nil and we may take �e 0 = e 0. The remaining cases are similar.Execution-actor:If l = <send : a>, then �(a) = [R[ := send(v0; v1)]] �0(a) = [R[ := nil]],�0 = �[f<v0 ( v1>g. Also ��(a) = [�R[ := send(�v0; �v1)]] where R = �R[� := e],and vj = �v j[� := e] for j < 2. Take ��0 = ��fa := [�R[ := nil]]g and ��0 =�� [ f<�v0 ( �v1>g.If l = <become : a; a 0>, then a 0 is fresh, �(a) = [R[ := become(v)]] �0(a) = (v),�0(a 0) = [R[ := nil]], and �0 = �. Also ��(a) = [�R[ := become(�v)]] whereR = �R[� := e], and v = �v [� := e]. Take ��0 = ��fa := (�v); a0 := [�R[ := nil]]gand ��0 = ��.If l = <new : a; a 0>, then a0 is fresh, �(a) = [R[ := newadr()]] �0(a) = [R[ :=nil]], �0(a 0) = (?a), and �0 = �. Also ��(a) = [�R[ := newadr()]] where R =�R[� := e]. Take ��0 = ��fa := [�R[ := nil]]; a 0 := (?a)g and ��0 = ��.If l = <init : a; a 0>, then �(a) = [R[ := initbeh(a0; v)]], �(a 0) = (?a),�0(a) = [R[ := nil]], �0(a 0) = (v), and �0 = �. Also ��(a) = [�R[ :=initbeh(a 0; �v )]], where R = �R[� := e], and v = �v [� := e], and ��(a 0) = (?a).Take ��0 = ��fa := [�R[ := nil]]; a0 := (�v)g and ��0 = ��.3 E�uniform6.2.6 The Common Expression Reduct TheoremNow we have enough notation and tools to describe the construction of path cor-respondences for expressions with uniform common reducts. We �rst consider thecase of expressions that reduce via purely functional reductions. Then we show howthis construction can be modi�ed to allow for reduction of actor primitives.Theorem (fun-red-eq): If for each �� whose domain contains the free variablesof e0; e1, either ej [��] hangs for j < 2, or there is some �ec such that ej [��] reducesin 0 or more �7!FV(Rng(��)) steps to �ec uniformly, then e0 �= e1.Corollary (fun-red-eq): The following laws are instances of (fun-red-eq):(red-exp), (beta-v), (ift), (ifn), (ifelim), (isprt), (isprn), (fst), and (snd).Proof : Assume that for each closing �� there is �ec;j such that, letting X =FV(Rng(��)), ej[��] �7!X : : : �7!X �ec;j j < 2, uniformly, and either �ec;j is (uni-formly) stuck for j < 2, or �ec;0 = �ec;1. In either case we call �ec;j the common



Actor Computation 49reduct. We want to show that e0 �= e1. By (ocx) it is su�cient to show thatObs(��[� := e0]) = Obs(��[� := e1]) for any �� that is a closing E-con�guration for e0and e1. To do this, we show that for any �0 = [�i li�! �i+1 i 2 ./] 2 F(��[� := e0])we can �nd �1 2 F(��[� := e1]) such that obs(�0) = obs(�1). (The case with 0 and1 interchanged is symmetric.)Informally, by the uniformity property of computations, we see that replacingoccurrences of e0 by e1 has no e�ect on a computation except where a hole istouched. Using (in�nite macro-steps) we can localize non-uniform steps so thatwhen a hole is touched, reduction to a common reduct occurs in a single multi-step (which involves no event transitions). Thus we may obtain a computation for��[� := e1] by replacing occurrences of e0 by e1 and replacing multi-step transitionsreducing e0[��] to its common reduct by multi-step transitions reducing e1[��] toits common reduct. To ensure completeness/fairness of the result, we need to takeaccount of the case where a hole �[��] is exposed, but the multi-step for e0[��]is trivial and hence does not appear as a transition. We do this by inserting thecorresponding multi-step for e1[��] at the point where the hole is �rst exposed. Suchholes then e�ectively disappear, since they are either �lled with a stuck expressionor with the same expression. Now we make this informal argument more rigorous,by the following steps (details to be �lled in below):(1) We analyze the con�gurations occurring in �0 and record occurrences of e0in holes descending from ��. This gives us decompositions ��i[� := e0] of �i.In the cases where a hole is touched such that e0 is its common reduct, we �llthat hole with e0 giving a new E-con�guration ��0i with one less hole, such that��0i[� := e0] is �i. This process of �lling holes with common reducts continuesuntil the transition li is either uniform or touches a hole in which e0 is not itscommon reduct. We also record subsequences of transitions corresponding touniform reduction of such occurrences of e0 to its common reduct.(2) Using (in�nite-macro-steps) we may assume that the path is expressed interms of multi-step transitions such that the recorded subsequences of transitionscorresponding to non-trivial reduction to a common reduct are single multi-steps.We also insert copies of �i for each hole that is �lled with a common reduct,remembering the corresponding decomposition, and insert empty multi-steps be-tween these copies. We also insert a copy of �i and a connecting empty multi-stepfor each hole that occurs in a reduction context that is not touched { becausethe occurrence of e0 is stuck, or because it is a value and placing it in the redexhole produces either a value or a stuck state.(3) Form �1 by �lling the holes of ��i with e1 and replacing multi-steps for e0by corresponding multi-steps for e1. Note that empty multi-steps may expand tonon-trivial reductions of occurrences of e1 to its common reduct.It is easy to see that �1 is a computation path. The argument that it is completeand fair relies on the insertion of multi-steps, and uses the same case analysis thatwas used in the uniform computation lemma. Now for the details.Step (1) We analyze and decompose �0 to obtain(i) for each i < ./, an integer ni and a sequence of decompositions ��i;j for j �



50 G. Agha and othersni such that �i = ��i;j[� := e0] for j � ni and such that ��i;ni li�! ��i+1;0uniformly, or the transition touches a hole in which e0 has non-trivial reductionto its common reduct. We call this entering the hole. ni will be 0 except in thecase of a hole touched in which e0 is its own common reduct. Then we �ll thathole with the common reduct and redecompose.(ii) The set I of indices of transitions that enter holes(iii) The map J from I to the sequence of indices of transitions corresponding tothe thread of computation that carries out the reduction to the common reduct.This is done incrementally by de�ning sequences In, Jn by induction on n andtaking I = Sn<./ In, and J = Sn<./ Jn. At stage (i; j) we have de�ned Ii, Ji, and��i;j. If j = ni, then the next stage is (i + 1; 0) otherwise it is (i; j + 1).Stage (0; 0) I0 = ;, and J0 is the empty map. ��0;0 = ��.At stage (i; j) There are four cases to consider:(1) li is execution in a hole;(2) li is uniform with respect to ��i;j(3) li touches a hole and(3.1) enters the hole(3.2) does not enter the holeCase 1: This case occurs if i is an element of M = Ji(m) for some m 2 Ii. Thusni = j and li = <fun : a> for some a. We move to stage (i + 1; 0) with Ii+1 = Ii,Ji+1 = Ji, ��i+1;0 = ��i;j, and ��i+1;0 = ��i;jfa := [�R[ := �em;k+1]]g where �R,and �em;k+1 are obtained as follows. Let k be the index of i in M . The hole isentered at stage (m;nm) with ��m;nm(a) = [�R[ := �[��]]]. Let �em;0 = e0[��], letn be the length of M , and let [�em;k �7!FV(Rng(��)) �em;k+1 k < n] be the threadof computation reducing e0[��] to its common reduct �em;n. Note that ��i;j(a) =[�R[ := �em;k]].Case 2: ni = j and we move to stage (i+ 1; 0) with Ii+1 = Ii, Ji+1 = Ji, ��i+1;0such that ��i;j li�! ��i+1;0 uniformly according to the uniformity lemma.Case 3.1: In this case li = <fun : a> for some a. ni = j and we move to stage(i + 1; 0) with Ii+1 = Ii [ fig, Ji+1 = Jifi := Mg, ��i+1 = ��i, and ��i+1 =��ifa := [�R[ := �ei;1]]g where M , �R, and �ei;1 are obtained as follows. Let��i;j(a) = [�R[ := �[��]]], let �ei;0 = e0[��], and let [�ei;k[��] �7!FV(Rng(��)) �ei;k+1k < n + 1] be the thread of computation reducing e0[��] to its common reduct�ei;n+1. By fairness, there is a sequence of indices M = [ik k < n+ 1] with i0 = i,ik < ik+1 for k < n + 1 such than M is the multi step corresponding to the abovelambda reduction.Case 3.2: We move to stage (i; j + 1) with Ii+1 = Ii, Ji+1 = Ji, ��i;j+1 = ��i;j,and ��i;j+1 = ��i;jfa := [�R[ := e0[��]]]g where a, �R, �� are obtained as follows.a is the focus of li, and ��i;j(a) = [�R[ := �[��]]], with e0[��] equal to its commonreduct.Step (2) The family J(i) for i 2 I satis�es the conditions of (in�nite-macro-step). Hence we may assume that �0 has the form�[��i;0[� := e0] [ ]�! : : : [ ]�! ��i;ni Li�! ��i+1;0[� := e0]] i < ./�



Actor Computation 51where each Li is either a single (uniform) transition, or a multi-step reduction ofan occurrence of e0 to its common reduct, and the E-con�gurations obtained bythe above decomposition method. For each i, if ��i;0(a) = [�R[ := �[��]]], andand there are no transitions Lj for i � j with focus a, and i is the least suchindex, we insert before each transition leading from ��i;0 an an empty transition��i;0[� := e0] [ ]�! ��i;0[� := e0].Step (3) We let �1 be the path�[��i;0[� := e1] Li;0�! : : : Li;ni�1�! ��i;ni[� := e1] L0i�! ��i+1;0[� := e1]] i < ./�where L0i is Li if Li is a single (uniform) transition; L0i is the corresponding macro-step reduction of the occurrence of e1 to its common reduct, if Li is a macro-stepor an empty transition.Clearly �1 is a complete computation path. Also the transitions are the sameexcept for points where holes are touched, but these di�erences are not observable.Thus obs(�0) = obs(�1).It remains to check that fairness has been preserved. Suppose some transition lis enabled at stage i in �1. We have three cases:Receive: Suppose l is receipt of <a ( cv>. Then ��i(a) = (�x:�e) and hence l isenabled in �0 at stage i. If l �res in �0 at stage i0 � i, then it also �res at this stagein �1. Suppose l never �res in �0. Then by fairness, there is some i0 > i such that��j(a) is an executing state for j � i0. By construction l is permanently disabledat i0 in �1 as well.UniformExecution: Suppose l is an execution step with focus a where ��i(a) =[�R[ := �r ]]. Then l is enabled in �0 at i, it can not be disabled, and must occurin �0 at some stage i0 � i and hence will occur in �1 at that stage.Hole Touching: Suppose l is an execution step by a with ��i(a) = [�e] where�e = �R[ := �[��]]. First assume e1[��] reduces. If �e[� := e0] does not reduce, thenby construction, the transition is taken in �1 as soon as it is enabled. If �e [� := e0]reduces, then a transition will eventually be taken at a in �0, and the l will betaken at the corresponding point in �1. Suppose e1[��] does not reduce. Then itmust be a value, hence the common reduct. Hence the reduction of e0 is enabledin �0 and will eventually be taken. �R has the form �R0[ := �(�vm; �[��]; �en)]. Ifall the E-expressions �en are E-values, then l must be reduction of the redex in �R0and this is also enabled now, in �0. Otherwise consider decomposition of the �rstnon-value element of �en and repeat this argument. Since we are now looking at asmaller E-expression, we eventually reach the point where the step enabled in �1corresponds to one in �0 and hence will occur eventually.6.2.7 The Proof of the Equivalence of Hanging and Lambda-DivergenceWe now prove (hang-in�n) (see x5.1), which says that any two expressions thathang or have in�nite computations are observationally equivalent.Theorem (hang-in�n): If e0; e1 2 Hang [ In�n , then e0 �= e1.Proof (hang-in�n): Assume e0; e1 2 Hang [ In�n . We want to show that



52 G. Agha and otherse0 �= e1. Let �� = DD �� ��EE be a closing E-con�guration for e0 and e1. Assume�0 2 F(��[� := e0]) = [�i li�! �i+1 i 2 ./]. We want to �nd ��i, ��i, andLi, such that �i = ��i[� := e0] where ��i = DD ��i ��i EE and, letting �1 =[��i[� := e1] Li�! ��i+1[� := e1] i 2 ./], we have �1 2 F(��[� := e1]) andobs(�0) = obs(�1). (Actually, we let holes in �j be �lled by any expression of thesame class as ej .) For the base case we have ��0 = ��. Assume we have ��i. Supposee0 2 Hang . Let a be the focus of li. We �rst consider each a 0 other than a suchthat ��i(a 0) = �R[ := �[��]]. If e1 2 Hang then we just insert any steps neededto reach the stuck state (we assume that they are already macroized for �0). Ife1 2 In�n , then insert the step to reach the next element of its in�nite sequence.Now we consider the transition label li. If it does not touch a hole, then ��i+1 isgiven by the uniform transition lemma. Suppose ��i(a) = �R[ := �[��]]. Then ��i+1has the same decomposition, just possibly di�erent expressions (of the same class)�lling the holes. h�i 6.2.8 Proof of the Delay Law(delay) letactorf�x := �vgletfy := e0ge �= letfy := e0gletactorf�x := �vgewhere no xi in �x is free in e0, and y is not free in �x; �v .Proof (delay): The argument is similar to that used in the (fun-red-eq). Weoutline the key steps in constructing the path correspondence. Letel = letactorf�x := �vgletfy := e0ge, ander = letfy := e0gletactorf�x := �vge.Let �� be a closing E-con�guration for el and er. We want to show that for any�l = [�i li�! �i+1 i 2 ./] 2 F(��[� := el]) we can �nd �r 2 F(��[� := er])such that obs(�l) = obs(�r) and conversely. Let �l be as above. Using (in�nitemacro-steps) we can assume that steps in the evaluation of letactor constructsof the form letactorf�x := �vg occur a single multi-step. We let <leta : a; �a> label aletactor multi-step with focus a and new actors �a (�a and �x have the same length).Using this assumption, we obtain a computation �r for ��[� := er ] roughly byreplacing occurrences of el by er and shifting the actor creation multi-step to thereturn from evaluation of e0.In more detail, we analyze the con�gurations occurring in �l and record occur-rences of el in holes descending from ��. This gives us decompositions ��li[� := el]of �i. Simultaneously, for each i, we de�ne a corresponding E-con�guration ��ri , a(multi-step) label Li, and a set of pairs Xi of indices such that, if (q; p) 2 Xi thismeans that q < i, lq enters a hole, and lp is the step that returns the value of theoccurrence of e0 in the hole. If the computation of e0 does not return a value, thenp is 1.Stage (0) ��l0 = ��r0 = ��, and X0 = ;.Stage (i + 1) Assume that we have ��lj, ��rj , and Xj , for j � i, and Lj forj < i. ��lj and ��rj di�er in two ways. There may be actors in ��lj that are not in��rj . These will be actors created at hole entering steps whose exit has not yet be



Actor Computation 53reached. There will be no messages mentioning these actors in ��lj. In addition, forexecuting actors a whose computation has entered one or more holes (it is possiblethat evaluation of e0[��] will touch a hole) and not yet exited, the actors state willhave the form(l) �e l = �Rl1[ := letfx := �e l1ge[��1]](r) �er = �Rr1[ := letfx := �er1ge 0[��1]]where e 0 = letactorf�x := �vge, and �e l1, �er1 are the same, or decompose similarly ifa hole has been entered inside the let argument. There are three cases to consider:(1) li enters a hole; and(2) li is uniform with respect to ��li(2.1) li is a return step { (q; i) is in Xi for some q(2.2) li is not a return stepCase 1: ��ji has the form ��ji;0 k DD [�Rj[ := �[��]]]a ;EEa� for j 2 fl; rg,and li has the form <leta : a; �a>. Let p be the index of the step in �l that returnthe value of this occurrence of e0, or 1 if there is no such step. Then Li = [ ],Xi+1 = Xi [ f(i; p)g, ��ri+1 = ��ri , and ��li+1 is such that��ji;0 k DD [�Rj[ := el[��]]]a ;EEa� <leta : a; �a>�! ��li+1:Case 2.1: In this case, there is some q such that (q; i) 2 Xi, li has the form<fun : a>, and lq has the form <leta : a 0; �a>, (a is either a0 or a clone resultingfrom execution of a become). ��li has the form��li;0 k DD [�Rl[ := letfx := �vge[��]]]a ;EEa�and ��ri has the form��ri;0 k DD [�Rr [ := letfx := �vge 0[��]]]a ;EEa�where e 0 = letactorf�x := �vge, and ��jq(a) = [�Rj [ := �[��]]]. Let��ji+1 = ��ji;0 k DD [�Rr[ := e[��0]]]a ; (vk[ := e[��0]])ak1 � k � Len(�v) ;EEa�where ��0 = ��fx := �v ; �x := �ag, and let Li = [li; <leta : a; �a>], and Xi+1 = Xi.Case 2.2: In this case ��ji li�! ��ji+1 uniformly for j 2 fl; rg, and we take Li = li,and Xi+1 = Xi.It is now straightforward to show that�r = [��ri [� := er ] Li�! ��ri+1[� := er ] i < ./] 2 F(��[� := er])and that obs(�l) = obs(�r).The converse direction is similar. Here, to ensure completeness/fairness of theresult, we need to take account of the case where a hole �[��] is exposed, but thereis no transition for e0[��]. As before we do this by inserting the letactor multi-stepfor el at the point where the hole is �rst exposed.delay



54 G. Agha and others6.2.9 The Proofs of the Remaining Actor Primitive LawsWe show how to modify the construction for the purely functional case to establishequivalence where reductions may involve actor primitives. The idea is to gener-alize the notion of common reduct to allow for reduction of actor primitives, thusproducing not just an actor state, but a fragment of an E-con�guration. To expressthe generalized common reduct theorem, we �rst must say when we consider twoE-con�gurations to be essentially the same. The idea is that two E-con�gurationsare essentially the same if we ignore inactive actors not known to any other ac-tors, and we allow replacement of hanging expressions or expressions with in�nitecomputations by expressions of the same class.De�nition (essential sameness): E-expressions, �ej for j < 2 are said to beessentially the same if they are the same expression, or if both are in Hang [ In�n .E-con�gurations, ��j for j < 2 are said to be essentially the same, for focus actoraf , if there are ��j , ��gj , ��, and � for j < 2 such that(1) ��j = DD ��j ; ��gj ��EE;�,(2) af 2 Dom(��0), Dom(��0) = Dom(��1) and ��0(a) is essentially the same as��1(a) for a 2 Dom(��1), and(3) Dom(��gj )\FV(��j ; ��; �) = ; and ��j does not touch a hole at a and a is notenabled in ��j for any transitions, for a 2 Dom(��gj ) and j < 2.To state the general result we begin with a few convenient de�nitions. First, wede�ne an operation constructing an actor map whose range is unitialized actorscreated by a given actor.De�nition (New(N; a)): Let N be a �nite set of actor addresses, with a 62 N .De�ne New(N; a) to be the actor map with domain N such that New(N; a)(a0) =(?a) for a 0 2 N .Next we de�ne the notion of a multi-step being initial for a con�guration.De�nition (Initialmulti-step): A multi-step L is said to be initial for a con�g-uration � if for any path � 2 F(�), there is a permutation equivalent path �0 2 F(�)such that L is the initial sequence of steps of �0. By permutation equivalent we meanthat �0 is obtained from � by permuting steps of � that are elements of L such thatpermuted pairs of steps have di�erent focus actors.De�nition (Common generalized reduct): We call (N; a; �; ��) an instancefor the pair (e0; e1) if N , fag, � are pairwise disjoint �nite sets of actor addresses,the domain of �� contains the free variables of e0; e1, and the free variables of therange of �� are among N [ fag [ �. For such an instance we call��j0 = DDNew(N; a); [ej [��]]a ;EEa�the initial E-con�guration. Two expressions e0 and e1 have common generalizedreducts if for each instance (N; a; �; ��) there are E-con�gurations, ��j, and multi-steps Lj containing no input/output transitions, such that(1) ��j0 Lj�! ��j for j < 2,(2) ��j is essentially the same as ��1, and(3) Lj is initial for any con�guration ��j0 k � such that � and ��j0 are composable.



Actor Computation 55We note that the notion of common generalized reduct can easily be furthergeneralized to allow for the case where the common reduct can be reached by morethan one sequence of steps. We omit the details.Theorem (gen-red-eq): If e0 and e1 have common generalized reducts, thene0 �= e1.Proof : The proof is almost the same as the proof of (fun-red-eq) (in x6.2.6)).We adopt the strategy used in the proof of (hang-in�n) to insert (useless) stepsof lambda-diverging computations to maintain fairness. The main changes are inthe construction stages (i; j) for the cases 1 { execution in a hole at a, and (3.1)touching and entering a hole at a. To establish notation we consider case 3.1 �rst.Let N is the set of addresses of unitialized actors in ��i;j with creator a, and let��i;j(a) = [�R[ := �[��]]]. Pick � so that (N; a; �; ��) is an instance for (e0; e1)and let ��00 be the initial con�guration for this instance, modi�ed by placing thestate of a in the context �R.��00 = DDNew(N; a); [�R[ := e0[��]]]a ;EEa�Thus ��i;j has the form ��0i;j k ��00. We let L0 = [lq q < p] be the multi-step selected from the collection given by the hypothesis to match the path underconsideration, and let ��0p be the given con�guration. Thus there is a computationsequence [��0q lq�! ��0q+1 q < p]. Let iq be the index in �0 of lq. Then we moveto stage (i + 1; 0) as follows: nj = i, Ii+1 = Ii [ fig, Ji+1 = Jifi := [iq q < p],��i+1;0 = ��0i;j k ��01.For the case 1, i is an element of Ji(m) for some m 2 Ii. We move to stage(i + 1; 0) using the data of 3.1 with i replaced by m.Note that the theorems (fun-red-eq) and (hang-in�n) are special cases of (gen-red-eq).Corollary (gen-red-eq): The following laws are instances of (gen-red-eq):(triv), (gc), (if.letact.v), (perm), (split), (can-b), (can-i), (commutes), and(cellb).We sketch the proofs for (gc), (if.letact.v), (can-i), and (cellb). The remainingcases use similar arguments and are left to the reader. In each case we need to estab-lish that the pair of expressions to be shown equivalent have common generalizedreducts. For this we have to �nd (for each instance (N; a; �; ��)) the common reductcon�guration, and show that the set of multi-steps leading to this con�guration isinitial.(gc) e0 = letactorf�x := �vge �= e = e1 where �x not free in e.Proof (gc): Let (N; a; �; ��) be an instance for (gc) and let ��j0 be the corre-sponding initial con�gurations for j < 2. Let L0 be the multi-step that creates andinitializes the actors speci�ed by letactorf�x := �vg. Let L1 be the empty multi-step. It is easy to see that the Lj are initial. The end E-con�gurations are essentiallythe same since the di�er only in the choice of ��gj . gc



56 G. Agha and others(if.letact.v) letactorf�x := �vgif(z; e1; e2) �= if(z;letactorf�x := �vge1;letactorf�x := �vge2)if z is not an element of �x.Proof (if.letact.v): Let (N; a; �; ��) be an instance for (if.letact.v) and let ��j0be the corresponding initial con�gurations for j < 2. Let L0 be the multi-step thatcreates and initializes the actors speci�ed by letactorf�x := �vg, and then branchesaccording to ��(z). Let L1 be the multi-step that branches according to ��(z), andthen creates and initializes the actors speci�ed by letactorf�x := �vg, It is easy tosee that the  Lj are initial. The end E-con�gurations are in fact the same. if :letact:v(can-i) seq(initbeh(v ; v0); initbeh(v ; v1))�= seq(initbeh(v ; v0); stuck)�= seq(initbeh(v ; v0); bot)Proof (can-i): The second equation follows from (hang-in�n). For the �rstequation, let (N; a; �; ��) be an instance for (can-i) and let ��j0 be the correspondinginitial con�gurations for j < 2. There are two cases to consider according to whetheror not ��(v) is an actor address in N or not. If ��(v) 2 N , then let Lj be the multi-step that initializes ��(v) for j < 2. If ��(v) 62 N , then let Lj consist of the emptymulti-step for j < 2. It is easy to see that in either the Lj are initial. The endE-con�gurations are essentially the same in either case because they di�er only inreplacing a hung expression by a hung or lambda-in�nite expression. can�i(cellb) letactorfb := Bcell(0)gsend(b; mkget(v)) �= send(v ; 0)(Recall that the behavior of a cell, Bcell, was de�ned in x2.2)Proof (cellb): Let (N; a; �; ��) be an instance for (cellb) and let ��j0 be thecorresponding initial con�gurations for j < 2. Let L0 be the multi-step that createsthe cell actor, sends it the message mkget(v), delivers the message, and executesthe transitions with cell actor focus, until the actor has no more enable transitions,i.e. until the become is executed. Let L1 be the multi-step that does the send. Theend con�gurations di�er only by the presence of an inaccessible, inactive actor {the cell actor, since after the send to the cell actor, it is not known to any otheractors. Clearly L1 is initial. L0 is initial, because there can only be one messagesent to the cell actor, and the delivery and processing of that message can alwaysbe permuted ahead of any other transitions. cellb6.3 Equivalence by Two Stage ReductionThere is one remaining equivalence to establish using common reducts:(if.lam) �x:if(v ; e1; e2) �= if(v ; �x:e1; �x:e2) x 62 FV(v)The intuitive reasoning behind this equivalence is that for any closing substitution(allowing holes, and actor addresses in the range) the two expressions reduce to



Actor Computation 57equivalent lambda expressions. In fact these lambda expressions have the propertythat when applied to any argument they reduce to a common expression.The method developed so far requires reduction to a common local con�gurationin one stage. Thus we must elaborate the notion of a template to provide for twostages. Speci�cally, we add a family of holes for lambda-abstractions, which wedenote by .j for j 2 J for some J 2 N[ f!g.6.3.1 LE-SyntaxSyntactic classes X with both expression and lambda holes are indicated by themark �.X, and we pre�x the names of these classes by LE-, thus we have LE-expressions, LE-con�gurations, etc. The de�ning clauses are as before with two ex-ceptions: lambda holes are added to the clause generating values; and app(.j [�.�]; �.v)is omitted from the class of LE-redexes. The latter exception is made in order topreserve the property that redexes reduce uniformly.De�nition (�.V, �.E , �.S, �.R, �.E rdx):�.V= A t [X[ �X:�.E [ pr(�.V; �.V) [ .N[�.S]�.E = �.V[�en(�.En) [ f�[�.S]g�.S= X f! �.V�.R= f g [�m+n+1(�.Vm; �.R; �.En)�.E rdx = �en(�.Vn)� app(.j[�.S]; �.V)Note that lambda holes can occur in the range of a value substitution, and as argu-ments in redices, except in the function position of an application. Using the doubleindex convention, we write �.e[.j := 'j ] to indicate the simultaneous �lling of theholes .j with the corresponding lambdas 'j from some previously speci�ed familyf'jgj2J of lambda abstractions. The de�nitions of substitution, free variables, andhole �lling are entirely analogous to the expression hole case and we omit them.The decomposition lemma is modi�ed as follows. An LE-expression �.e is eitheran LE-value expression (element of �.V), or it can be decomposed uniquely intoan LE-reduction context with redex hole �lled with either an LE-redex, an LE-expression hole, or an application of a lambda hole (to an LE-value).Lemma (LE-expression decomposition):(0) �.e 2 �.V; or(1) (9!�.R; �.r)(�.e = �.R[ := �.r ]); or(2) (9!�.R; �.�)(�.e = �.R[ := �[�.�]]); or(3) (9!�.R; �.�; �.v )(�.e = �.R[ := app(.j[�.�]; �.v )])6.3.2 LE-computationThe de�nition of LE-con�gurations and LE-reduction are the natural extensions ofE-con�gurations and E-reduction to the situation with lambda abstraction holes



58 G. Agha and othersadded. The de�nition of hole touching and the uniform computation lemmas gen-eralize easily to this situation.De�nition (�.K):�.K = DD �.A c �.M EE��where�.A c = A d f! �.A s�.A s = (�.V) [ [�.E] [ f(?Ad)g�.M = <�.V( �.V>and the constraints speci�ed in the de�nition of actor con�gurations in x3. aresatis�ed. We let �.� range over �.K, and �.� range over �.A c. Filling expressionand abstraction holes of an LE-con�guration, LE-actor map, LE-actor state, LE-multiset of messages, and LE-messages is de�ned in the obvious manner.An LE-con�guration, ��, is closing for e and a family f'jgj2J of lambda abstrac-tions if (�.�[� := e])[.j := 'j ] is a closed con�guration.De�nition (LE-Reduction): The reduction relations �7!X and 7! are extendedto the generalized domains in the obvious fashion, simply by liberally annotatingmetavariables with �.'s. We omit the details.De�nition (LE-hole touching): If �.� = DD �.� �.�EE, then �.� touches ahole at a if �.�(a) = [�.e] and either �.e = �.R[ := �[�.�]] or �.e = �.R[ :=app(.j[�.�]; �.v )]. A transition from �.�[� := e][.j := 'j ] touches a hole at a if thefocus actor of the transition is a and �.� touches a hole at a.Note that since an abstraction hole must be �lled with a value, they are nottouched in the same ways as arbitrary expression holes, in particular if the transitionis a <fun : a> execution step where ��(a) = [�e] and �e = �.R[ := app(�x:�e 0; .j[�.�])],then this is not considered touching the hole, .j.The (E-Uniform Computation) lemma generalizes to the situation with addedabstraction holes.Lemma (LE-Uniform Computation):(1) If �.� l�! �.�0, then �.�[� := e][.j := 'j ] l�! �.�0[� := e][.j := 'j ] for anyvalid �lling expression e and family of lambda abstractions 'j.(2) If �.� has no transition with focus a (and a is an actor of �.�), then either �.�touches a hole at a or �.�[� := e][.j := 'j] has no transition with focus a for anyvalid �lling expression e and family of lambda abstractions 'j.(3) If � l�! �0 and � = �.�[� := e][.j := 'j ], then either the transition touches ahole or we can �nd �.�0 such that �0 = �.�0[� := e][.j := 'j ] and �.� l�! �.�0.Proof : Similar to the proof of (E-uniform computation). Now there are twocases in which a hole is touched in the decomposition of �.e , namely cases (2) and(3) of the decomposition lemma.



Actor Computation 596.3.3 LE-Main TheoremNow we have developed su�cient notation and machinery to state and prove ageneral result giving equivalence via two-stage reduction.Theorem (eq-reduct): Let e0; e1, '0;j; '1;j for j < J be such that for eachclosing �.� we can �nd j 2 J such that ei[�.�] reduces uniformly via �7!FV(Rng(�.�))steps to 'i;j[�.�] for i < 2, and that for each �.�, �.v , and j 2 J we can �nd �.ecsuch that app('i;j[�.�]; �.v ) reduces uniformly via �7!FV(Rng(�.�)) steps to �.ec fori < 2. Then e0 �= e1.Corollary (eq-reduct): (if.lam) is an example. Here we takee0 = �x:if(v ; ea; eb)e1 = if(v ; �x:ea; �x:eb) where x 62 FV(v)J = fa; bg'0;j = �x:if(v ; ea; eb)'1;j = �x:ej for j 2 JProof : Let �.� = DD �.� �.�EE be a closing LE-con�guration for e0; e1; '0;j; '1;jfor j 2 J . Assume �0 2 F(�.�[� := e0][.j := '0;j]) = [�i li�! �i+1 i 2 ./]. Wewant to �nd �.�i, and Li, such that �i = �.�i[� := e0] and, letting �1 = [�.�i[� :=e1][.j := '1;j] Li�! �.�i+1[� := e1][.j := '1;j] i 2 ./], we have �1 2 F(�.�[� := e1])and obs(�0) = obs(�1). At each stage i we �rst consider dangling steps. Suppose�.�i(a) = [�.R[ := �[�.�]]] and the reduction of e0 is trivial, i.e. e0[�.�] = '0;j[�.�]for some j. Then we pre�x Li with the transitions for e1[�.�] �7!FV(Rng(�.�)) '1;j[�.�]and convert the E-hole to .j . This is done for each a 2 Dom(��i) meeting thecondition.Now we consider the decomposition of the con�guration at stage i+1 in the case litouches a hole. Suppose li is an execution by a with �.�i(a) = [�.R[ := �[�.�]]]. Bythe elimination of `dangling steps' we may assume that e0 is not a value expressionand hence the execution occurs at the hole. Suppose also that ei[�.�] �7!FV(Rng(�.�))'i;j[�.�]. De�ne �.�i+1 = �.�ifa := [�.R[ := .j [�.�]]]g.Suppose li is an execution by a with �.�i(a) = [�.R[ := app(.j[�.�]; �.v )]].Suppose also that 'i;j [�.�] reduces to ec[�.�] by �7!FV(Rng(�.�)) steps. De�ne �.�i+1 =�.�ifa := [�.R[ := ec[�.�]]]g.It is easy to check (as in the proof of (fun-red-eq)) that fairness is preserved.6.4 Equivalence of Reduction ContextsTo establish the equivalence of reduction contexts, we de�ne templates for syn-tactic entities | expressions, reduction contexts, redexes, con�gurations | withholes to be �lled by a reduction context. We then proceed as before, to show howcon�gurations can be suitably decomposed in order to de�ne the desired path cor-respondences.



60 G. Agha and others6.4.1 R-SyntaxWe use � for reduction context holes and signify the corresponding syntactic entitieswith a mark �. We pre�x names of templates for syntactic classes by R-, thusexpression templates are called R-expressions, etc.De�nition (�E �V):�V= A t [X[ �X:�E [ pr(�V; �V)�E = �V[�en(�En) [ ��S[ := �E ]�S= X f! �V�e[� := R] is the result of �lling R-holes in �e with R. We give only the clause forthe hole case in the recursive de�nition of �lling.De�nition (�e[� := R]):(���[ := �e])[� := R] = R[�][ := �e[� := R]]where � = ��[� := R] = �x 2 Dom(��):��(x)[� := R]De�nition (�R �E rdx):�R= f g [�m+n+1(�Vm; �R; �En) [ ��S[ := �R]�E rdx = �en(�Vn)The clauses directly involving holes in the de�nitions of hole �lling for R-reductioncontexts are:[� := R] =[ := �e] = �e(���[ := �R])[� := R] = R�[ := �R[� := R]]where � = ��[� := R] = �x 2 Dom(��):��(x)[� := R](���[ := �R])[ := �e] = ��� [ := �R[ := �e ]]Note that �lling R-holes in R-expressions, R-reduction contexts, or R-redexes witha reduction context yields an expression, a reduction context, or redex, respectively.An R-expression �e is either an R-value (element of �V) or it can be decomposeduniquely into an R-reduction context �lled with either an R-redex or an R-hole.Lemma (R-expression decomposition):(0) �e 2 �V; or(1) (9!�R; �r)(�e = �R[ := �r ]); or(2) (9!�R; ��; �v )(�e = �R[ := ���[ := �v ]])Proof : An easy induction on the structure of �e.



Actor Computation 616.4.2 R-Con�gurationsDe�nition (�K): An R-con�guration for reduction contexts �� is formed like acon�guration, but using R-expressions instead of simple expressions.�K = DD �A c �M EE���A c = A d f! �A s�A s = (�V) [ [�E] [ f(?Ad)g�M = <�V( �V>We let �� range over �K, and �� range over �A c. Filling holes of an R-con�gurationis analogous to �lling holes of an E-con�guration. An R-con�guration �� is closingfor R if ��[� := R] is a closed con�guration.6.4.3 R-Uniform ComputationDe�nition (touching R-holes): A transition l from ��[� := R] touches an R-hole at a if l is an execution transition with focus a and execution state of �� at adecomposes according to case (2) of the decomposition lemma.Lemma (Uniform Computation): An R-redex reduces or hangs uniformly(for a given enabling occurrence in a con�guration). Hence transitions not touchingan R-hole are uniform. More precisely, if ��i[� := R] li�! �i+1, with focus a, thatdoes not touch an R-hole at a, then li is either a receive or an execution transitionin which the execution state of ��i at a decomposes according to case (1) of thedecomposition lemma. Let ��i = DD ��i ��i EE. Then the decomposition of �i+1 =DD ��i+1 ��i+1 EE is de�ned as follows.Receive: In the receive case we must have that ��i(a) = (�x:�e). Thus ��i+1 =��ifa := [app(�x:�e ; cv)], and ��i = ��i+1 + <a ( cv>.Uniform execution: In the uniform execution case ��i(a) = [�e]. where �e hasthe form �R[ := �r ]. In this case the step is independent of what �lls the holes.Thus we can �nd ��i+1 such that ��i li�! ��i+1 uniformly.6.4.4 R-Main theoremNow we show how to establish equivalence of expressions of the form Rj [ := e] forj < 2 where the Rj[ := v ] have a common reduct for any value expression.Theorem (eq-r): If for z fresh, there is some e such that Rj [ := z] reducesuniformly via 0 or more �7! steps to e for j < 2, then R0[ := e] �= R1[ := e] forany e.Corollary (eq-r): (app), (cmps), (id), (letx), (let.dist), (if.dist) are instancesof (eq-r).In fact we prove a slightly more general result, since we use a weaker assumption



62 G. Agha and otherson the reduction contexts: for each ��, �v , we can �nd �ec such that R��j [ := �v ]reduces uniformly via 0 or more �7!FV(Rng(��)) steps to �ec for j < 2.Proof (eq-r): Suppose R0, R1 are reduction contexts that we wish to establishthe observational equivalence of. That is, we want to show R0[ := e] �= R1[ := e]for all expressions e. Let �� = DD �� ��EE be a closing R-con�guration for R0;R1.Assume �0 2 F(��[� := R0]) = [�i li�! �i+1 i 2 ./]. We want to �nd ��i, andLi, such that �i = ��i[� := R0] and, letting �1 = [��i[� := R1] Li�! ��i+1[� :=R1] i 2 ./], we have �1 2 F(��[� := R1]) and obs(�0) = obs(�1). As in theexpression context case, we can focus our attention on the construction of the actorcon�guration part, since here also deliverable messages cannot have holes. Assumewe have ��i and consider cases on the transition label li. we have three cases toconsider. For the base case we have ��0 = ��. At stage i suppose ��i(a 0) = �R[ :=���[ := �v ]]. If R��0 [ := �v ] is the common form (i.e. the reduction is trivial), thenwe pre�x Li with steps for reduction of R��1 [ := �v ] to common form and removethis hole. This is carried out for each a 0 in the domain of ��i.Now, suppose li is an execution with focus a that touches a hole. Thus ��i(a) =[�e] where �e has the form �R[ := ��� [ := �v ]]. Suppose also that R��j [ :=�v ] �7!FV(Rng(��)) �ec for j < 2. Then we de�ne ��i+1 = ��ifa := [�R[ := �ec]].Let �1 = [��i[� := R1] Li�! ��i+1[� := R1] i < ./] be the constructed computa-tion path. Note that the transitions are the same except for the points where holesare touched, but these di�erences are not observable. Clearly, under the assump-tions on Rj, �1 is a computation path. It remains to show that the constructionpreserves fairness.Suppose some transition l is enabled at stage i in �1. If l is a receive or uniformexecution, then l is also enabled in �0 at stage i and will eventually occur, uniformly.Suppose l is an execution step by a with ��i(a) = [�R[ := ���[ := �v ]]]. EitherR��0 [ := �v ] is in common form and the transition occurs as soon as it is enabled in�1, or a transition is enabled at this hole in �0. This transition will eventually occur.If R��1 [ := �v ] is not in common form, l will happen in �1 at the same stage. IfR��1 [ := �v ] is in common form, then we must consider whether l occurs at the hole{ i.e. whether or not the common form is an R-value expression. If l occurs at thehole, then the same transition is now enabled in �0 and will eventually occur in bothpaths. Otherwise consider the decomposition after the transition in �0. As shownbefore, this reduces to considering a proper subexpression of �R[ := ��� [ := �v ]]and the process will eventually terminate with a uniform execution.eq�r 7 DiscussionIn this paper we presented an operational semantics of actor computation. Theactor language is an extension of a call-by-value functional language by primitivesfor creating and manipulating actors. Central to the theory is the concept of anactor con�guration that makes explicit the notion of open system component. A



Actor Computation 63composition operation on actor con�gurations is de�ned. It is associative, commu-tative, has a unit, and is thus a �rst step towards an algebra of con�gurations. Theoperational semantics is de�ned by a labelled transition relation on con�gurations,and we incorporate fairness into the semantics by restricting the set of admissiblecomputation paths. This operational semantics is used to de�ne a notion of ob-servational equivalence of expressions based on traditional operational and testingequivalence. An interesting consequence of fairness is that the classic three testingequivalences collapse to two. Methods for establishing equivalence of expressionsare developed and a plethora of laws of expression equivalence that incorporatesthe equational theory of the embedded functional language are presented. We ex-pect that these methods will be useful in developing equational theories for otherconcurrent extensions of functional languages such as CML or FACILE.The theory presented is perhaps best viewed as a starting point for further re-search rather than a �nal product. There are several directions for further research.Work is needed to develop an algebra of operations on con�gurations. Treating con-�gurations as objects would allow us to abstract over speci�c linguistic constructs.A set of laws and proof principles adequate for reasoning about actor programs isneeded. These would include structural induction as well as principles analogous tothe simulation (co-) induction principles we developed for reasoning about streams,mutable data, and objects (Talcott, 1993a; Mason and Talcott, 1991; Mason andTalcott, 1994). Third, developing a logic for specifying components as actor con�g-urations which would provide methods for verifying that programs implementingcomponents meet their speci�cations as well as methods for re�ning speci�cationsinto implementations.Finally, in (Mason and Talcott, 1991; Honsell et al., 1995) a variant of Milner'scontext lemma (Milner, 1977), called the (ciu) theorem, is proved. This reduces thenumber of contexts that must be considered to establish an observational equiva-lence law and greatly simpli�es the proofs. It is an open question whether such areduction can be made in the case of actor systems.AcknowledgementsThe authors would like to thank Carl Hewitt and Richard Weyhrauch for manydiscussions about actor computation that served as a foundation for this work.They would also like to thank the referees for careful reading of earlier versions,and numerous helpful criticisms and editor Phil Wadler for his interest and helpwith the revision process.This research was partially supported by ARPA contract NAG2-703, ARPA/ONRgrant N00014-94-1-0775 NSF grants CCR-8917606, CCR-8915663, CCR-9109070CCR-9221774 CCR-9312580 and INT-89-20626, and ARPA and NSF joint contractCCR 90-07195, ONR contract N00014-90-J-1899, and by the Digital EquipmentCorporation. ReferencesAbadi, M. and Cardelli, L. (1994). A theory of primitive objects: Untyped and �rst-order
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Actor Computation 678 Index of NotationsSymbol Description xN The natural numbers, i; j; : : : ; n 2 N 2:4Y n Sequences from Y of length n, �y = [y1; : : : ; yn] 2 Y n 2:4Y � Finite sequences from Y 2:4[] The empty sequence 2:4Len(�y) The length of the sequence �y 2:4u � v The concatenation of the sequences u and v 2:4Last(u) The last element of the sequence u 2:4P![Y ] Finite subsets of Y 2:4M![Y ] Finite multi-sets with elements in Y 2:4Y0 f! Y1 Finite maps from Y0 to Y1 2:4Y0 ! Y1 Total functions from Y0 to Y1 2:4Dom(f) The domain of the function f 2:4Rng(f) The range of the function f 2:4ffy := y0g An extension to, or alteration of, the function f 2:4fcY The restriction of f to the set Y 2:4X A countably in�nite set of variables, x; y; z 2X 3:1A t Atoms 3:1t; nil Atoms playing the role of booleans 3:1Gn n-ary algebraic operations 3:1F Operations, � 2 F 3:1Fn n-ary operation symbols 3:1F0 Zero-ary operation symbols � fnewadrg 3:1F1 Unary operation symbols � fisatom; isnat; ispr; 1st; 2nd; becomeg 3:1F2 Binary operation symbols � fpr; initbeh; sendg 3:1F3 Ternary operation symbols � fbrg 3:1L �-abstractions, �x:e 2 L 3:1V Value expressions, v 2V 3:1E Expressions, e 2 E 3:1�x:e Abstractions 3:1app(e0; e1) Application 3:1�(�e) Application of operations 3:1if(e0; e1; e2) Conditional branching 3:1letfx := e0ge1 Lexical variable binding 3:1seq(e1; : : : ; en) Sequencing construct 3:1



68 G. Agha and othersSymbol Description xFV(e) The free variables of the expression e 3:1e[x := e0] The result of substituting e0 for x in e 3:1C Contexts, C 2 C 3:1� The hole in contexts 3:1C[e] The result of �lling the context with e 3:1A d Actor addresses, identi�ed with X 3:2A s Actor states, (?a); (b); [e] 2 A s 3:2(?a) An uninitialized actor created by a 3:2(b) An actor with behavior b ready to accept a message 3:2:1[e] A processing actor with current computation e 3:2:1M Messages, <V(V>2 M 3:2:1cV Communicable values, cv 2 cV 3:2:1DD� �EE�� An actor con�guration with:� { an actor map� { a multi-set of messages� { the receptionists� { the external actors 3:2:1K Actor con�gurations, � 2 K 3:2:2Erdx The set of redexes, r 2 Erdx 3:2:2R The set of reduction contexts, R 2 R 3:2:2The reduction context hole 3:2:2�7!X The reduction relation for functional redexes, e0 �7!X e1 3:2:27! The reduction relation for con�gurations, �0 7! �1 3:2:2�0 l�! �1 �0 7! �1 via the rule labelled by l 3:2:2Labels : Transition labels, l 2 Labels 3:2:2<fun : a> A functional transition 3:2:2<new : a; a0> newadr redex transition with focus a 3:2:2<init : a; a0> initbeh redex transition with focus a 3:2:2<bec : a; a0> become redex transition with focus a 3:2:2<send : a;m> send redex transition with focus a 3:2:2<rcv : a; cv> The receipt of a message with focus a 3:2:2<out : m> A message exiting the con�guration 3:2:2<in : m> A message entering the con�guration 3:2:2



Actor Computation 69Symbol Description xT (�) All �nite sequences of labeled transitions from �, � 2 T (�) 3:2:3T 1(�) the set of all computation paths in T (�), � 2 T 1(K) 3:2:3./ 2 N[ f!g The length of a �nite or in�nite sequence 3:2:3C�g(�; L; i) The ith con�guration of the computation from � via L 3:2:3� L�! �0 A multi-step transition 3:2:3F(�) the fair subset of T 1(�) 3:2:4event A zero-ary primitive/observation 4:1<e : a> An observation transition 4:1DD�; [C]a �EE An observing con�guration 4:1O The set of observing con�gurations, O 2 O 4:1s Signi�es that an event transition occurs 4:1f Signi�es that an event transition does not occur 4:1obs(�) The s=f classi�cation of the path � 4:1Obs(�) The s=f classi�cation of the con�guration, �, 2 fs; f ; sfg 4:1e0 �=1 e1 Testing or Convex or Plotkin or Egli-Milner equivalence 4:2e0 �=2 e1 Must or Upper or Smyth equivalence 4:2e0 �=3 e1 May or Lower or Hoare equivalence 4:2e0 �= e1 Operational equivalence (either �=1 or equivalently �=2) 4:2Hang The set of all stuck expressions, stuck 2 Hang 5:1In�n The set of all diverging expressions, bot 2 In�n 5:1


