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Abstract

Remote agents used in Deep Space Missions such as rovers or solar airplanes must
function autonomously over a prolonged time during planetary exploration. The
Mission Data System (MDS) framework has been developed to address design and
deployment of these complex systems. We are using the Maude environment to
develop a formal framework with methods and supporting tools for increasing the
dependability of MDS space systems. This is done by developing formal executable
specifications of the MDS framework and its mission-specific adaptations and pro-
viding a set of formal checklists (formal analysis suites) that can be used to achieve
better predictability and dependability. In this paper we present our formal model
of the MDS framework, an adaptation for a remote rover and preliminary checklists
for remote agents.

Key words: Rewriting logic, goal-oriented, model-based, formal
checklist

1 Introduction

For several years now, NASA has been flying robotic deep space missions that
rely on software to perform mission functions. Deep space missions involve a
tight integration of physical and software systems. These systems are complex
and expensive to design, build, and deploy. The Mission Data System (MDS)
framework [1] has been developed to address this problem. MDS provides an
architecture, tools, and libraries of reusable components to be used in the de-
sign and implementation of space mission systems, principally for robotic deep
space missions that require autonomous distributed monitoring and control of
physical systems.
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MDS is built on two key ideas: a state-based approach to system design;
and a goal-oriented approach to operation. The state-based approach makes
domain knowledge explicit in the form of globally shared state variables and
domain models specifying constraints on and operations for controlling the
value of state variables. Goal-oriented operation allows tasks to be described
in terms of what rather than how. A goal is a constraint on some state variable
that is to hold over some time interval. Goal-achiever software has the re-
sponsibility of elaborating high-level goals into goal nets that describe actions
to be carried out along with constraints on their time and order of execution.
Dependability and correctness of goal achievers, and their predictable behavior
in composition with concurrent activities is crucial to mission success.

The main objective of our project is to develop a formal framework with
methods (called formal checklists) and supporting tools for increasing the
dependability of goal-oriented operation of space systems.  To clarify the
basic ideas, we have modeled in Maude [2] a simplified version of the MDS
Framework. Although simple, the modular structure of the Maude model
follows that of the MDS components and filling in details to obtain a complete
specification of the MDS architecture will be straightforward. A remote rover,
called SCRover, is being developed at University of Southern California (USC)
as a mission-specific adaptation of MDS. A formal executable specification of
(a simplified version of the) SCRover adaptation has been developed in Maude
through rover specific extensions of the abstract MDS components and the
specification of a rover device model. A first set of checklist items has been
defined and applied to the SCRover model using the execution, search and
model-checking capabilities of Maude.

The remainder of this paper is organized as follows. Section 2 is a very
brief review of relevant aspects of Maude syntax and tools. Section 3 discuss
the notion of a goal and model based system design, gives an overview of
the MDS framework and describes our specification of the MDS framework.
Section 4 describes our specification of the SCRover adaptation. Section 5
presents initial checklist ideas and shows their application to the SCRover
specification. Section 6 concludes and discusses future work. The Maude
code and a more detailed technical report can be found at
http://www.csl.sri.com/users/denker/remoteAgents/.

2 About Maude

Maude [3,2] is a multi-paradigm executable specification language based on
rewriting logic [4,5]. The Maude interpreter is very efficient, allowing pro-
totyping of quite complex test cases. Maude also provides efficient built-in
search and model checking capabilities. Maude is reflective [6,7] providing a
meta-level module that reflect both the syntax and semantics of Maude. Using
reflection the user can program special purpose execution and search strate-
gies, module transformations, analyses, and user interfaces. Maude sources,
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executables for several platforms, the manual, a primer, cases studies and
papers are available from the Maude website http://maude.cs.uiuc.edu.

We briefly summarize the syntax of Maude that is used in our case study.
We use two types of modules:

* functional modules, that are equational theories used to specify algebraic
data types; they are declared with the syntax fmod ... endfm

e system modules, that are rewrite theories specifying concurrent systems;
they are declared with the syntax mod. . .endm

These modules have an initial model semantics. Immediately after the
module’s keyword, the name of the module is given. After this, a list of
imported submodules can be added. One can also declare sorts and subsorts
and operators. Operators are introduced with the op keyword followed by
the operator name, the argument and result sorts. An operator may have
mixfix syntax, with the name containing ‘_’s marking the argument positions.
Equational axioms are introduced with the keyword eq (or ceq for conditional
equations) followed by the two terms being declared equal separated by the
equality sign =. Rewrite rules are introduced with the keyword rl (or crl for
conditional rules) followed by an optional rule label, and terms corresponding
to the premises and conclusion of the rule separated by the rewrite sign =>.
Variables appearing in axioms, rules (and commands) may be declared globally
using keyword var or vars, or “inline” using the variable name and its sort
separated by a colon, for example n:Nat is a variable named n of sort Nat.
Rewrite rules are not allowed in functional modules.

We model the various components of the MDS framework and its adap-
tations using the Maude notation and conventions for concurrent objects. A
(snapshot of a) system state (sort Configuration) is a multiset of objects
(sort Object) and messages (sort Msg). The multiset union operator for con-
figurations is denoted with empty syntax (juxtaposition) and (by definition of
multiset) is associative and commutative.

An object has the the form < 0 : C | att-1, ... , att-n > where 0
is an object identifier (sort 0id), C is a class identifier (sort Cid), and att-1,

.., att-n are attributes (sort Attribute).

The above is axiomatized in the module CONFIGURATION which is part of the
standard Maude library. A typical system configuration will consist of several
objects and messages. The dynamic behavior of a concurrent object system
is then axiomatized by specifying rewrite rules for each class that determine,
for example, what an object does in response to a message.

For the purpose of the MDS application, we defined a module called MYCONF
specifying a constructor op o : String -> 0id that converts a string into an
object identifier, a sort MsgBody for message contents, and message construc-
tors op msg : 0id 0id MsgBody -> Msg and op noMsg : -> Msg. This gives
a standard form to messages for convenient axiomatization of a general inter-
action framework.
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3 The MDS Architecture

3.1  Model and Goal-Based System Design
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Fig. 1. Adaptive System Design

The MDS framework is an example of a general approach, we call model-
and goal-based system design (see Figure 1), to the design of distributed,
situation-aware systems that can adapt to dynamically changing requirements
and environments. A key element of this approach is the use of formal models
and formal representation of the relations of models with each other and with
system parameters and observables. These models fall into three main areas:

(i) Formal models of the underlying system infrastructure, including models
of relevant aspects of devices and of software components of the envi-
sioned system.

(ii) High-level goals and policies that express various requirements of the
envisioned systems, including end-to-end functionality, performance, se-
curity, service classes, and quality of service, as well as administrative,
computational, or physical distribution requirements.

(iii) Environment models describing threat and failure models, expected usage
patterns, traffic load, or physical environment constraints among others.

A congnitive agent provides goal-elaboration and situation analysis services
that use the models along with sensors (passive monitors or active probes) and
policy-based configuration services, to achieve the overall goals of situation-
aware and adaptive systems. A goal elaboration service analyzes the current
situation using its models of system and environment state and computes ini-
tial values for or constraints, i.e., low-level policy specifications, on system
parameters that are expected to meet the goals and enforce the policies. A
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policy-based configuration service uses these parameter restrictions to com-
pute actual system configurations. Sensors observe system execution events
and inform the cognitive agent about ongoing system behavior. Reports are
analyzed to determine whether the observed behavior meets expectations ac-
cording to the current system and environment models. If there are problems,
adaptation of the models is attempted, using justifications for current expec-
tations produced by the goal-elaboration service. When models are updated,
or new goals are specified, the goal-elaboration service recomputes system pa-
rameters and policies on the basis of changed models and goals. In addition
to the MDS framework, we are currently investigating applicability of this
approach to cognitive networking, and real-time, embedded systems.

The remainder of this section is organized as follows. First we give a brief
overview of the MDS architecture components and connectoins. Then we de-
scribe the Maude modules that formalize this architecture—the interfaces and
messages exchanged between components, and classes that model the common
structure of each component. The work to date has focused on specification
of models and simple goals. Specifying goal elaboration is the next step. In
MDS, a scheduler plays the role of policy-based configuration service.

3.2 MDS Overview

The Mission Data System (MDS) [1] and its precursor remote agent architec-
tures [8] have identified two key ideas for developing a remote agent system
that will simplify and reduce the cost of design, test, and operation: (1) A
state-based approach to system design and (2) a goal-oriented approach to
operation. The system state is the basis on which decisions about mission op-
erations are based. System state includes device operating and failure modes,
device health, resource levels, and information about dynamics such as vehi-
cle position and attitude, angles, and wheel rotation. Mission goals describe
the desired outcome of a mission operation so that the overall mission will be
successfully completed. Mathematically, a goal is a prioritized constraint on
the value of a state variable during a time interval.

The main ingredients of the MDS architecture are depicted in Figure 2
(taken from [1], with slight modifications). In MDS all state information is
held a set of so-called state variables. All aspects of system state that are
used to control the system must be made explicit as values of state variables.
State variables are the only way to access a system state. Thus, a key part of
system design is the choice of state variables. Domain knowledge is expressed
separately in models. These models express constraints on values of state
variables and predict how they will change under given actions. State variables
receive primitive goals from a scheduler. A goal is a constraint on the value of
a state variable over a time interval. The goals are forwarded to the controller
of the state variable. In order to satisfy the goal, controllers issue commands
on the basis of the current value of the state variable. The commands are
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Fig. 2. The MDS state-based architecture

transmitted via actuators in the hardware proxies to the hardware. Sensors
convey measurements from the hardware via the proxy to estimators (also
called state determination in Figure 2). Estimators interpret measurements
and update values of state variables. The updated value of the state variable
can be compared against the goal and further steps can be taken to either
achieve a goal that has not yet been satisfied, or to tackle the next goal.

3.3 The MDS Architecture in Maude

Our formal model is based on publications describing the MDS architecture,
including [1], documents available from the SCRover testbed artifact reposi-
tory (including architectural specifications, UML diagrams of the interactions
between the various components in attempting to satisfy the goal, and C++
header files) and several conversations with members of the MDS team at Jet
Propulsion Laboratory (JPL) and the SCRover team at USC.

We model the MDS architecture with the following six modules, each defin-
ing a class: STATE-VARIABLE, CONTROLLER, ESTIMATOR, ACTUATOR, SENSOR, and
DEVICE. These classes correspond to the MDS components State Knowledge
(or state variable), State Control (or controller), State Determination (or es-
timator), Actuator, Sensor, and Hardware (or device). We will discuss the
STATE-VARIABLE module in some detail, to give an idea of the specification,
and briefly summarize the key features of the remaining modules.

We model communication between MDS components using asynchronous
message passing. Some of the message exchanges are meant to model method
invocations (the object-oriented analog of function call). This is specified
using a special attribute waitAfter that takes a message as parameter and
conditional rules that use the value of the waitAfter attribute to control what
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messages can be received. Each method invocation message has a correspond-
ing set of possible replies. Separate modules are used to specify the commu-
nication interfaces—the messages exchanged—between components. Figure 3
shows the Maude classes and the messages that are sent between components
with arrows indicating the direction of message flow.

constraint Success
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Fig. 3. MDS Component Message FExchange

The rules of these classes specify information and control flow roughly
as follows. A goal request is made to the state variable, which forwards it
to the controller. The controller determines the course of action and issues
commands for the device via the actuator. The resulting device state is read
by the sensor and sent to the estimator. The estimator creates measurements
out of the sensor values and sends update requests to the state variable. When
the state variable receives the update, it acknowledges this with a message to
the estimator and informs its controller about the new value. The controller
can check the new state against the goal and decide further actions. It either
continues issuing commands to the actuator in order to achieve the goal, or it
reports back to the state variable whether the goal was achieved successfully or
failed. The state variable forwards the information to the environment entity
specified in the goal request.

3.4 Maude Specification of Interfaces

We restrict our discussion to state variable interfaces with the environment
and controller. Other interfaces have a similar structure.

State Values.

State values are computed by estimators, communicated in messages, tested
for constraint satisfaction by controllers, and used by goal-elaborators. The
module STATE-VALUE declares a sort for state values, a subsort for unknown
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state values, and a constant uk to represent the fact that the value of a state
variable may be unknown. Here and elsewhere the sort and class hierarchy
of the Maude model mirrors the class hierarchy of the MDS framework, to
facilitate relating the model to the implementation.
fmod STATE-VALUE is

sort StateValue .

sort UnknownStateValue .
subsort UnknownStateValue < StateValue .

op uk : -> UnknownStateValue .
endfm

State Variable/Environment Interface.

The environment sends start constraint requests to the state variable. The
state variable reports back to the environment whether the constraint could
be achieved or not. In case of failure, it will deliver a reason. The module
CONSTRAINT declares a sort Constraint, for constraints, together with a con-
stant noCstr of sort Constraint that stands for the constraint that is always
satisfied, analogous to the boolean value true. The module REASON declares a
sort Reason, for reasons. The following module specifies the messages for the
interface between state variables and the environment as follows.
fmod STATE-VARIABLE-ENVIRONMENT-INTERFACE is

inc MYCONF .

inc CONSTRAINT .
inc REASON .

op startConstraint : Constraint -> MsgBody .

op constraintSuccess : Constraint -> MsgBody .

op constraintFailure : Constraint Reason -> MsgBody .
endfm

State Variable/Controller Interface.

Before requesting that the controller starts a constraint, the state variable
must ask if the controller is ready for a new constraint. If it receives a positive
reply, it will forward the constraint, including the requester identity (from the
environment) and its current state value. The following module specifies the
messages for the interface between state variables and its controller.
fmod STATE-VARIABLE-CONTROLLER-INTERFACE is

inc MYCONF .
inc CONSTRAINT .

inc REASON .
inc STATE-VALUE .

**x to controller

op readyReq : -> MsgBody . *** to controller
op startCstr : Constraint 0id StateValue -> MsgBody .
op newVal : StateValue -> MsgBody .
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**x*x to state variable

op readyRep : Bool -> MsgBody .

op endCstr : Constraint 0id Bool Reason -> MsgBody .
endfm

3.5 Maude Specification of MDS Components

3.5.1 Maude Specification of State Variable
The STATE-VARIABLE module includes modules for attributes and interfaces
with the controller and estimator. It declares the state variable class identifier
sort SVCid to be a subsort of the predefined Cid defined in CONFIGURATION.
This way the state variable class is a subclass of the generic object class. Each
specific state variable class will have its own class identifier sort that is in turn
a subsort of SVCid. This way rules defined for state variable objects in general
will apply to state variable objects of specific subclasses. Additional attributes
declared for state variables include a current value, the constraint that is
being processed, if any, and an object identifier to remember the requester of
that constraint. Finally a reason constant, notReady, is declared to use as a
constraint failure reason in case the controller replies negatively to a ready
request.
mod STATE-VARIABLE is

inc ATTRIBUTES .

inc STATE-VARIABLE-ENVIRONMENT-INTERFACE .

inc STATE-VARIABLE-CONTROLLER-INTERFACE .

inc STATE-VARIABLE-ESTIMATOR-INTERFACE .
sort SVCid . subsort SVCid < Cid .

**xx Attributes

op val : StateValue -> Attribute .
op req : 0id -> Attribute .

op cstr : Constraint -> Attribute .

*** Reasons
op notReady : -> Reason .

The set of rules defined within the state variable module determines the
behavior of state variables. We show only the two rules used for handling a
start constraint request.

vars sv o o’ ctrl : 0id .
var svcid : SVCid .
var cstr cstr’ : Constraint .

var svatts : AttributeSet .
var v : StateValue .

A startConstraint message can only be accepted if the state variable is
not waiting for some reply, that is, the value of waitAfter is noMsg. In this
case it records the requests and sends its controller a readyReq message.

rl[startConstraintReadyReq] :
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< sv : svcid | svatts, myctrl(ctrl), req(o’), cstr(cstr’),
waitAfter (noMsg) >

msg(sv,o,startConstraint (cstr))

=>

< sv : svcid | svatts, myctrl(ctrl), req(o), cstr(cstr),
waitAfter (msg(sv,o,startConstraint(cstr))) >

msg(ctrl,sv,readyReq)

A state variable can only accept a readyReply from its controller if it
is waiting after a startConstraint. If the reply is positive the constraint
is forwarded to the controller and the state variable maintains its waiting
status. Otherwise it reports failure to the requester and becomes ready to
accept another constraint.

rl[forwardConstraint] :
< sv : svcid | svatts, myctrl(ctrl), req(o), cstr(cstr), val(v),
waitAfter(msg(sv,o,startConstraint(cstr))) >
msg(sv,ctrl,readyRep (b))
=>
if b
then < sv : svcid | svatts, myctrl(ctrl), req(o), cstr(cstr),
val(v), waitAfter(msg(sv,ctrl,readyRep(b))) >
msg(ctrl,sv,startCstr(cstr,o,v))
else < sv : svcid | svatts, myctrl(ctrl), req(o), cstr(cstr),
val(v), waitAfter(noMsg) >
msg(o,sv,constraintFailure(cstr,notReady))
fi .

Note that the state variable rules use a class identifier variable svcid of
sort SVCid rather than a specific constant of this sort. This is so that the
rule will apply to specific state variables with class identifier whose sort is a
subsort of svCid. This is a standard technique for modeling subclassing in
Maude.

The remaining state variable rules concern state value updates and con-
straint end reports. The state variable can receive a state value update request
from its estimator at any time. When an update arrives the state variable
stores the new value, acknowledges the receipt of the update request to the
estimator and informs the controller about the new value.

A state variable can only accept a message endConstraint(cstr,r) from
its controller if it is waiting for a report for cstr. If the reason r is noReason,
then ConstraintSuccess(cstr) is sent to the constraint requester, otherwise,
ConstraintFailure(cstr,r) is sent.

3.5.2  Maude Specification of Other Components

In the following we give an overview of the functionality of other MDS compo-
nents. Complete Maude specifications of all MDS components can be found
at http://www.csl.sri.com/users/denker/remoteAgents/.
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Controller.

In this version of the MDS architecture specification we specify a controller
with a generic control strategy: the controller determines the course of action
to satisfy a goal and issues appropriate commands.

When a controller receives a ready request from the state variable for a
new goal, it will respond with a positive reply, if it is not in the process of
achieving a constraint (indicated waitAfter(noMsg)). Otherwise it will re-
spond negatively.

When a controller receives a message startConstraint(cstr,o,v) from a
state variable (having previously reported that it is ready) it saves the con-
straint, the requester, and the current state value. The controller decides
whether the current state value satisfies the constraint using an operation
satisfy. If the current state value already satisfies the constraint, it replies
to the state variable with a successful endCstr message. If the current state
does not satisfy the constraint, the controller determines the course of action
by calling its coa function, issues the first command and stores the rest of the
command list.

If the controller is in the process of satisfying a constraint and it receives
a message with a new value, newVal(v), it first determines if the constraint
is satisfied by the new value. If so, an endCstr message is sent to the state
variable indicating success. If the constraint is not satisfied and the controller
has no more commands to issue, an endCstr message is sent to the state-
variable with the reason COANoSuccess indicating that the course of action
determined by the controller was not successful. In both of the above cases
the controller sets its waitAfter attribute to noMsg to allow new constraints to
be processed. Otherwise the controller issues the next command in its stored
command list and remains in the processing constraint state.

Both the satisfy and coa operations of the controller must be defined
separately for each particular adaptation of the MDS architecture.

Actuator.

When an actuator, act, receives a message msg(act,ctrl, issueCmd(cmd)),
it sends msg(d,act,executeCmd(cmd)), to its associated device d. The opera-
tion executeCmd converts the controllers command into a form acceptable to
the device.

Sensor.
When a sensor, sens, receives msg(sens,d,sensorValues(sval)), from its
device d, it sends

msg(est, sens,newMeasurement (createMeasurement (sval)))

to its associated estimator, est. The operation createMeasurement is used to
convert sensed values into measurements.
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Estimator.

When an estimator est receives msg(est,sens,newMeasurement (m)) from
the sensor, it sends msg(sv,est,updStateReq(verifyState(m))) to the asso-
ciated state variable sv. The function verifyState is used to estimate the
state value. The estimator waits for an acknowledgment from the state vari-
able before accepting further measurements by storing the new measurement
message in its waitAfter attribute. This ensures that values are received by
the state variable in the same order that they were sent by the estimator. It
also means that the state variable is obliged to accept and acknowledge all
updates.

Device.

The device component of the MDS architecture is external to the software.
There are two reasons to include devices in the formal model. One is that this
makes explicit the ‘physics’ that goals and controllers are relying on. The other
is that executable models of devices can be used in simulation and analysis of
goal achiever specifications. All of the behavior of the device depends on the
specific MDS adaptation. Therefore, the generic device module only provides
sort declarations for the general device class.

4 The SCRover Executable Specification

Our example of a small remote agent system is a rover moving on a grid where
some of the grid positions contain obstacles. The rover can rotate clockwise
in increments of 45 degrees, and it can move in the direction it is heading if
this direction is a multiple of 90 degrees, and if the adjacent position in that
direction is not blocked or off the grid.

The module GRID specifies the grid, declaring sorts Loc (pairs of natural
numbers (x,y)), LocSet (sets of locations), and Dir (symbolic names for the
compass point directions, N,S,E,W). Functions are defined to convert symbolic
directions to degrees (dir(N) = 0)), and to compute the new position after a
move, newLoc.

The module ROVER specifies the grid based rover. The rover knows about
the grid it operates on (its grid attribute specifies the dimension of the grid
in terms of height, width and the set of blocked locations), its own position
(loc containing its grid coordinates) and heading (hd). The heading is given
as a natural number that correspond to the degrees clockwise from the grid’s
north. Moreover, the rover knows whether it is currently driving, turning or
in an idle state (st attribute).

mod ROVER is

sort RoverCid .
subsort RoverCid < DeviceCid .
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*xx Attributes
op grid : Nat Nat LocSet -> Attribute .
*** Dimension of Grid: ht wd Dblocked
op pos_ : Loc -> Attribute .
op hd : Nat -> Attribute . *** degrees clockwise from grid north
sort Status .
ops driving turning idle : -> Status .
op st : Status -> Attribute .

endm

The rover can receive a drive command from its actuator. If the rover is
not heading in either north, east, south, or west direction, it will not be able
to move along the grid. It will also be unable to move if there is an obstacle
occupying the target grid position. In this case, the rover will simply report
to the sensor its current position and heading. The rover can also receive a
turn command from its actuator. In this case it executes the command and
then reports its current position and heading to its sensor.

The Position and Heading State Value and Interfaces.

We use one state variable to model the rover state, called a position and
heading state variable. As the name indicates, the value domain for this state
variable consists of triples giving the x and y grid coordinates, and the direc-
tion in which the rover is headed. The module POSANDHEAD-STATE-VALUE speci-
fies this value domain. In particular, it declares a subsort PosAndHeadStateValue
of StateValue and a constructor

op _‘,_dir_ : Nat Nat Dir -> PosAndHeadStateValue .

In the rover adaptation, the controller-actuator, device-actuator, device-
sensor, and estimator-sensor interfaces must be further refined to specify the
data to be communicated between components. Two commands drive and
turn are added to the controller-actuator interface. These are also added to the
actuator-device interface as message bodies, using overloading. A constructor

posAndHead : Loc Dir -> SensorValue

is added to the device-sensor interface for the rover to report values to the
SEnsor.

The Position and Heading State Variable.

As discussed above, an important part of designing an MDS remote agent
system is identifying the state variables and determining how they are to be
measured and controlled. Goals of the rover system include moving to a certain
location on the grid and facing in a given direction. Thus, we define a class for
position and heading state variables in the module POSANDHEAD-STATE-VARIABLE.
mod POSANDHEAD-STATE-VARIABLE is

inc POSANDHEAD-STATE-VALUE .
inc STATE-VARIABLE .
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sort PosAndHeadSVCid .
subsort PosAndHeadSVCid < SVCid .
endm

This module defines a subclass of STATE-VARIABLE by declaring a subsort
PosAndHeadSVCid of SVCid for the POSANDHEAD-STATE-VARIABLE class identifier.
Similar conventions are used to define the position and heading subclasses for
the remaining components (controller, actuator, sensor, and estimator).

The Position and Heading Controller.

This module extends the generic controller by defining the syntax of po-
sition and heading constraints, giving equations for constraint satisfaction,
and giving equations for the course-of-action function coa. Position and
heading constraints are elements the sort PosAndHeadConstraint, a subsort
of Constraint. A position and heading constraint is simply a triple consist-
ing of the juxtaposition of two natural numbers (the intended location to be
understood as (z,y)) and a direction. A position-and-heading value satis-
fies a position-and-heading constraint if their corresponding coordinates and
direction are the same.

The algorithm for determining the course of action to achieve a given
constraint implements a simple strategy to determine which commands should
be issued to the rover in order to move towards the desired location. The
strategy has three steps.

(i) First the x-position of the final location is achieved. This is done by
determining in which direction (east or west) along the x-axis the rover
has to drive and whether the rover needs to turn to reach its initial
position. Then the number of steps is computed that the rover needs to
proceed along the x-axis. An appropriate list of turn and drive commands
is generated.

(ii) Second the final y-position of the goal is achieved. The controller deter-
mines whether the rover needs to proceed along the y-axis in south or
north direction, issues the required turning commands and then deter-
mines the number of driving steps for the rover.

(iii) Finally, the controller determines how many more turns need to be issued
to get the rover headed in the desired direction.

This is a simple-minded strategy that does not take the blocked positions of
the grid into account. Therefore, it is possible that the controller successfully
issues all the command and still the rover does not end up in the desired

position, because a drive command resulted in no change of position because
of a block.
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The Position and Heading Actuator, Sensor, and Estimator.

The specifications for the position and heading actuator, sensor and es-
timator classes are very simple. Thus, the actuator takes a command from
the controller and transforms it into the correct format for execution in the
device. Because we have chosen the same names for commands and actuator-
rover messages this is just a sort conversion. The operations converting sen-
sor values into measurements (executeCmd) and measurements into values
(verifyState) are also defined to be sort conversions, simply returning their
arguments viewed as elements of a different sort.

5 Towards Formal Checklists

The checklist idea refines the Maude Formal Methodology [9] by providing
steps to follow for a particular family of specifications, in this case specifica-
tions of autonomous space systems based on the MDS framework. The essence
of this methodology is that a little formality can a long way, and different lev-
els of assurance can be obtained by different levels of effort: developing a
formal model; execution of test scenarios; light-weight analysis such as search
and model-checking; and theorem proving.

We illustrate the MDS checklist ideas in the context of our SCRover spec-
ification.

e LO. Check that the specification is well-formed.
This check is implemented simply by loading the specification into Maude
and ensuring there are no problems reported.

e L1. Execution level checks that representative configurations exhibit ex-
pected and desired behavior. For each test case

- Define a test module and define an initial system configuration.

- Extend the test module with definitions of goals to be checked. This
should cover all the primitive goals.

- For each goal specify expected outcomes as well as situations that should
not arise using predicates defined on configurations.

- Execute the test scenarios (initial configuration plus goal) using one of the
default rewriting strategies, and check the final state against the specified
expectations.

- Use search to determine if all executions meet expectations.

e L2. Analysis level checks

- Extend the test module with definitions of system invariants, i.e., proper-
ties that should hold of all system configurations.

- Using search (built-in or special purpose), check invariants for the test
scenarios.

- Extend the test module with definitions of temporal properties (expressed
in Maude’s LTL) that the system should satisfy.

- Check the temporal properties using model-checking.
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Note that each checklist level builds upon the previous in the sense that
the modules used at one level are extended to obtain the modules used at the
next level. Furthermore, the modules produced to define the scenarios and
properties serve as documentation of the expectations and what was checked.

Also, when developing an MDS application the checklist procedure should
be applied to each component individually as well as to the composed system.
In the case of components, “goal” is replaced by messages in the components
interface. Sequences of such messages will be sent by a generic tester compo-
nent that plays the role of the tested components environment.

As systems get more complex, with multiple devices, and multiple concur-
rent goals, the checklist process will be correspondingly more complex, but it
will build on the basic elements. With more experience we expect that steps
such as ‘define goals’, and ‘define invariants’, can be partially automated, us-
ing general architectural principles, diagrams describing expected usage, and
formalizations of device specifications.

We have applied the checklists to the SCRover specification. Each rover
system component has a test module defining the components initial state,
and test executions sending the component interface messages. For example,
the state variable test module is the following.
mod POSANDHEAD-STATE-VARIABLE-TEST is

inc POSANDHEAD-STATE-VARIABLE .

op PosAndHeadStateVar : -> PosAndHeadSVCid .

op myphsv : -> Object .

eq myphsv = < o("MyPosAndHeadStateVar") : PosAndHeadStateVar |
myctrl (o("MyPosAndHeadCtrl")),
myest (o ("MyPosAndHeadEstimator")), req(o("No0id")),
waitAfter (noMsg), cstr(noCstr),

val((0,0 dir(E))) > .
endm

The full system test module imports the component test modules and
defines the initial configuration to consist of the six components in their initial
states. A constructor for constraint request messages is also defined.

mod SYSTEM is
inc POSANDHEAD-STATE-VARIABLE-TEST .
inc POSANDHEAD-CONTROLLER-TEST .
inc POSANDHEAD-ACTUATOR-TEST .
inc POSANDHEAD-SENSOR-TEST .
inc POSANDHEAD-ESTIMATOR-TEST .
inc ROVER-TEST .

op sys : -> Configuration .

eq sys = myphsv myphctrl myphactuator myphsensor myphest rov

op mkm : Nat Nat Dir -> Msg .

vars x y : Nat . var 4 : Dir .

eq mkm(x,y,d) = msg(o("MyPosAndHeadStateVar"), o("MyRequester"),
startConstraint((x y d)))

op ic : Nat Nat Dir -> Configuration .
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eq ic(x,y,d) = sys mkm(x,y,d)
endm

We specified the scenarios and expected outcomes (expressed as a subcon-
figuration of the final state) shown in Figure 4.

scenario expected outcome(s)

1. ic(1,0,E) < o("MyRover") : Rover | atts, pos(1,0),hd(90) >
msg(o("MyRequester"), o("MyPosAndHeadStateVar"),
constraintSuccess(1 0 E))

2. ic(2,0,E) < o("MyRover") : Rover | atts, pos(2,0),hd(90) >
msg (o ("MyRequester"), o("MyPosAndHeadStateVar"),
constraintSuccess(2 0 E))

3. ic(1,2,E) msg(o("MyRequester"), o("MyPosAndHeadStateVar"),
constraintFailure(1 2 E, COANoSuccess))))

4. ic(1,0,E) 2 outcomes: for x in {1,2}
mkm(2,0,E) < o("MyRover") : Rover | atts, pos(x,0),hd(90) >
msg(o("MyRequester"), o("MyPosAndHeadStateVar"),
constraintSuccess(1l 0 E))
msg (o ("MyRequester"), o("MyPosAndHeadStateVar"),
constraintSuccess(2 0 E))

Fig. 4. Rover scenarios

For scenarios 1-3, execution gives the one expected outcome, and for scenario
4 execution gives one of the expected outcomes. Searching for all terminal
states using the command

search sys mkm(1,0,E) mkm(2,0,E) =>! C:Configuration

yields the two expected outcomes. Such checks can be automated fairly easily
using reflection.

In an earlier version of the model, the state variable accepted constraints
while it was waiting for a report from the controller for a previous constraint.
In this case, we expected two kinds of outcome for scenario 4.

(i) The rover completes processing one goal, reporting back to the requester
and then processes the other goal (both goals are achievable if processed
sequentially in either order), or

(ii) The rover processes one goal and while in the process of trying to achieve
the first goal, receives the request for the other goal and reports back
that it is not achievable (since the controller is not ready for a new goal).

Given the symmetry in both alternatives, we expected four solutions when
searching for all possible configurations. We were surprised to get 16 solutions.
Investigating the cause of the 16 solutions using the search graph, we found two
problems: the state variable forgot the constraint that was being processed,
and the controller didn’t remember that it had replied yes to a ready request,
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and hence could agree to starting several constraints. These were problems
in our model, but similar problems could easily arise in implementations.
They illustrate the importance of analyzing the model for validation of the
model itself. It also emphasizes the importance of making formal connections
between the model and the informal designs and implementation.

To partially automate checking outcomes we defined parameterized success
and failure patterns and used the model-checker to look for the expected
pattern. This could also be done using search. The advantage to model-
checking in the current setting is that when the question is formulated so that
a positive result from the model-checker is a counter-example, a rule trace can
be extracted as a simple trace of the execution.

6 Conclusions and future work

This paper reports on initial progress in our project to use Maude as the basis
for developing formal checklists for Deep Space Mission software built using
the MDS framework.

We have presented a simplified version of the MDS architecture to test
our understanding of the structure and constraints. In order to make further
elaboration and adaptation easier, some effort was made to take a system-
atic specification approach to the control structures for controller, actuator,
sensor, estimator, and state variable interactions with each other and with
the framework scheduler. We also studied how mission specific devices, their
models, controllers and estimators can be modeled, and specified a simple ver-
sion of the SCRover. Simple execution unearthed several small problems in
the control flow. In multiple goal scenarios, search of the state space yielded
unexpected outcomes. Examination of the search graph provided the needed
information to determine the problems. In the process of developing these first
models, we have also discovered gaps in the informal documentation (filled by
discussion with the experts).

Future work includes refining our MDS framework model to include more
details about the components such as timelines for state variables and mea-
surement histories for sensors. In addition we will extend the SCRover specifi-
cation with the missing state variables (power, camera, range finder) and refine
the models to adequately reflect the hardware specifications and behavior char-
acteristics. Also, formal connections between the model and implementation
(for example header files and scheduling specifications) will be developed to
relate model analysis results to code. The next big step is to model goals, goal
nets and goal elaboration. This will involve modeling time points—temporal
variables that express sequentialization and ordering between goals as well as
durations. A Maude based language for specification of goals and goal elab-
oration strategies will be developed. Then checklist items will be developed
and automated to check the feasibility of goals and the consistency of goal
nets with respect to the physical device models.
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