
FEFERMAN-LANDIN LOGIC

IAN A. MASON AND CAROLYN L. TALCOTT

Abstract. This paper presents a logic based on Feferman’s Variable Type Theories for reasoning about

programs written in a class of imperative functional languages called Landinesque languages.

To Solomon Feferman on the occasion of his 70th Birthday with much gratitude.

�
1. Historical Background. Feferman-Landin Logic is so named because of the

influence that the work of both Feferman and Landin has had on our work. Of partic-
ular relevance are two key ideas:

Landin’s idea: a programming language can be thought of as the lambda calcu-
lus augmented by operations on the basic data, as well as computational envi-
ronment. We call such languages Landinesque languages.
Feferman’s idea: to formalize constructive mathematics in 2-sorted classical
theories called variable type theories. In these theories both functions and data
are objects of discourse in a first order setting, as are collections of such things.

Both authors were PhD students of Solomon Feferman in the early 1980’s where,
under his influence, we began the research program leading to the work that this paper
will report on. Both the theories used by Feferman, and his approach to formalizing
constructive mathematics seemed very natural and we felt that this approach should
also work for developing formal systems for reasoning about programs.

The first step in such an endeavor is to develop the mathematical semantics of the
programs of interest. Our focus has been on reasoning about non-functional primi-
tives. Together we have studied lambda calculus augmented by operations for ma-
nipulating control [39], manipulating memory [29], and for communicating asyn-
chronously in an open distributed environment [2]. In each case we developed an
operational semantics based solely on syntactic entities, and studied the natural op-
erational equivalence generated by that semantics (operational equivalence meaning
being equi-defined in all closing contexts). Crucial in such work is the ability to
simplify the criteria for operational equivalence to some form of context lemma a
la Robin Milner [31] to avoid the complexity of reasoning about arbitrary program

The first author was partially supported by UNE URG grant 6590 881 499 and UNE small ARC grant
8282 881 499.

The second author was partially supported by NSF CCR-9633419, DARPA/Rome Labs AF F30602-
96-1-0300, DARPA/NASA NAS2-98073, and ONR N00012-99-C-0198.

The authors wish to thank Jonathan Ford and the anonymous referees for their helpful comments.

Meeting
c

�
1000, ASSOCIATION FOR SYMBOLIC LOGIC 1

2 IAN A. MASON AND CAROLYN L. TALCOTT

contexts. In both the case of memory, and control, we have established such simplifi-
cations now known in the literature as CIU theorems (Closed Instantiations of Uses).
The case for communicating asynchronously in an open distributed environment re-
mains open.

After developing this syntactic style of operational semantics, and the correspond-
ing characterization of operational equivalence, we used this as a basis for developing
logics based on Solomon Feferman’s Variable typed approach. These systems are two
sorted theories of operations and classes initially developed for the formalization of
constructive mathematics [5, 6, 7, 8] and later applied to the study of purely functional
languages [10, 11, 9].

Our work uses the syntactic operational semantics to develop expressive logics
and goes well beyond traditional programming logics, such as Hoare’s logic [3] and
Dynamic logic [21] by treating a richer language and expressing more properties. It
is close in spirit to Specification Logic [37] and to Evaluation Logic [34]. Particular
logics, with corresponding reasoning principles, have been presented for the case of
manipulating control [41], and for the case of manipulating memory [22], for which
it is possible to establish a limited form of completeness [26].

The work discussed above studied specific Landinesque languages in a somewhat
ad hoc fashion. More recently the second author has unified the ideas emerging from
our ad hoc approach to syntactic operational semantics by developing a general the-
ory of Landinesque languages [42]. The approach starts with a small step semantics
in which computation state is represented using syntactic entities such as expressions
and contexts. There is a single reduction rule for each operation. Care is taken so
that the reduction rule for an operation is not changed when new operations or new
pieces of state are added. Computation is uniform is the sense that reduction steps
can be performed on states with missing parts and the missing information can be
filled in later. Such a syntactic reduction system has the combined advantages of a
simple transition system semantics and the symbolic reasoning of a reduction calcu-
lus. The main result is the CIU theorem for languages with uniform semantics, that
simplifies reasoning about operational equivalence restricting the contexts that must
be considered.

In this paper we build upon this uniform approach to present a variable typed logic
for such languages, thus extending our previous work on specifying and reasoning
about programs to a wide class of imperative functional languages. As such this paper
subsumes the case studies presented concerning operations that manipulate control,
as well as those concerning operations that manipulate memory.

The plan of this paper is as follows. In the next section we present a summary and
simplification of the core results of [42]. The form and presentation of the results
presented in this section has benefitted greatly from the formalization, in PVS, of this
approach by Jonathan Ford at the University of New England. This formalization is
reported in [15]. We then present the syntax and semantics of our variable typed logic
for this general framework. We do this in two stages. We first present the first-order
semantics in the third section, and then in the fourth section concentrate on the notion
of classes. Section five deals with the general principles that hold for these uniform

FEFERMAN-LANDIN LOGIC 3

languages, while section six presents a detailed example of a particular language that
incorporates both control and memory manipulation. The final section describes our
conclusions and further directions that this research may take.

Notation. We conclude the introduction with a summary of our notation conven-
tions. Let ������������� be sets. We specify meta-variable conventions in the form: let	 range over � , which should be read as: the meta-variable 	 and decorated variants
such as 	�
 , 	 � , �
��� , range over the set � . ��������� ����������� is the set of finite maps
from � � to � � . We write ����� �"!$# for the domain of a function and %'&)(*�"!$# for
its range. For any function ! , !,+ 	.-/0	�
21 is the function !
 such that �����3�"!
 #54�����3�"!$#,67+ 	�1 , !
 � 	 #�4 	�
 , and !
 �289#:4;!<�289# for 8>=4 	 ��8 ?@����� �"!$# . Also !'AB�
is the restriction of ! to � : the function !
 such that �C��� �"!
 #D4E�����3�"!$#,FG� and!
 � 	 #H4I!<� 	 # for 	 ? �C���J�K!
 # . LM4E+ONP��Q��SRP�
���
� 1 is the set of natural numbers andT �KU���VW��V � �:���
� range over L . In the defining equations for various syntactic classes
we use two notational conventions: pointwise lifting of syntax operations to syntax
classes; and the Einstein summation convention that a phrase of the form XZY$�K[Y # ab-
breviates \ Y9]�^ X Y �K[Y # . For example if _ is a ranked set of operator symbols, then
the terms over _ can be defined inductively by (as the least solution to) the equation:`$a 4b_ Y � ` Ya # . Unabbreviated, this equation reads:

` a 4dcY9]�^ +�eC�gf � �
�
���$��fhYP# ei? _DY>jkfhlW? ` a for Qnm T miV 1 �
�
2. Uniform Landinesque Languages. In this section a general framework for

studying the semantics of o -languages is set up along the lines of [42], where detailed
proofs of some of the claims can be found. The syntactic entities and semantic notions
of o -languages are defined and the properties required for a uniform semantics are
stated. Then several results, including the CIU theorem, valid in any o -language with
uniform semantics are presented. This is the mathematical theory that we wish to
formalize following Feferman’s approach. We begin with an overview of the concepts
and results.

A small-step operational semantics is obtained by defining a notion of state and a
single step reduction relation on states. States consist of an expression and a state
context. A state context often describes dynamically created entities such as memory
cells, arrays, files, etc. The form of state contexts needed depends on the choice of
primitive operations. There is an empty state context, and for each state there is an
associated expression representing that state. Value expressions are a subset of the set
of expressions used to represent semantic values. These include variables, atoms, and
lambdas. If the expression component of a state is a value, then the state is a value
state and no reduction steps are possible. Otherwise, the expression decomposes
uniquely into a redex placed in a reduction context. A (call-by-value) redex is a
primitive operator applied to a list of values. There is one reduction rule for each
primitive operator, and the single-step reduction relation on states is determined by
the reduction rule for the redex operator. Of course it may happen that a redex is
ill-formed (a runtime error) and no reduction step is possible. A state is defined just if

4 IAN A. MASON AND CAROLYN L. TALCOTT

it reduces (in a finite number of steps) to a value state. Using these basic notions we
define the operational approximation and equivalence relations in the usual way in
terms of definedness in all program contexts. This is the basic semantic framework,
independent of the choice of primitive operations. Within this framework we define
the notion of uniform semantics and develop tools for proving laws of approximation
and equivalence in o -languages with uniform semantics. For a particular choice of
operations what remains is to define the structure of state contexts, and provide the
reduction rules for each primitive operation.

The uniformity requirements are that each reduction rule hold not only for tradi-
tional expressions, but also for expressions containing parameters or meta variables.
This parametric notion of computation is best presented using the idea of a context
and the treatment here follows the general theory presented in [27]. Contexts can
be formalized by adding meta-variables or parameters to the syntax of expressions.
The novelty of our approach is that we decorate parameters with information record-
ing pending substitutions which are to be applied when the parameter is instantiated.
This has several desirable consequences. One is that alpha conversion is valid for
contexts, unlike the traditional lambda-calculus contexts. The other is that symbolic
execution commutes with parameter instantiation, which simplifies reasoning about
program equivalence.

2.1. Expression Syntax of a o -language. Fix two disjoint countably infinite sets,�
, of variables, and � of parameters. The basic syntax of a o -language is then

determined by specifying three sets:

(�): a countable set of atoms, � , disjoint from
�

and � ;
(�): a family of operation symbols � 4 +�� Y V ?EL 1 (� Y is a set of V -ary

operation symbols) disjoint from
� 6�� 6�� ; and

(�): the set of value expressions, a subset of expressions, � , that we will specify in
more detail immediately after the definition of the syntax.

We assume that � contains at least the binary operation �	�
� (lambda application).
As we shall see later by taking � 4 + 1 and �M4 +��	��� 1 we obtain the expressions
of the pure call-by-value lambda calculus,
�� .

Definition 2.1 (� , � , � , �): The set of expressions, � , and the set of o -abstractions,
� , the set of value substitutions, � , and the set of parameter substitutions (fillings), �
are defined as the least sets satisfying the following equations:

� 4 � 6��
� 6��;6���6�� Y ��� Y #

�.4 o � � �
��4b��������� � ��� �
�b4k��������� �����C�

We let � range over � , 	 ��� ��8 range over
�

, �3���H� [range over � , � range over
� , � range over � , � range over � , and range over � .
�
�

is the set of parameters, annotated or decorated by value substitutions. Value
substitutions, � , are finite maps from variables to value expressions. The domain of a

FEFERMAN-LANDIN LOGIC 5

substitution is written as �C���J� � # , and is defined in the usual way. Parameter substi-
tutions are finite maps from parameters to expressions. We write + 	 l -/�� l T�� V 1
for the value substitution, � , with domain + 	 l T�� V 1 such that �W� 	 l #54 � l forT�� V . Similarly we write + � l -/ � l T�� V 1 for the parameter substitution, ,
with domain +
� l T�� V 1 such that �2��lK#:4 ��l for

T�� V . Note that a parameter
decorated by a value substitution is an expression. This allows us to compute para-
metrically with partially specified expressions, and thus our expressions generalize
the usual notion of context. In this more general setting we must be somewhat more
careful to define certain basic notions.

Definition 2.2 (�
	���� # ,
C��� #): The free variables, �
	���� # , and the parameters,
���� # ,
(which are always free) of an expression � are defined inductively. The novel clauses
are

�
	��g��� # 4 c�]�������� � � �
	 � �W� 	 #�#
C�2��� #Z4 c�]�������� � �
C���W� 	 #�#�6�+�� 1
We extend these to substitutions is the obvious fashion:

�
	�����# 4 c�]�������� � � �
	����G��!�#�#
C�"� #H4 c�]��������#� �
C�"�G��!�#�# for � ? � 6�� .

Definition 2.3 (�%$, term, closed): We adopt the convention that an expression with
no parameters is called a term. The set of all terms is denoted by �&$. Furthermore a
term with no free variables is closed. Thus being closed implies having no parameters.

Definition 2.4 (� � , �('): � � is the result of simultaneous substitution of free occur-
rences of 	 ?.����� ��� # in � by �W� 	 # , taking care not to trap variables. Taking care
not to trap variables amounts to defining simultaneous substitution into a lambda ex-
pression by the following scheme

�"o*8*� �O# � 4 o*)P� ����� +�,.-/1032 # � # for) fresh, i.e.)�=? �
	 � � #,6G�4	���� # .
In the case of decorated parameters we define simultaneous substitution as follows,�g� �35 # � 4k� � � 6

5
�
, where � �� 4 + 	 -/ � � � 	 # � 	 ?G����� � � � # 1 .

�3' is the result of simultaneous substitution of decorated occurrences of � ?�����3� D# in � by �2� # instantiated by the (suitably substituted) decoration, again
taking care not to trap variables (other than those in the range of the decoration). For
decorated parameters it is defined as follows, �2� � #7'k4 �g�7# � 8

if � ? ����� � D# ,
and � �

8
otherwise, where � ' is defined point-wise: � ' 4 + 	b-/ �W� 	 # ' 	 ?�����3��� # 1 . In the case of o -abstractions, we define parameter substitution exactly as

we would value substitution:

�"o 	 � �O# ' 4Io9) � ��� � + � -/10(2 # ' # for) fresh, i.e.) =?G�
	����O# 6G�
	�� D# .
Example 2.5: Suppose that : ? �<; . Let � be the expression o)8*� �2� +>=?-/&@ � ,3A =���2 # .
Then (assuming distinct variable names name distinct variables):

(i) �
+�BC-/&,D2

is o9) � 8 since trapping is made explicit by the annotating substitution,
not the surrounding context.

(ii) �
+�BC-/&=E2

is o*8)� :W�28*�>F�# since F is trapped by the substitution annotating � .

6 IAN A. MASON AND CAROLYN L. TALCOTT

(iii) �
+�BC-/��32

is o*8*� � since � is neither trapped, nor forces us to � -convert 8 .
(iv) �

+�=?-/��(2
is o*8)� �g� +7=?-/&@ � , A � ��2 # , since the only free occurrence of F is in the

range of the substitution annotating � .
(v) �

+�=?-/&,D2
is o9) � �g� +>=?-/&@ � 0DA , ��2 # since substitution is defined to avoid trapping.

(vi) �
+�=?-/&=E2

is o*8)� �g� +7=?-/&@ � , A =��"2 # since no trapping takes place.

The notion of being equivalent modulo the renaming of bound variables easily
extends to this more general setting [27] by simply clarifying what can and cannot
be bound: parameters are never bound; variables in the domain of an annotating
substitution are never bound; variables in the range of an annotating substitution may

be bound. Using this one can generate the � -equivalence relation,
�� , by a set of

rules, the new one being:

� � � 	 # �� � � � 	 # for every 	 ?J�C��� ���*l #
� �(5

�� � � �
provided �C���J� � � #H4k�����3��� � #

One last piece of notation concerning annotated parameters appearing in expres-
sions. The set of trapped variables,

��� ���
	 ��� # , is defined to be the smallest set of
variables that contains the domains of any substitution that annotates an occurrence
of a parameter in � . On the other hand the domain of � , �C��� ��� # , is defined to be the
largest set of variables contained in the domain of every substitution that annotates an
occurrence of a parameter in � .

Definition 2.6 (
��� ����	
��� # , ����� ���O#): These amount to a simple inductive definitions,

the interesting clauses being:
��� ����	
�2���P#Z4 c�]�������� � �

��� ����	����W� 	 #�#,6G�C���J� � #
�����3�g� �9#Z4

�] +��]�������� � � � � � � �D� ������ 2
�����3���W� 	 #S# FG�C��� ��� #

The domain of an expression is useful in expressing certain necessary closure re-
quirements, as suggested by the following lemma.

Lemma 2.7 (�C���J��� #): Suppose �
	���� # 4�� , and �
	�� D#�� �C��� ��� # . Then �
	�����'�# 4
�
Definition 2.8 (Value Expressions (�)): The set of value expressions, � , contains
all variables, atoms, and lambdas. It may in addition contain expressions of the form
:W� � Y # . � must also satisfy:

(triv) � is closed under
��

(vsub) � ?���� � � ? �
(inst) � ?���� � ' ?��
(dich) � ' ? ��� ��� ?�� #�� ��� 4 ���7j �g�7# ?�� #
We let � range over � .

FEFERMAN-LANDIN LOGIC 7

Operators, : , that produce value expressions, are called constructors. In the lan-
guages considered here the binary pairing operation, ��� , will serve as the prototypical
constructor. The following lemma simply points out a simple consequence of the clo-
sure conditions on values.

Lemma 2.9 (inv): � � ? ��� �5?��
Proof: Pick � � such that � �� ? � , and let � be a fresh parameter. Put ��4 � � ,
 i4E+ � -/ � � 1 . Then

� ' 4;�2��� # ' 4 �g� # � � 8 � 4 �g�7#7��4 �(�� ? �
since � � =?�� we can use (dich) to conclude that ���n? � .

2.2. Operational Semantics. In a Landinesque language computation state is rep-
resented as a class of expressions. Each particular language will possess it’s own class
of state expressions, reflecting the nature of the primitive operations that it is based
on. In what follows we fix a distinguished parameter � to designate the position at
which effects are to be observed in a context representing a computation state. We
call this the state parameter.

Definition 2.10 (State expressions (
�

)): For a particular Landinesque language
�

is
assumed to be a subset of � . We call

�
the set of state expressions.

�
is assumed to

satisfy the following uniformity conditions:

(triv)
�

is closed under
��

(par) ��? � ��� ?
�����#
(vsub) ��? � ��� � ? � assuming � =?
C��� #
(inst) ��? � ��� ' ? � assuming � =?@�2����� � D# 6
C� D#�#
� ranges over

�
and �5? � is the empty state expression.

Definition 2.11 (Values in a State (�	�)): The set of values defined in a state � is �
� :
� � 4 + � ?�� �
	�� � # �i����� ����# 1
Definition 2.12 (Computation States (� �)): � �
�4 ��� � is the set of computation
states. We let � range over � � and let � � � be the state with state context � and
expression � . The computation state � � � is said to be a value state iff � ?�� . Given
a state � � � , we associate a corresponding expression by filling the state parameter in
the context with the expression, i.e. � +�� -/���2 . A state is closed just if its corresponding
expression is closed, in other words if � +�� -/���2 has no free parameters or variables.
Application of value and parameter substitutions to states is defined by in the obvious
way: ��� � �O# � 4�� � � � � and ��� � �O#7'i4�� ' � �(' . Note that by (vsub) (inst) these
are only meaningful if ��=?J�C��� ��� # and ��=?@�"�C���J� D# 6
C� D#�# .
Definition 2.13 (Reduction (� / , � /��) and Definedness (�)): Given a reduction re-
lation for a Landinesque language: � � ��� / �
 � �
 , the following definitions are
standard. The transitive closure of � / is � /��

8 IAN A. MASON AND CAROLYN L. TALCOTT

Definedness:

��� � �O# � � � � � � /�� �
 � �
Approximation:

��� � � � � #�� ��� � � � � # � ��� � � � � # � � ��� � � � � # �
Equidefined:

��� � � � � #��E��� � � � � # � ����� � � � � # � � ��� � � � � # ��#
Equal:

��� � � � � #Z4 ��� � � � � # � ��� � ? �7����? � #
�	�
�� ;
��� l � ��l # � /�� � � � #

Equivalued:

��� � � ���O#�
 ���
� � �S�
� ��� � � �h�O#��I���
� � � � # jE��� � � ���O# � � ��� � � ���O#Z4 ���
� � �S�
#
Length:�
� � �

�
is the least V ?JL such that � � � reduces to a value state in V steps, if � � � � .

To define reduction rules for general Landinesque languages, and formulate the
central properties of reduction and equivalence, we introduce the notions of redex
and reduction context. Since evaluation is call-by-value, a redex is simply an non-
constructor operator applied to the appropriate number of value expressions. Redexes
and value expressions must be disjoint, thus we must account for the fact that some
expressions of the form :W� � � �
�
��� � � YP# may be value expressions.

Definition 2.14 (Redexes (���)): The set of redexes, ��� , is defined by:

���W4 ��Y$��� Y # � �
Note that redexes in our framework may or may not reduce. The point is that they are
simply expressions of a particular shape, in other words: candidates for reduction. We
use the distinguished parameter � to denote the evaluation parameter (or hole), and
we define the notion of a reduction context, � , accordingly. Reduction contexts (also
called evaluation contexts in the literature) identify the subexpression of an expres-
sion in which reduction to a value must occur next. They themselves represent the
remainder of the computation, i.e the continuation. In our approach they correspond
to the left-first, call-by-value reduction strategy of [35] and were first introduced by
[13].

Definition 2.15 (Reduction Contexts (�)): The set of reduction contexts, � , is the
subset of � defined by

� 4 +�� 1 6 ����� Y ��� � + � ? � � =?
C� � # 1 � ���3�
+ �5? � � =?
����O# 1 Y #
We let � range over � . We adopt the convention of writing � [�] instead of� +���-/ � � 2

.

FEFERMAN-LANDIN LOGIC 9

Observe that both the definition of redex, and the definition of reduction contexts
depend on the particular choice of values, and thus vary from one Landinesque lan-
guage to another. Also note that � will satisfy a similar set of uniformity conditions
as those satisfied by states (Definition 2.10):

Lemma 2.16 (Rcx Uniformity): Reduction contexts satisfy the following uniformity
conditions:

(triv) � is closed under
��

(par) � ? � � � ?
���� #
(vsub) � ? � � �%��? � assuming ��=?
���� #
(inst) � ? � � � ' ? � assuming � =?@�2����� � D#�6
�� D#�#

It is easy to check that an expression without parameters is either a value expression
or decomposes uniquely into a redex placed in a reduction context (a proof can be
found in [29]). This generalizes to the present situation in the following fashion.

Lemma 2.17 (Decomposition): For any Landinesque language, if � ?�� then either
� ?�� or � can be written uniquely as either

(i) � [�] where � is a reduction context and � ?�� � , or else
(ii) � [� �] where � is a reduction context, and � � ? � � is a decorated parame-

ter.

In the latter case we say that the expression is touching the parameter, while in
the former we say that the expression may be reducible. The requirement that the
evaluation parameter does not occur in either the leading value expressions, or the
trailing expressions is necessary for the uniquenss aspect of this lemma. A simple
counterexample, due to Jonathan Ford, is the following:

�D��4 :W� �9� ��# �C�D4 :W� �9� � # �D� [�] 4 :W� � � � # 4 �C� [�] �
For the languages considered here, the single step reduction relation is defined by

giving a reduction rule for each operation. These rules are of the form:

� � � � [:W� � � ���
�
�$� � YP#] � / � � � ���
In particular the rule for the �	��� operation is the standard reduction rule for the call-
by-value lambda calculus.

Definition 2.18 (Beta value reduction (
� �)): The reduction rule for �	��� is the beta

value rule:

(
� �) � � � [�	���$�"o 	 � ��� � #] � / � � � [� + � -/��32

].

Notice that this rule is schematic in the actual states, reduction contexts, and values
of a particular Landinesque language.

2.3. Uniform Semantics. We now specify what we mean by a o -language having
uniform semantics. The key requirement is that reduction steps that do not touch
a parameter are uniformly independent of what the parameter might stand for. In
addition, we require that: single step reduction is essentially deterministic; reduction

10 IAN A. MASON AND CAROLYN L. TALCOTT

is preserved by value substitution; a state, and its associated expression started in the
empty state context, are equi-defined; and if one state reduces to another then the two
states are equi-defined and the reduct has shorter computation length, if defined.

Definition 2.19 (Uniformity (U)): A o -language is said to have uniform semantics if
it satisfies the following:
(i) Functional modulo

�� and implicit bindings:

�	�
�� ;
��� l � ��l # �� ���
l � �
l #�# � ����� � � � � � / � � � � � # � ���
� � �
� � / �
� � �
� #�#

�	�
�� ;
� � � � / � l � ��lK# ���

+ ��-/ � 5 2� �� �
+ � -/�� � 2� �

(ii) Uniform in value substitutions:

� � � � / �
 � �
 � ��� � �O#7� � / ���
 � �
 #>�
provided �C���J� � #�F � ��� ����	 ����#�6 ��� ����	����
 #�# 4�� and ��=?
C� � # .

(iii) State evaluation:

� � � � � � � +���-/ ��2
(iv) Well-founded:

��� � � � / �
 � �
 j � � � �9# � ���
 � �
 ��j � �
 � �
 � � �
�
 � �
 � #

(v) Parametric:

� � � � � � / � � � � � � ��� � � � � # ' � / ��� � � � � # '
for any b?�� with ��=?>�2����� � D#�6
�� D#�# .

(vi) Dichotomy (Either computation touches a parameter or is parametric):
Assuming � =? �C���J� D# , if ��� � � #>' � / �
 � �
 then either

� � � touches a parameter in the domain of , or
� � � � / � � � � � , for some � � � � � such that �
 � �
 �� ��� � � � � #7' .

(vii) Closure:

(i) ��� � � ��� � / �
� � �S�
� �
	���� + � -/�� � 2� # �i�
	���� + � -/�� 5 2� #
(ii) ��� � � � � � / � � � � � # �
���� � � � � #��
���� � � � � #)j � � =?
C��� � # ����=?
C� � � #�#

In the languages we consider (U) holds for the following reasons. (U.i) holds
because the only non-determinism in a reduction step is the choice of names used in
the state context. (U.ii) holds because reductions that do not depend on the values
of free variables, are parametric in the values that those variables take. (U.iii) holds
because reduction of � � � + � -/���2 essentially recreates the state context � . (U.iv)
follows since if a state is defined, then any reduction makes progress. Clearly if the
reduct state is defined, then the original state is defined. (U.v) and (U.vi) formalizes
the uniformity requirement for reduction steps. These are satisfied by reduction rules
that treat the reduction context as an abstract entity, and that depend on the kind of

FEFERMAN-LANDIN LOGIC 11

construction of a redex argument, but not on any information about subparts. This
is easily expressed using the parameters. Finally, (U.vii) holds because computation
neither introduces new parameters, nor new free variables.

2.4. Approximation and Equivalence. Now we define operational approxima-
tion and equivalence on terms and lay the ground work for studying properties of
these relations. In what follows we fix a particular distinguished parameter, � , dis-
tinct from � and � . We let � range over expressions with � as the only free pa-
rameter, with the added condition that the substitutions annotating � be restricted
to renamings (finite maps from variables to variables). Such expressions play the
role of traditional lambda-calculus contexts, and we extend our convention, stated in
definition 2.15, of sometimes writing � [�] instead of �

+�BC-/���2
. Note however that

for example the traditional context o)8*� � ���$� � �So 	 � �	��� � [] ��89#�# does not correspond
to o)8*� �	������� �So 	 � � ��� �g����89#�# but rather to one where the trappings have been made
explicit at the occurrence of the � parameter: o*8)� �	����� � � o 	 � �	��� �g� + � -/ � A ,.-/&,D2 ��89#�# �

For each traditional context � there is a corresponding expression,
�
� such that

� [�] 4 �
�

+�BC-/���2 �
�
� is obtained by replacing each occurrence of � � in � by the parameter � , and dec-
orating each such occurrence of � with a binding substitution + 	 l -/ 	 l 	 l ? ` 1
where

`
is the set of lambda variables having the hole occurrence in their scope. For

example, the expression corresponding to o 	 � � is o 	 � � + � -/ � 2
. This guarantees that

the following definition corresponds to the traditional notion of operational equiva-
lence.

Definition 2.20 (Approximation � ��� � � , Equivalence � �
4 � �): For terms � � , � � de-
fine

� ��� � � � ����� � [� �] ��� [� �]closed # � � � � [� �] �
� � � [� �] #
� �
4 � � � � ��� � � j � �	� � �
Note that we are restricting our attention to terms, rather than arbitrary expressions.
It is easy to see that operational approximation is a congruence on terms: if � � � � � ,
then � [���] � � [�S�]. Similarly for operational equivalence.
We may now state the main result concerning Landinesque languages with uniform
semantics, the CIU theorem.

Theorem 2.21 (CIU): For a o -language with uniform semantics:

��� � � � � ��� �P��� ��� �
�� ;
� � � [� �
] closed # ��� � � [� ��] � � � � [� ��] #

There are several proofs of this result in the literature. The theorem first appeared
in [29] and the proof (sketch) presented there used techniques similar to those de-
veloped here. A somewhat more detailed and general version of this same technique
appeared in [42]. Recently this same proof has been verified using the PVS theorem
prover [15]. A second, distinct, proof was presented in [22] that simply shows that
the CIU relation is a congruence.

12 IAN A. MASON AND CAROLYN L. TALCOTT

Corollary 2.22 (Substitutivity): In a o -language with uniform semantics operational
approximation is preserved by substitution: if �S� � � � , then � �� � � �� . Similarly for
operational equivalence.

Example 2.23 (Call-by-value o -calculus (
 �)): As a first example we complete the
definition of the language
 � .
 � has no atoms (� 4 + 1) and a single operation,
� 4 +�� ��� 1 . There is one state, the empty state, represented by the state parameter
� . In
 � (as in all Landinesque languages) the reduction rule for �	��� is the

� � rule
(Definition 2.18).

It is easy to see that
 � satisfies the uniformity conditions (Definition 2.19). The
only hard part is to show that value substitution and

� � reduction commute, which is
a standard result.

2.5. Context Independent Reduction. To state the theorems underlying compu-
tational equivalences in this general setting we introduce the notion of a context in-
dependent (CI) redex.

Definition 2.24 (Context independent reduction (�
�
� /��)): A redex :W� � ���
���
�$� � Y # is

CI if the interpretation is independent of the context: either there is no reduction
possible in any computation context (state and reduction context), or the redex is
replaced by the same reduct expression in any computation context. That is, exactly
one of the following holds:

1. For any � , � there is no �
 � �
 such that � � � [:W� � � �
���
� � � YP#] � / �
 � �
 .
2. There is some � such that � � � [:W� � � �
���
� � � YP#] � / � � � [�] for any � , � .

A CI redex neither examines nor modifies its context (state or reduction). For exam-
ple, any redex with operator �	��� is CI.

We write ���
�
� /�� �
 if � � � [�] � /�� � � � [�
] by a sequence of CI steps for

any � and � .
The intuition that two expressions are equivalent if they have a common reduct,

is justified by Theorem 2.25 below. Similarly reasoning that two expressions are
equivalent if they result from placing a third expression in computationally equivalent
reduction contexts is justified by Theorem 2.26.

Theorem 2.25 (Equi-reduct): In a o -language with uniform semantics, if there is

some � such that �
 � �� /�� � for U � R then � �
4 � � .
Proof: Assume �
 � �� /�� � for U � R . By CIU (and symmetry), to show that � �
4 � �
we need only show � � � [� ��] � � � � [� ��] for all closing �P��� , and � . Choose
any such � � � ��� and assume � � � [� ��] � , furthermore we may choose � and � such
that ����� ��� # F ��� ����	
����# 4 � . By assumption pick � such that

� � � [�
] � / � � � � [�] for any � and � .

Thus by (U.2) we have

��� � � [�
] # � � /�� ��� � � [�] # � for the particular � and � chosen above.

FEFERMAN-LANDIN LOGIC 13

Consequently

� � � [� �
] � / � � � � [� �] since �54 � � and � 4 � � .

Thus, by (U.4), � � � [� �] � , and hence � � � [� ��] � .
Theorem 2.26 (Equi-rcx): In a o -language with uniform semantics, if for 8 fresh

there are � �
4 � � such that �
 [8] � �� /�� �
 for U � R , then � � [�]
4 � � [�] for
any � .

To provide simple instructive examples of the use of these two principles we will
introduce the ubiquitous

�����
construct that will feature in the subsequent develop-

ment, and establish its more well known properties.

Definition 2.27 (
�����

): The
�����

form is very common programming language con-
struct abbreviating o -application:

����� + 	 � 4 �P1 � �4 �	�
�$�"o 	 � ��� � # �
Example 2.28 (

�����
): As mentioned above

� � reduction of �	�
�$�"o 	 � ��� � # is CI, thus
an immediate consequence of Theorem 2.25 is that

(let.i)
����� + 	 � 4 �)1 �
4 �

+ � -/ �32 �
Assume that 	 =? �
	 � � � # and � � 4 ����� + 	 � 4 � 1 � � []. Then for 8 fresh:

� � [8] � �� /�� � � [] + � -/&,D2 4 � � [8]
So by Theorem 2.26:

(let.ii) � � [�]
4 ����� + 	 � 4 � 1 � � []
Another example is obtained by taking �:�@4 ����� + 	 � 4 � 1 ����� + � � 4 ��� 1 � and� � 4 ����� + � � 4 ����� + 	 � 4 � 1 � � 1 � with the added proviso that 	 and � are distinct,
and 	 =?J�
	���� # . Then for 8 fresh:

�D� [8] 4 ����� + 	 � 4I8 1 ����� + � � 4 ��� 1 �
�
�
� /�� � ����� + � � 4 � � 1 � # + � -/&,D2 4 ����� + � � 4 �

+ � -/&,D2� 1 �
� � [8] 4 ����� + � � 4 ����� + 	 � 4b8 1 � � 1 �
�
�
� /�� ����� + � � 4 �

+ � -/&,D2� 1 �
Thus again by Theorem 2.26:

(let.iii)
����� + 	 � 4 � � 1 ����� + � � 4 � � 1 ��� ����� + � � 4 ����� + 	 � 4 � � 1 � � 1 �

These three principles hold in any uniform Landinesque language. They are fun-
damental in that they are equivalent to the let-rules of the computational

�
calcu-

lus [33].

An even stronger, but nevertheless useful notion, is being ineffectual which cap-
tures the idea of single CI stepping to a value. In that every reduction rule for the
operation leaves its context (state and reduction) unchanged and produces a value.

14 IAN A. MASON AND CAROLYN L. TALCOTT

Definition 2.29 (Ineffectual): An operation : ? � is said to be ineffectual, iff every
reduction rule for the operation leaves its context (state and reduction) unchanged and
produces a value, i.e is of the form:

� � � [:W� � �O���
��� � � Y #] � / � � � [�] �
An operation that is not ineffectual is said to have effects.

Of course the interesting operations are not the ineffectual ones, we simply use in-
effectualness to separate out the uninteresting operations, since they have many more
properties than the ones with effects. The only operation common to all Landinesque
languages is �	��� and it has effects.

�
3. The Syntax and Semantics of Formulas.

3.1. Syntax. The first order fragment of our logic is a minor generalization of
classical first order logic. The atomic formulas, � � , assert the definedness, equival-
uedness and operational equivalence of terms, �&$, i.e. parameter-free expressions.

In addition to the usual first-order formula constructions, we add a
�����

-assertion:

����� + 	 � 4 � 1��
where � is a formula, 	 a variable, and � a term. The formula

����� + 	 � 4 � 1�� asserts
that if execution of � terminates with value � , then � holds in the resulting state, with	 bound to the value � . This provides a means for expressing the effects of evaluating
an expression. An instructive example is the formula

(newness) �����8�# � � 	 # ����� + � � 4 :W���8�# 1�� � 	
 �P#
expresses that : creates new values, distinct from any values existing prior to eval-
uation, such operations are usually called constructors, or allocators. Note that the
�����

-assertion is a binding operator akin to � .

Definition 3.1 (�):

� � 4;� � $
 � $ # 67��� $
4 � $ #
� 4�� � 6 � � � #,6 �	� �
� #$67� ����� + � � 4 � $ 1 � #$67��� � #
��� #

3.2. Semantics. The meaning of formulas is given by a Tarskian satisfaction rela-
tion �

� 4 � � ��� .
Definition 3.2 (�

� 4 � � ���):
Assume �P��� � � � �
 satisfy �4	�� � � # �S�4	���� �
 # � �C���J����# and
C���
 #n4 � for U � R ,
and �4	�����#C4 � . Then we define the satisfaction relation �

� 4 � � ��� by induction on

FEFERMAN-LANDIN LOGIC 15

the structure of � :

�
� 4 ��� ��
 ���
� ��� iff ��� �E? � �
	���� #��i����� ����#�#��� � � [� ��]
 � � � [� � �] #
�
� 4 ��� �
4 ���
� ��� iff ��� �E? � �
	���� #��i����� ����#�#��� [� [� ��]] ��� [� [� � �]] #
�
� 4 � � � ��� iff &P� � ��� � 4 � � ���g#
�
� 4 � � � � � � #
� ��� iff ��� � 4 � � � ���B#�� ��������� 	 ��� � 4 � � � ���g#
�
� 4 ����� + 	 � 4 � 1�� � ��� iff ��� � � � � /�� �
 � � #	� ��������� 	 �
 � 4 � � ��+ 	 � 4 �P1 �g#
�
� 4 ��� 	 # � � ��� iff ��� � ?�� � #
��� � 4 � � ��+ 	 � 4 �P1 �B#

As is usual in logic we define the subsidiary notions of validity and logical conse-
quence as follows:� 4 � iff � � �P��� �
	�� � � # �i�C���J����#�# ��� � 4 � � ���B#
� � � 4 � � iff

� 4 � � � � �
Note that conjunction, j , and disjunction, � and the biconditional, � , are all

definable in the usual manner. Also, termination and non-termination are simple
abbreviations. We let � � (termination) abbreviate � � ����� + 	 � 4 � 1�
 � �
��� # and � �
(non-termination) abbreviate its negation

����� + 	 � 4 � 1�
 � ��� � where
 � ��� � is any
unsatisfiable assertion, such as � � 	
 	 # . Termination is one form of definedness. In
fact, there is a plethora of notions of definedness that can be expressed. A stronger
notion of definedness is that of being equivalent (either via
 or via
4) to a value, for
example an operation that satisfies the newness principle above will never be defined
in this stronger sense.

�
4. Syntax and Semantics of Classes. Using methods of [5, 9] and [40], we ex-

tend our theory to include a general theory of classifications (classes for short). With
the introduction of classes, principles such as structural induction, as well as princi-
ples accounting for the effects of an expression can easily be expressed.

4.1. Syntax of Classes. We extend the syntax to include class terms. Class terms
are either class variables,

���
, class constants, � � , or comprehension terms, + 	 �C1 .

Definition 4.1 (�): The set � of class terms is defined by

�M4 � � 6��
� 6 + � � 1

We extend the atomic formulas to include class membership and the set of formulas
� to include quantification over class variables. We should point out that � and �
form a mutual recursive definition. The definition of expressions remains unchanged.

Definition 4.2 (�):

� ��4;� ��$
 �%$�# 67���%$
4 �%$�#$67���%$�?��3#
� 4�� �H6 � � 6 �	� �
� # 67� ����� + � � 4 �%$ 1 � # 67� � � #
��� #$67��� � � # �
We let � range over

���
and � range over � . We will use identifiers beginning with

an upper case letter in ������� font (for example �����) for class constants.

16 IAN A. MASON AND CAROLYN L. TALCOTT

4.2. Semantics of Classes. To give semantics to the extended language, we ex-
tend the satisfaction relation as follows. Firstly we let � � , the set of class values
over � , be the set of subsets of � � (values over �) closed under
4 . Another possible
choice for the set of class values is the set of definable sets, i.e. the set of class code
extensions (cf. [7, 40]).

We extend value substitutions to map class variables to class values. This is used to
define � �G� �� , the value of a class term, � , relative to the given state, � , and the closing
value substitution � . In principle, the class term evaluation is relative to a valuation
for class constants, but since all of our class constants are introduced by definitional
extension, this can be ignored.

Definition 4.3 (� �G� ��):
� � � �� 4 �W� ��#
� + 	 �C1 � �� 4 + � ?�� � �

� 4 � � ��+ 	 � 4 �)1 � 1
We then extend the satisfaction relation to formulas involving class terms and quan-
tifiers.

Definition 4.4 (�
� 4 � � ���): The new clauses in the inductive definition of satisfaction

are:

�
� 4 �n? �@� ��� � � � � ?�� ������� � � # ��� � �(��� / � � � � j � ?7� �G� �� #
�
� 4 ��� ��# � � ��� � ��� � ? � ������� � � #
��� � 4 � � ��+ � � 4 � 1 �B#

It is important to note that if �
� 4 � ?�� � ��� , then � evaluates (in the appropriate state)

to a value without altering that state.

Example 4.5 (Class definitions): We define (extensional) equality and subset rela-
tions on classes in the usual manner.

��� � �n� �40��� 	 #
� 	 ? ��� � 	 ?��n� #
� � � � � �4 � � � � � j � � � � �
The class ��� / �n� is the set of lambdas that define total functions that have no effect
on the state context.

� � / � � �4 + ! ��� 	 ? � � # � ����? � � #�� ���$�"!�� 	 #
 � 1
�
5. Proof Theory. Since contextual assertions are akin to modalities, we give a

Hilbert style presentation. In the long run a natural deduction style system in the style
of Prawitz [36] may be more desirable. Jacob Frost has developed a natural deduc-
tion presentation of this system [17, 18] for the o ��� language [22], a Landinesque
language with primitives for manipulating memory cells, and implemented it in the
proof assistant Isabelle.

Definition 5.1 (
� �): The consequence relation,

�
, is the smallest relation on � that

is closed under the rules given below.

FEFERMAN-LANDIN LOGIC 17

The rules are partitioned into several groups. Each group of rules is given a label,
for future reference, and members of the group are numbered. For example (E.i)
refers to the first rule in the group of equivalence and evaluation rules (the second
group below). A rule has a (possibly empty) set of premises and a conclusion. In the
case that the set of premises is non-empty the rule is displayed with a horizontal bar
separating the premises from the conclusion.

Definition 5.2 (�): Most axioms hold true for both equivaluedness,
 , and oper-
ational equivalence,
4 , If this is the case, then rather than write out the principle
twice, we use the symbol � to range over these two equivalence relations.

One important reason for introducing
 is that important principles fail for
4 . In
particular (C.iii) below fails as indicated in [30].

5.1. Basic Equivalence and Evaluation Rules. The first two sets of rules con-
cerning equivaluedness hold true also of operational equivalence. They are equiva-
lence relations, (E.i, E.ii, E.iii). They satisfy a certain restricted form of substitutivity,
(E.iv).

They are also preserved under simple forms of evaluation, (let.i, let.ii, let.iii) that
we treated in Example 2.28.
Equivalence and Evaluation Axioms (E).

� �B# � � � � � �
� ���B# � ��� � � � � j � � � � ; # � � � � � ;
� ����� # � � � � ��� � � � � � �
� ���P# � � � � � � � ����� + 	 � 4 ��� 1 � � ����� + 	 � 4 ��� 1 �
Evaluation Axioms (let).

� �B# � � ���$�"o 	 � ��� � # � �
+ ��� � �(2

�
����� + 	 � 4 �)1 �

� ���B# � � [�] �
����� + 	 � 4 � 1 � []

� ����� # � ����� + 	 � 4 � � 1 ����� + � � 4 � � 1 � � ����� + � � 4 ����� + 	 � 4 � � 1 � � 1 �
The principle (let.ii) is subject to the side condition that that 	 =? �
	�� � # , while in
(let.iii) we require 	 =? �
	���� # . The remaining axioms and rules concerning oper-
ational equivalence are: (
4 .i), equivaluedness implies operational equivalence; and
(
4 .ii), operational equivalence is not the same as equivaluedness on abstractions.
Operational Equivalence Rules (
4).

� �B# � � �
 � � � � �
4 � �
� ���B# � � �
4 � �

� o 	 � � �
4 o 	 � � � (The
�

Rule)

5.2. Contextual Rules. A contextual assertion is a modality and as such possesses
a rule akin to necessitation, (C.i). Note that this is a rule of proof and not an implica-
tion. The remaining axioms concerning contextual assertions are: (C.ii), contextual
assertions distribute across the equivalences, (the converse is false); (C.iii), a form of

18 IAN A. MASON AND CAROLYN L. TALCOTT

contextual assertion introduction involving equivaluedness (the corresponding prin-
ciple for operational equivalence is false); (C.iv), a principle akin to

�
conversion;

and (C.v), a principle allowing for the manipulation of contexts.
Contextual Rules (C).

� �B# � �
� ����� + 	 � 4 � 1 � for any 	 , � , and � . (Context Introduction)

� ���B# � ����� + 	 � 4 � 1 ��� � � � � # � ����� + 	 � 4 � 1 � � � ����� + 	 � 4 � 1 � �
� ����� # � � �
 � � � � ����� + 	 � 4 � � 1�� � ����� + 	 � 4 � � 1�� #
� ���P# � ����� + 	 � 4 �P1 � � � + � � � �(2

� �P# � ����� + 	 � 4 � � 1 ����� + � � 4 � � 1�� � ����� + � � 4 ����� + 	 � 4 � � 1 � � 1��
The principle (C.v) is subject to the condition that 	 =?J�
	�� � # .
Example 5.3: Note that using (C.i) in the special case that � is a value, allows us
to also use (C.iv) to eliminate the

�����
in preference for the substitution, thus the

following is a derivable rule.
� �
� � � (Substitution)

5.3. Logical Rules. The propositional rules are, in addition to the usual Hilbert
style presentation of modus ponens, (P.iii), and a generating set of tautologies, (P.i) a
modal axiom corresponding to K and its converse, (P.ii).
Propositional Rules (P).

� �B# � � provided � is an instance of a tautology

� ���B# � ����� + 	 � 4 � 1 � � � � � � # � � ����� + 	 � 4 � 1�� � � ����� + 	 � 4 � 1 � � #
� ����� # � � � � � � � � �

� � � (Modus Ponens)

Similarly the quantifier axioms are all standard [4] except for (Q.iv) which asserts
that ineffectual operations have no allocation effect, that is they don’t change the
domain of the state context.
Quantifier Rules (Q).

� �B# � �
� ��� 	 # � (Generalization � I)

� ���B# � � � 	 #
� � � � � ��# � � � � � ��� 	 # � �
# if 	 =?G�
	�� � �O#
� ����� # � ��� 	 # � � �

� ���P# � � � 	 # ����� + 8 � 4 :W� ��P# 1�� � ����� +O8 � 4 :W����P# 1 � � 	 # �
Where in (Q.iv) we require that : be ineffectual (see Definition 2.29), 8b=4 	 , and	 =?J�
	���:W����P#�# .

FEFERMAN-LANDIN LOGIC 19

Example 5.4: Note that by the same sort of reasoning that established the derived
principle (Substitution) we can also establish

� �B# � ��� 	 # ����� +�8 � 4 �)1�� � ����� +O8 � 4 �P1 ��� 	 # � for 8G=4 	
5.4. Undefinedness Axiom. The most basic principle concerning undefinedness

is that two undefined terms are both equivalued and operationally indistinguishable,
(U.i).
Undefinedness Axiom (U).

� �B# � � � � � ��� � � � � � � � � #
5.5. Constraint Propagation Axioms. An important class of axioms are those

which allow assertions to be propagated into and out of assertions. In order to be
succinct we write � [���] to abbreviate the two formulas � [�] and � [� �]. The
following three principles require that :>? � is ineffectual, Definition 2.29, and that	 � �8 distinct.
Constraint Propagation Axioms (S).

� �B# � ����� + 	 � 4 :W� �89# 1 � 	 � :<���8�#�#
� ���B# � � �"8�� �b8�� # � ����� + 	 � 4 :W� �� # 1 � � �28 � �k8�� #�#
� ����� # � :W����P# � � � ����� + 	 � 4 :<� ��P# 1 � � �28 � �I8 �
#�# � � �28 � �b8 �
#�#

5.6. Classes. As a consequence of the semantics of classifications the following
are valid.
Class Axioms (Cl).

� �B# � �n? � � � �
� ���B# � � � ��# � � � � � � � �G� where � contains no

�����
-assertions

� ����� # � ��� 	 # � 	 ? + 	 �C1 � � #
Example 5.5: As pointed out in the earlier work [22], neither of the following two
principles are valid.

(i) � �
4 � � j ����� + 	 � 4 � � 1
	 ? � � ����� + 	 � 4 � � 1
	 ?��
(ii) � � ��# � � � � � � � �G�
For example (i) fails in the case of simple memory operations for class terms can
observe inaccessible cells if the expressions differ only in that one generates a cell
and forgets it (garbage) and the other does not. (ii) fails because evaluation of class
terms (containing

�����
-assertions can change the state context in which part of the

formula is evaluated.

The axioms and rules above are sound in the sense that a provable formula is valid.

Theorem 5.6 (Soundness):
� � implies that

� 4 � .

20 IAN A. MASON AND CAROLYN L. TALCOTT

�
6.
�� – An Example. As a particular example of a Landinesque language we de-

fine
�� , a language extending the call-by-value lambda calculus with the usual func-
tional programming primitives, primitives for the manipulation of memory, and a con-
trol primitive for manipulating the current continuation (the reduction context). This
combination results in a language similar to “functional” programming languages
such as Scheme [38] and ML [32]. The combination of lambda abstraction, basic
data structures such as numbers and pairing, memory and control primitives provides
a basis for expressing a wide range of programming paradigms/styles quite natu-
rally. Examples of the use of continuations in programming practice can be found
in [14, 16].

In
 � the set of atoms, � , contains two distinct atoms playing the role of booleans,
�

for true and � � � for false, as well as atoms playing the role of the natural numbers,
which we denote by NP�
Q��
���
� .
Definition 6.1 (
�� Operations):

� 4 �
� 6�� � 6�� �

�
� 4 +��	�
��� � ���	��
 �
� �����*� ��� ��� � ��� ����� ������� � � � � ��
)� ������������� ������� � � � 1

� � 4E+��	����� ��� � ����� ��� � � � � 1
� � 4E+����
� 1

6.1. Informal Semantics. We give a brief and informal guide to the more novel
of the primitive operations.
mk is a memory allocation primitive: the evaluation of � ��� � # results in the alloca-

tion of a new memory cell and initializes this cell so that it contains the value � . The
value returned by this call to � � is the newly allocated cell. �	� is total, it has effects.
get is the memory access primitive: the evaluation of � ��� � � # is defined iff � is a

memory cell. If � is a memory cell, then � ��� � � # returns the value stored in that cell.
Note that there is no reason why a cell cannot store itself (or some more elaborate
cycle). � ��� is both partial and ineffectual.
set is the memory modification primitive: the evaluation of

����� � � ��� � �
is defined
iff � � is a memory cell. If � � is a memory cell, then

����� � � ��� � � # modifies that cell so
that its new contents becomes � � . The value returned by a call to

�����
is somewhat

arbitrary and somewhat irrelevant. We have chosen � � � as the return value, thus if� is a cell, then
����� � � � � # will return � � � , and more importantly modify � so that it

contains itself.
�����

is both partial and has effects.
cell? is the recognizer of the set of memory cells. � � � � ��� � # returns

�
if � is a

memory cell, otherwise it returns � � � . It is both total and ineffectual.
br is the strict branching primitive: the evaluation of ���$� � � � � � � � ;�# returns � ; if � �

is the atom � � � , otherwise it returns � � . Thus any non- � � � value is considered true.
The usual lazy branching primitive

� �����������S��� � ; # �4 �	��� �!� � �������So*8)� �S� �So*8)� � ; # ��� � �

FEFERMAN-LANDIN LOGIC 21

for a fresh variable 8 . ��� is total and ineffectual.
eq? is the equality primitive (solely on atoms):

� � ��� � ��� � � # returns
�

if � � and � �
are the same atom, otherwise it returns � � � .

� � � is total and ineffectual.
ncc is a primitive for capturing the current continuation (i.e the current reduction

context). It gets its name from what it does, since it notes the current continuation.
� �
�9� � # captures the current reduction context as a continuation, removes this reduc-
tion context from the current state, and applies � to the captured continuation at the
top level. � � � , like �	��� , is both partial and has effects.

Definition 6.2 (More notation conventions): We introduce new constant symbols by
definitional extension using the notation

���4 �
We also use this notation for introducing function symbols defined recursively. Thus

� �4 o 	 � � stands for the following definition of the constant symbol �
� �4 � �Ko	��� o 	 � �O#

where
�

is some choice of call-by-value Y-combinator, see for example
�

6.2.2.
We use a number of abbreviations to (hopefully) make programs more readable.

(
��� �): ���
� can be used to define an abort primitive. We call this

��� � because it
simply returns its argument to the top level.

��� � �4 o 	 � ���
�P�"o�� � 	 #
(Sequencing): We let �������S� abbreviate

����� +�� � 4 ��� 1 � � for some � not free in � � .
This expresses the sequencing of two expressions, the first being evaluated for
effect only – for example to update memory. By the

�
laws (see Example 2.28),

we see that � so defined is associative, thus we may write �S���
���
�	� � Y without
ambiguity.

(�	��� suppression): As in the usual o -calculus notation, we replace �	�
� by juxta-
position and well-placed parentheses, and when convenient, curry application
of a function to multiple arguments. Thus � � ��� � # abbreviates �	������� � ��� � # and
� � ��� � � ��;O# abbreviates �	����� �	���$��� � � � � # � ��; # .

Definition 6.3 (
 � States): In
 � states are memory contexts—contexts of the form

� 4 ����� + 8 � � 4 � � � � � � # 1
�
���
����� + 8�
 � 4 � � � � � � # 1

����� �"8��O� � ��#��
���
� � ��� �28
 � �
 #
� � +�, � -/&, � A������ A ,�� -/&,�� 2
The

�����
s of � allocate new cells, named 8 l , and the

�����
s assign the contents. If

the value put in a cell does not refer to any newly created cell then that
�����

could be
omitted and the value expression used as argument to the corresponding � � . However
in general, separation of allocation and assignment is needed in order to represent
stores with cycles. For example, consider creating a cell that contains itself. This is
described by the memory context

����� +O8 � 4 � ���!� � � # 1 ����� �28*��89#�� � +>,.-/&,D2
. This is not

22 IAN A. MASON AND CAROLYN L. TALCOTT

the same as the context
����� +O8 � 4 �	� �289# 1 � +�,.-/&,D2

, since in the latter case the 8 in
the argument to � � is bound outside the context and is necessarily distinct from the
created 8 .

Note that for � in the above form, ����� ����# 4 +O8 � ���
����8
 1 as defined in Defini-
tion 2.6. Memory contexts are a syntactic representation of the stores of more tra-
ditional semantics (finite maps from locations to storable values). Thus, we define
analogs of finite map operations on memory contexts. �)�28�lK#H4 � l for Q5m T m � , and
we write + 8Ol � 4 � � � � l # Q m T m � 1 for � . We also write + 8 l � 4 �	� � � l # Q5m T m
� 1 � for � � -/�� . �9+O8 � 4 � ��� � # 1 is the memory context, �
 with domain �C���J����#�6 +�8 1 ,
such that �
 �"8�# 4 � and �
 �28
 # 4 �)�28
 # for 8
 ?k�����3����# �b+O8 1 . This notation is
intentionally ambiguous about the order of allocation of cells and assigning values to
cells. When we only care about the finite map represented by � the ambiguity makes
no difference.

Definition 6.4 (
�� Reduction Rules): The more interesting
 � reduction rules include
the
� � rule given in Definition 2.18 and the following reduction rules for the memory

and control operations:

(mk) � � � [� ��� � #] � / �9+�8 � 4 � �$� � # 1 � � [8] for 8 fresh

(get) �9+O8 � 4 � ��� � # 1 � � [� ��� �289#] � / �9+O8 � 4 � ��� � # 1 � � [�]
(set) �9+O8 � 4 � ��� �
 # 1 � � [����� �"8)� � #] � / � + 8 � 4 � �$� � # 1 � � [� � �]
(ncc) � � � [� � � � � #] � / � � �	����� � � o 	 � ��� � ��� [] #�# for 	 =? �4	���� # .

6.2. Some Example Programs and Computations. We begin with two simple
calculations, just to illustrate the basics of cell and continuation manipulation.

6.2.1. Warmup exercises.

Example 6.5 (Memory Operations): Evaluation of the expression

����� +O8 � 4 � ���!� � � # 1 ����� �28*��N�#���� ��� �"8�#

creates a new cell named 8 , stores N in that cell, then retrieves the value. The calcula-
tion goes as follows:

� � ����� + 8 � 4 � ���!� � � # 1 � ��� �28*��N�#���� ��� �"8�#

FEFERMAN-LANDIN LOGIC 23

� / �9+O8 � 4 � ���!� � � # 1 � ����� + 8 � 4b8 1 ����� �28*��N�#���� ��� �289#
by applying the � � rule with � being

����� + 8 � 4 � 1 ����� �"8)�SN�#
��� ��� �289# ,
and assuming without loss of generality that 8G=?J����� ����#

� / �9+O8 � 4 � ���!� � � # 1 � � ��� �28*��N�#���� ��� �"8�#
by the

�����
rule, i.e.

� � , and the definition of
�����

� / �9+O8 � 4 � ���"N�# 1 � � � � ��� ��� �289#
by the

�����
rule

� / �9+O8 � 4 � ���"N�# 1 � � ��� �289#
by the

��� �
rule, i.e. the

�����
rule using the definition of � .

� / �9+O8 � 4 � ���"N�# 1 � N
by the � ��� rule

Example 6.6 (
��� �): Next we justify the claim that

��� � is an abort primitive by show-
ing that

� � � [��� � � � #] � /�� � � � �
This is a simple calculation using the computation rules

� � � [��� ��� � #] �4 � � � [�"o 	 � � �
� �Ko �$� 	 #�# � � #] using the definition of
��� �

� / � � � [���
� �"o�� � � #] by
� � , ��=? �
	 � � #

� / � � �"o�� � � #
�"o 	 � ��� ��� � [] #�# by the � � � rule

� / � � � again by
� �

6.2.2. Landin’s Recursion Operator. Since the
 � -language extends the call-by-
value o -calculus the usual call-by-value fixed point combinator is a term in the lan-
guage. A somewhat different fixed point combinator, that makes use of the reference
primitives, is possible:

� �4 o � � ����� +O8 � 4 �	� � � � � # 1����� �"8)� o 	 � �	��� � �	�
� ������� ��� �289#�# � 	 #�#���� ��� �289#�#
This version of the fixed-point combinator is similar in spirit to the one suggested
by Landin [25] and is operationally equivalent to the usual call-by-value Y combi-
nator [29]. When applied to a functional X of the form o�!�� o 	 � � ,

�
creates a private

local cell, 8 , with contents
� 4;o 	 � �	��� � �	��� �"XD��� ��� �"8�#�# � 	 # , and returns

�
. By pri-

vacy of 8 , �
is equivalent to X�� � # (cf. [29]). Note that this example is typable in the

simply typed lambda calculus (for provably non-empty types (cf. [22])). Thus adding
operations for manipulating references to the simply typed lambda calculus causes
the failure of strong normalization as well as many other of its nice mathematical
properties.

6.2.3. Integer Streams. From an abstract point of view, a stream is simply a (possi-
bly infinite) sequence of data [1]. In the
 � -language we can represent streams simply

24 IAN A. MASON AND CAROLYN L. TALCOTT

as functional objects, lambda expressions with free variables bound to cells. The se-
quence corresponding to a
 � -stream is the values returned by repeated application
of the object to a fixed (and hopefully irrelevant) argument. The simplest example of
a non-trivial
 � -stream is the stream of natural numbers.

� ��� ����� � � ��� �4 o��7� ����� +�8 � 4 �	�$���J# 1
o 	 � ����� +�V � 4 � ��� �"8�# 1

����� �"8)��V �bQ #
��V
Here � ��� ����� � � ��� applied to an integer � creates a stream of integers beginning with
that integer. The so-created stream when queried (applied to any value) returns the
next integer in the stream.

6.2.4. The Sieve of Eratosthenes. A somewhat more interesting example of a stream
is the sieve of Eratosthenes [1]. We begin with the functional � � ��� � � which expects
an integer, V , and a stream, � and then creates a new stream. This new stream when
queried repeatedly calls the stream argument, � , until an integer not divisible by the
number argument, V , is returned. This number is then returned as the answer to the
query.

� � � � � � �4 oPVW� o����
o 	 � ����� +�� � 4���� � � � # 1

� ���
 �
	��
 � � � �gVW���J#
� � � � � �*�2VW���O# �!� � � #
� #

� � � 	 �
is an expression which when evaluated creates a new sieve of Eratosthenes.

This new stream is a stream of the prime numbers. Each time the stream is queried it
returns the current prime and updates its local stream to filter with this prime.

� � � 	 � �4 ����� +
�
� � 4 � � � � ��� ����� � � ��� �KR�#�# 1
o 	 � ����� +
� � 4 � ��� ���
�
1 ����� +�� � 4���� � � � # 1����� ���
� � � � ��� � �*�������O#�#����

6.2.5. Co-routines. Co-routines are a programming paradigm useful for incremen-
tal processing of streams of data. Typical examples of their use come from com-
piler construction, and more recently from managing data coming in segments over a
network connection. Each time an additional increment of data is needed/available,
the co-routine is resumed. The co-routine computes the next increment, remembers
where it left off, and returns the incremental result. From a programming language
point of view what is needed is language constructs that make it easy to remember the
current state, and to continue processing when next invoked. The high-level structure
of a co-routine program might look like

initialize
loop: get the next big block of data;

process segment 1 giving result-1;

FEFERMAN-LANDIN LOGIC 25

resume with result-1;
...

process segment n giving result-n;
resume with result-n;
repeat loop;

where resume implicitly saves the point in the program where the computation sus-
pended for later resumption and returns control to the resumer of the co-routine. Thus
from the point of view of the co-routine, the partner also appears to be a co-routine.

A resumption primitive can be defined using our control and memory primitives as
follows.

� � ��� � � �4 o*8)� o���� ���
� �"o�� � ����� +
� � 4 � ��� �289# 1 ����� �28*� �P#
�������9#�#
It is assumed that 8 is a cell where the resumee’s resumption point is stored (as a con-
tinuation). � ����� � � �289# ���9# gets that state, temporarily calling it � , saves the resumer’s
resumption point, captured by � �
� and bound to � , in 8 , and starts at its resumption
point with argument � . The resumed program should eventually call � � ��� � � �"8�#
� F�#
where F is the next increment to be returned to the resumer. Later we will show
using a simple example how the Feferman–Landin logic allows us to reason about
co-routines. For now we look at a sample calculation and an example co-routine.
Assume that � is the resumption point of a partner co-routine that is being resumed in
a context � , then

�9+O8 � 4 � �$����# 1 � � [� � ��� � � �289# ��� #]
� /�� � + 8 � 4 � � ����# 1 � � [� �
� �"o�� � ����� + � � 4 � ��� �289# 1 ����� �"8)� �P#�������� #�#]
� /�� � + 8 � 4 � � ����# 1 � ����� +
� � 4 � ��� �289# 1 � ��� �28*�So 	 � ��� �$��� [] #�#�������� #�#
� /�� � + 8 � 4 � � ����# 1 � � ��� �28*�So 	 � ��� �$��� [] #�#���� ��� #
� /�� � + 8 � 4 � � �"o 	 � ��� � ��� [] #�# 1 � � ��� #

Thus we have the derived computation rule:

� + 8 � 4 � � ����# 1 � � [� � ��� � � �289# ���9#] � / � �9+O8 � 4 � ���Ko 	 � ��� � ��� [] #�# 1 � � ���9#
now suppose

�9+O8 � 4 � �$�"o 	 � ��� � ��� [] #�# 1 � � ��� #
� /�� �
 + 8 � 4 � ���Ko 	 � ��� � ��� [] #�# 1 � �
 [� ����� � � �289# ��F�#]

then applying the above derived reduction we have

�9+O8 � 4 � ������# 1 � � [� � ��� � � �289# ��� #] � /�� �
 + 8 � 4 � � �"o 	 � ��� � ���
 [] #�# 1 � � [F]
with the co-routine’s next resumption point saved in the cell 8 .

26 IAN A. MASON AND CAROLYN L. TALCOTT

Here is a simple co-routine (schema):

� � ��� �4 o T � o*8*� o 	 �
����� +�� � 4 � ��� � � T # 1
����� + 	 � � 4I! � � � # 1
� � ��� � � �"8�#
� 	 � #
�
����� + 	 ; � 4b! ; � ��# 1
� ����� � � �289# � 	 ; #��
� ����� � T ��89# �!� � � #

The initial resumption point for the co-routine is of the form o 	 � ��� �$� � � ��� � T �S8�#
� 	 #�# ,
where

T
is intended to be a cell containing access to an input stream, which we leave

unspecified, except that � ��� � � T # must produce data in the domain of ! � and ! ; , which
compute functions without any use of or effect on state.

Now consider a program that does the same incremental computation but explicitly
saves resumption point information.

� � ��� �4 o T o)8*� o 	 �
����� +
� � 4 � ��� �289# 1
� ��� � � ��� � � � � �O# ��N�# �

����� +�� � 4 � ��� � � T # 1 � ��� �28*� ���*��Q�����#�#
�S! � � � # �
����� +�� � 4 � ��
���O# 1 ����� �28� ��� �2N)��� � � #�#
�S! ;�� � #�#

Then we have the following lemma. We will see later how to establish such claims in
the Feferman–Landin logic.

Lemma 6.7:

+ 8 � 4 �	� �"o 	 � ��� �$��� ����� � T ��89# � 	 #�#�# 1 � ����� � � �"8�#
4 + 8 � 4 � � � �����"NP��� � � #�# 1 � � ��� � T ��89#
6.3. Axioms for
 � . The first, most basic axiom concerning operational equiva-

lence and equivaluedness for
 � , is that the booleans
�

and � � � are not equivalent.
Non-Triviality (T).

� �B# � � � � � � � � #
To the operational equivalence axioms we can add a garbage collection principle,

and a principle expressing the simple fact that operational equivalence and equival-
uedness coincide on simple data.
Operational Equivalence Axioms (
4).

� ����� # � �
4 � [�] provided �
	���� # FG����� ����# 4��
� ���P# ��� � 	 #
 � j � ���P#
 � � � 	
4 � � 	
 � # � ?�+�� ��� � � ��� � � � ����� � � � 1

Next we extend the quantifier and constraint propagation axioms of
�

5 using the
information we have about particular
 � operations.

FEFERMAN-LANDIN LOGIC 27

Quantifier Axioms (Q).

� ���P# � � � 	 # ����� + 8 � 4 :W� ��P# 1�� � ����� +O8 � 4 :W����P# 1 � � 	 # �
: is either ineffectual or the operation

�����

� �P# � ��� � 	 # ����� +�8 � 4 � �����P# 1�� � 	 #nj ����� +�8 � 4 � � � �P# 1 � �289#�#
� ����� + 8 � 4 � � � �P# 1 ��� 	 # �

Constraint Propagation Axioms (S). The following two principles require that
: ����:���?�� and that if :�� ? + ����� � � ��� ��� �
� 1 , then :$�n?�� �i+�� ��� � ����� � �	������� � � 1 .
� ���P# � � �"8 � : � ����P#�# � ����� + 	 � 4 : � � �F # 1 � � �28 � : � � ��P#�#�#
� �P# � : � � �F # � � � ����� + 	 � 4 : � � �F # 1 � � �28 � : � � �� #�#�# � � �28 � : � � �� #�#�#
Note that in (S.iv,v) � �
� has the same classification as �	�
� , since as noted above it
applies its argument lambda to a value and thus can reduce to an arbitrary expression
eventually producing arbitrary effects. Also note that taking : � to be � � , (S.iv) says
that allocation, does not change properties of any operations on existing values.

6.4. Definedness Principles. We have already stated the most basic principle con-
cerning undefinedness, namely that two undefined terms are both equivalued and op-
erationally indistinguishable, (U.i). The rest of the principles concern the partiality
of the underlying operations. Note that in the case of the memory operations �	� and�����

, being defined is not the same as being equivalent to a value. In the other cases
this is true, although we need only express the weaker form. The stronger forms are
derivable.
Definedness rules (D).

� �B# � � �	� �289#
� ���B# � � ����� �"8)� 	 # � � � � � ���289# � �

� ����� # � � � ��� � 	 # � � � � � ��� 	 # � � � �����P#
�!� ��� � 	 # � �P#
� ���P# � � � �
� � 	 # � � ���	��
��
� � 	 # � �

� �P# � � �	�
�$� 	 ���P# � � � �	��
 �
��� 	 # � �

� � �B# � � :W���	 #
Where in (D.vi) we assume that :�? +�� ��� ����� � � � � ��� � ���	��
��
�O��� � � ��� �����������*� ��� ������� 1
and �	 is the appropriate length.

6.5. Axioms for Memory. The principles concerning �	� are quite straightfor-
ward. (mk.i) describes the allocation effect of a call to � � . The remaining two
principles (mk.ii) and (mk.iii) assert that the time of allocation has no discernable
effect on the resulting call, however since we are in a world with control effects � �
must be free of them for these two principles to be valid [12].
Allocation Axioms (mk).

� �B# � ����� + 	 � 4 � ���"8�# 1 � � � 	
4 �P# j � � ��� ��� 	 #
4 � j � ��� � 	 #
4 8�#

28 IAN A. MASON AND CAROLYN L. TALCOTT

� ���B# � ����� + � � 4 � � 1 ����� + 	 � 4 �	� �289# 1 ���
4 ����� + 	 � 4 �	� �289# 1 ����� + � � 4 � � 1 � �
� ����� # � ����� + � � 4 ��� 1 ����� + 	 � 4 � � �289# 1�� � ����� + 	 � 4 � ���"8�# 1 ����� + � � 4 ��� 1��
The principle (mk.i) requires that 	 =?7+�8)��� 1 , while both (mk.ii) and (mk.iii) require
that � � is closed with no control operations.

The first two contextual assertions regarding
�����

are analogous to those of (� � .i).
They describe what is returned and what is altered. The remaining four principles in-
volve the commuting, cancellation, absorption, and idempotence of calls to

�����
. For

example the
�����

absorption principle, (
�����

.v), expresses that under certain simple
conditions allocation followed by assignment may be replaced by a suitably altered
allocation.
Modification Axioms (set).

� �B# � � � � � ���"8�# � ����� + 	 � 4 ����� �28*���P# 1 � � ��� �289#
4 � j 	
4 � � � #
� ���B# � � ��� � 	 #
4 � � ����� � 	 ���P#
4 � � �

� ����� # � � � 	 �
4 	 ; # � ����� � 	 � � 	 � #�� ����� � 	 ;�� 	�� #
4 ����� � 	 ;�� 	�� #
� ����� � 	 � � 	 � #
� ���P# � ����� � 	 ��� � #
� ����� � 	 ��� � #
4 ����� � 	 ��� � #
� �P# � ����� + 8 � 4 � � � 	 # 1 ����� �"8)��F�#����
4 ����� + 8 � 4 � � � F�# 1 � if 8J=?G�
	�� F #
� � �B# � � ��� � 	 #
4 � � ����� � 	 ���P#
4 � � �

Accessor Axioms (get).

� �B# � ����� + 	 � 4 � ��� ��� # 1 � 	
4 � ��� ���P#�#
� ���B# � � � ����� + 	 � 4 � ��� ��� # 1�� 	 =? �
	�� � #

6.6. Axioms for Control. In our model a continuation is a function that returns
a value to the top level, thus continuations can be modeled by composition of

��� �
with an arbitrary lambda expression. The first control axiom says that within the
immediate context of � �
� , the current continuation is

��� � , while the second shows
how explict � and implicit (passed to the argument of � �
�) continuations are related,
and the third axiom expresses the fact that the argument of � �
� is always applied to
a continuation. The fourth axiom says that � �
�9�Ko���� � [�] # behaves like a reduction
context, in the sense that any expression occupying the hole is alway evaluated next,
and thus can be pulled out using

�����
analogous to (let.ii) as long as the continuation

variable does not appear free. The fifth axiom expresses the fact that capturing the
current continuation and then re-installing it is equivalent the identity operation.
Control Axioms (ncc).

� �B# � ���
� �"o � � ���
� ���O#�#
4 � �
�9�Ko���� �	��� � ��� ��� �P#�#
� ���B# � � [� �
�����O#]
4 � �
�9�Ko�� � �	��� � ��� o 	 � ����� [] #�#�#

if � =?J�
	�������� # and 	 =?G�
	�������� #
� ����� # � � � � �"o � � � [�] #
4 � �
���"o � � � [o 	 � ��� � ����� 	 #�#] #

FEFERMAN-LANDIN LOGIC 29

provided � =? ��� ����	 � ��# .
� ���P# � � ����� + 	 � 4 � 1 � �
� �"o�� � � [] #�#
4 � � � �"o�� � � [�] #

if 	 is fresh, and ��=? �
	 � �O#
� �P# � � � �9�"o�� ���$���O#�#
4 � if ��=?G�
	����O#

To illustrate contextual reasoning we derive a useful law for reasoning about � �
� .
Lemma 6.8 (ncc.vi):

� � �K� ��# � � �
4 � � � �!���
� �"o�� � � [� �] #
4 � �
���Ko � � � [� �] #�#
��=? �
	 � � l # for

T � R .
� � �B# � ����� + 	 � 4 � 1 ��� �
4 ��� # � ����� + 	 � 4 � 1 �!� � � �"o�� � � [���] #
4 � �
� �"o�� � � [���] #�#

if �3=?J�
	����O#
Proof: To show (ncc.vi.a) we argue as follows.

� �
4 � � � ����� + 	 � 4 � � 1 � � � �"o�� � � [] #
4 ����� + 	 � 4 � � 1 ���
� �"o�� � � [] #
by (E.iv)

� �
�9�Ko � � � [�
] #
4 ����� + 	 � 4 �
 1 ���
� �"o�� � � [] #
for U � R , by (ncc.iv)

And by a little propositional reasoning we are done.
(ncc.vi) follows from (ncc.vi.a) using context introduction (C.i).

Lemma 6.9 (top): Any reduction context surrounding an application of
��� � can be

discarded.

� [��� � ���O#]
4 ��� �$���O#
Proof: This follows from (ncc.iv) using the

�����
laws.

6.7. Simulation Principle for
 � . Now we introduce a simulation principle that
allows us to prove equivalence of two lambdas with memory. The principle says
that to show such an equivalence it is sufficient to find a correspondence between
memories such that whenever started in corresponding states and applied to the same
value, both lambdas

(i) return the same (first-order) value
(ii) have corresponding effects on their memory states

To simplify notation, we present only a very special case of the principle, which is
adequate to illustrate the basic idea. First we must define the set of first-order values
and a function that maps any value to its first-order part.

Definition 6.10 (First-orderness, (� �J��� �)): � � is the class of first-order values. This
is the least class containing � �

and closed under pairing (essentially the well-founded

30 IAN A. MASON AND CAROLYN L. TALCOTT

S-expressions of [22]). It can be defined using the standard means of giving inductive
definitions in variable typed theories as follows.

��� �4

�
� `���� � � ��� �*#

where
` ��� � �P� �4 + 	 � ��� � ��� 	 #�� � ������� 	 #nj � � � � 	 #D? �@j � ��
)� 	 #D? ��# 1

and

�
� � � ���4 + 	 � � ��# � � � �P� � 	 ?���# 1

The operation, � � , that strips away the non first order parts of its argument. It leaves
atoms unchanged, commutes with pairing, and maps everything else (lambdas and
cells) to � � � .

� � �4 o 	 � � �$� � ��� � ��� 	 # � 	 � � �$� ������� 	 # ��� � � � � � � � � � 	 #�# � � � � � ��
�� 	 #�#�# ��� � � #�#
Using the induction principle derived from the inductive definition of ��� it is easy to
show ��� �E+ 	 � � � 	 # � 	�1 . To prove the converse we need the least-fixed-point
principle derived from recursive definitions using a suitable fixed-point combinator.

We state the simulation principle for the special case in which the lambda’s local
memory is a single cell. In the definition below we use 8 to name this local memory
cell. Since we want the cell contents to be able to refer to the cell, the correspondence�

is formulated as a relation on � such that corresponding lambdas are applied to
a cell to produce the actual corresponding values (�
 �"8�#). Similarly, the lambda’s�
 represent abstractions over the cell variable. The assertions (Sim.1) and (Sim.2)
are formal statements of the requirements (i) and (ii) given at the beginning of this
subsection.
Simulation Principle (SP). If 8 a variable,

� � ��� � , and
�
 is a lambda

expression for U � R , such that 8 is not free in
�

,
� � or

� � and

���W� � � ��� � # ? � # ��� 	 #
���$���
� ���
� #D? � � ��?�� � #
�
] + � A � 2
� +�8 � 4 � � � �
 �"8�#�# 1 � �
 �289# � 	 #
4 � ��� �28*���

 �"8�#�#�� � # (Sim.1)

j
+�8 � 4 � � � �
 �"8�#�# 1 � �
 �289# � 	 #
4 �
 �"8�#
� � � � 	 #�#�#�# � (Sim.2)

then ���<��� � ��� � # ? � # + 8 � 4 � � � � � �289#�# 1 � � �289#
4 + 8 � 4 � � ��� � �"8�#�# 1 � � �289# .
6.8. Using the Simulation Principle. Now we show how to establish equiva-

lences such as the claim made in the co-routine lemma(6.7). We simplify the example
a bit in order to be able to fill in some details in a reasonable space.

Lemma 6.11 (Simple co-routine reduction to state.): Let

� � �9�K!���V�# �4 o)8*� o 	 � � � ��� � � �289# �"!<�2V�#�#
� � � � �K!���V �kQO# �"8�#
� � � � #

FEFERMAN-LANDIN LOGIC 31

� � � �K!$# �4 o*8*� o 	 � ����� +�V � 4 � ��� �289# 1 ����� �28*��V �kQO#��S!<�2V�# �
� � � (c for co-routine) produces a sequence of values !<�gV�# for VM? L using re-
sumption to remember the next element of the stream to generate.

� � � (o for object)
produces the same sequence by explicitly keeping track of the next integer argument
in a memory cell. Now choose !>? � � / � � such that !<� 	 #
4 !<� � � � 	 #�# . Define
�*Y to be the lambda term o 	 � ��� � � � � �9�K!���V�#
�289# � � � � #�# . Then

+ 8 � 4 �	� � �*YP# 1 � ����� � � �"8�#
4 + 8 � 4 � � �gV�# 1 � � � �"!$#
�289#
Proof: The proof is by the simulation principle with

� 4E+��Ko)8*� � Y � o)8*� V�# V�? L 1
� � 4 � � ��� � �
� � 4 � � � �K!$#
The simulation requirement (Sim.2) follows from the assumption on ! . Note that by
definition 4.5 such ! are total and ineffectual. Thus we only need to establish (Sim.1)
for the two

�
s. The argument for

� � � �K!$# is as follows. In the following we write
� � ���
4 � � in place of

� �P� ���
4 � �
. This is done to factor out the background
contextual reasoning from the basic equational reasoning.

+ 8 � 4 �	� �gV�# 1 �

� � � �"!$#
�289# � 	 #
4 ����� +�V � 4 � ��� �289# 1 ����� �28*��V �kQO#�� !<�gV�#
by (let.i)
4 ����� �"8)��V��bQ #�� !<�gV�#
by (mk.i) and (let.i)

The argument for � � ��� � � is a bit more complicated. First we expand and transform
� � � � � � �"8�#
� 	 # in the given memory context.

+ 8 � 4 �	� � �*YP# 1 �

� � ��� � � �289# � 	 #
4 � � � �"o�� � ����� +�� � 4 � ��� �"8�# 1 ����� �28*� �)#������ 	 #�#
by the definition of � � ��� � �
4 � � � � o � � ����� +�� � 4 � Y 1 ����� �"8)� �P#����,� 	 #,#
by (ncc.vi) and � ��� laws

Now by purely equational reasoning we show that the contextually transformed ex-
pression is equivalent to an expression with directly nested ���
� s. First we simplify

32 IAN A. MASON AND CAROLYN L. TALCOTT

the
�����

and unfold definitions.

� �
�9� o �$� ����� +�� � 4 � Y 1 ����� �"8)� �P#����,� 	 #�#
4 � � � � o � � ����� �"8)� �P#�� ��� � � � � �9�K!���V�# �"8�#
� � � � #�#<#
by (let.i) and definition of ��Y
4 � � � � o � � � � ��� �28*� �P#
� ��� ��� � � ��� � � �289# �K!<�gV�#�#�� � � � �"!���V �bQ #
�289# � � � � #�#<#,#
using the definition of

� ���

Next we unfold the � � � � � � , push the reduction context surrounding the � �
� to the
inside, drop the � that will be discarded by

��� � and reduce the �	��� .

� �
�9� o �$� � ����� �28*� �)#�� ��� �$� � � � � � � �"8�#
�"!<�gV�#�#�� � � � �"!���V �bQ #
�289# �!� � � #�#�#,#
4 � � � �"o�� � � � ��� �28*� �P#
�
��� � �!� �
��� o �$� ����� +�� � 4 � ��� �289# 1 ����� �"8)� �P#����,�K!<�gV�#�#�#��

� � ���K!���V �kQO# �"8�#
� � � � #�#<#�#
by definition of � � ��� � � �289#
4 � � � � o � � � � ��� �28*� �P#
�

���
� ��o � � �	�
�$� o � � ����� +�� � 4 � ��� �"8�# 1 ����� �28*� �)#������"!<�2V�#�#�#��
o 	 � ��� ��� �$� � � � �"!���V �bQ #
�289# � � � � #�#�#�#�#,#

by (ncc.ii) with � 4 ��� �$� � � � � ���K!���V �kQO# �"8�#
� � � � #�#
4 � � � � o � � � � ��� �28*� �P#
�
���
� ��o � � ����� +�� � 4 � ��� �"8�# 1 ����� �28*� �*Y �,� #������"!<�2V�#�#<#,#�#

by the (top) lemma and
�����

laws

Finally, the
�����

can be pushed inside the inner � �
� and the result simplified using the
memory and let laws.

4 � � � � o � � � � ��� �28*� �P#
�
���
� ��o � � ����� +�� � 4 � ��� �"8�# 1 ����� �28*� � Y �,� #������"!<�2V�#�#<#,#�#
4 � � � � o � � �	���
� ��o � � ����� �28*� �)#��

����� +�� � 4 � ��� �"8�# 1 ����� �"8)� � Y ��� #����,�K!<�gV�#�#�#�#,#
by (ncc.iv)
4 � � � � o � � � �
�9� o���� ����� �"8)� � Y �,� #
� �$�K!<�gV�#�#�#�#
by the

�����
and � ��� laws

FEFERMAN-LANDIN LOGIC 33

Now we the desired ‘canonical’ form with directly nested ���
� s. This allows us to
further transform the body of the inner � � � and finally to eliminate it.

���
� ��o�� � � � � � o�� � ����� �"8)� � Y �,� #�� �$�"!<�2V�#�#�#,#
4 � � � � o � � �	��� �Ko�� � ����� �"8)� � Y ��� #�� �$�"!<�2V�#�# � ��� � #�#
by the (ncc.i)
4 � � � � o � � ����� �"8)� � Y ��� #�� �$�"!<�2V�#�#�#
by the (let.i)
4 ����� �28*� �*Y �,� #���� �
� �"o�� � � �"!<�gV�#�#�#
by the (ncc.iv)
4 ����� �28*� �*Y �,� #�� � �"!<�gV�#�#
by the (ncc.v)

This completes the proof.

�
7. Conclusions and Future Directions. In this paper we have shown how to

generalize our previous variable-type theory [22] for reasoning about programs of a
specific language
 � to a logic for reasoning about an arbitrary Landinesque lan-
guage with uniform semantics and have given an example of axiomatizing a typical
language of this class. The variable-type theories have the advantage of being essen-
tially first-order, while providing for functions (operations) as first-class objects, and
providing the ability to define and reason with classifications.

This is just the foundation for putting these ideas to work in practice. There are
a number of interesting directions for future work. One direction is to consider a
wider class of languages, for example treating object-oriented (OO) languages such
as Java [20], or treating input/output (IO) features. We believe that the sequential
aspects of OO languages are not problematic. Treating IO and concurrency aspects
will be more challenging, as this means removing the restriction that the semantics
be deterministic. It may be that the solution here is to combine the nice features of
the variable-type logics with some form of temporal logic.

Another direction for future work is implementation—building tools to aid in the
process of specifying and reasoning about programs using the Feferman–Landin logic.
Here the work of Frost [17] would be a good starting point.

Although complete axiomatizations of Landinesque languages are not possible, it
is useful to investigate forms of relative completeness and completenss for fragments
such as done in [26] for the
�� language. This is especially important in conjunction
with implementing the logic and developing mechanized procedures for aiding the
development of proofs.

When reasoning informally about programs, we use a mix of operational and equa-
tional/logical reasoning. The importance of being able to combine these forms of rea-
soning was first noted in [19] where operationally based principles for denotational
reasoning about Lisp programs were developed. An interesting and potentially very
useful direction of future research in our context is to enrich the Feferman–Landin

34 IAN A. MASON AND CAROLYN L. TALCOTT

logic by formalizing the reduction relation, and adding a reflection principle that al-
lows meta-theorems to be reflected down to the the logic level. For example special
purpose simulation principles could be added in this way. Another application would
be to extend the formal meta theory with definitions of program analysis functions
and derive proof principles based on program analysis results. For example analysis
could characterize certain classes of effects and principles generalizing the constraint
propagation axioms for
 � could be developed in a formal setting. Again this mix of
intensional and extensional (operational and denotational) reasoning is quite natural
for programmers.

It may also be fruitful to investigate the use of other methods developed for rea-
soning about operational approximation and equivalence. These include: general
schemes for establishing equivalence; context lemmas (alternative characterizations
that reduce the number of contexts to be considered); and (bi)simulation relations
(alternative characterizations or approximations based on co-inductively defined re-
lations). For example [23] develops a schema for proving congruence for a class
of languages with a particular style of operational semantics. This schema succeeds
in capturing many simple functional programming language features. Building on
this work, Howe [24] uses an approach similar to the idea of uniform computation to
define structured evaluation systems in which the form of the evaluation rules guaran-
tees that (bi)simulation relations are congruences. The form of the rules is specified
using meta variables with arities and higher-order substitutions. This syntax enrich-
ment is very similar to the notions of place-holder and filling used here to specify
uniform semantics.

A useful refinement would be to identify a form of rules that guarantees uniform
semantics, generalizing the ideas of Howe [24] to functional languages with effects.
Another extension would be to develop denotational tools in this setting generalizing
[28].

REFERENCES

[1] H. ABELSON and G. J. SUSSMAN, Structure and interpretation of computer programs, The MIT
Press, McGraw-Hill Book Company, 1985.

[2] G. AGHA, I. A. MASON, S. F. SMITH, and C. L. TALCOTT, A foundation for actor computation,
Journal of Functional Programming, vol. 7 (1997), pp. 1–72.

[3] K.R. APT, Ten years of Hoare’s logic: A survey–part I, ACM Transactions on Programming
Languages and Systems, vol. 4 (1981), pp. 431–483.

[4] C.C. CHANG and H.J. KEISLER, Model theory, North-Holland, Amsterdam, 1973.
[5] S. FEFERMAN, A language and axioms for explicit mathematics, Algebra and logic, Springer

Lecture Notes in Mathematics, vol. 450, Springer Verlag, 1975, pp. 87–139.
[6] , Non-extensional type-free theories of partial operations and classifications, i., Proof the-

ory symposium, kiel 1974 (J. Diller and G. H. Müller, editors), Lecture notes in mathematics, no. 500,
Springer, Berlin, 1975, pp. 73–118.

[7] , Constructive theories of functions and classes, Logic colloquium ’78, North-Holland,
1979, pp. 159–224.

[8] , A theory of variable types, Revista Colombiana de Matématicas, vol. 19 (1985), pp. 95–
105.

FEFERMAN-LANDIN LOGIC 35

[9] , Polymorphic typed lambda-calculi in a type-free axiomatic framework, Logic and com-
putation, Contemporary Mathematics, vol. 106, A.M.S., Providence R. I., 1990, pp. 101–136.

[10] , Logics for termination and correctness of functional programs,, Logic from computer
science, MSRI Publications,, vol. 21, Springer Verlag, 1992, pp. 101–136.

[11] , Logics for termination and correctness of functional programs, II. logics of strength
PRA., Proof theory, Cambridge University Press, 1992.

[12] M. FELLEISEN,, 1993, Personal communication.
[13] M. FELLEISEN and D.P. FRIEDMAN, Control operators, the SECD-machine, and the � -calculus,

Formal description of programming concepts III (M. Wirsing, editor), North-Holland, 1986, pp. 193–
217.

[14] M. FELLEISEN and A. SABRY, Continuations in programming practice: Introduction and survey,
1999, available at http://www.cs.uoregon.edu/˜sabry/papers/continuations.ps.

[15] J. FORD and I. A. MASON, Establishing a General Context Lemma in PVS, 2nd Australasian
Workshop on Computational Logic, AWCL’01, 2001, available at http://mcs.une.edu.au/
˜pvs/.

[16] D. P. FRIEDMAN, Applications of continuations, Technical Report 237, Indiana Univeristy Com-
puter Science Department, 1988, Tutorial given at POPL88.

[17] J. FROST, Effective programming, Ph.D. thesis, Technical University of Denmark, 1996, also
published as Techincal Report IT-TR 1996-001.

[18] J. FROST and I. A. MASON, An Operational Logic of Effects, Proceedings of the Australasian
Theory Symposium, CATS ’96, 1996, pp. 147–156.

[19] M. J. C. GORDON, Operational reasoning and denotational semantics, Technical Report SAIL
Memo AIM-264, Artificial Intelligence Laboratory, Stanford University, 1975.

[20] J. GOSLING, B. JOY, and G. L. STEELE JR., The java language specification, Addison-Wesley,
1996.

[21] D. HAREL, Dynamic logic, Handbook of philosophical logic, vol. ii (D. Gabbay and G. Guenth-
ner, editors), D. Reidel, 1984, pp. 497–604.

[22] F. HONSELL, I. A. MASON, S. F. SMITH, and C. L. TALCOTT, A Variable Typed Logic of
Effects, Information and Computation, vol. 119 (1995), no. 1, pp. 55–90.

[23] D. HOWE, Equality in the lazy lambda calculus, Fourth annual symposium on logic in computer
science, IEEE, 1989.

[24] D. J. HOWE, Proving congruence of bisimulation in functional programming languages, Infor-
mation and Computation, vol. 124 (1996), no. 2, pp. 103–112.

[25] P. J. LANDIN, The mechanical evaluation of expressions, Computer Journal, vol. 6 (1964), pp.
308–320.

[26] I. A. MASON, A First Order Logic of Effects, Theoretical Computer Science, vol. 185 (1997),
pp. 277 – 318.

[27] , Computing with contexts, Higher-Order and Symbolic Computation, vol. 12 (1999),
pp. 171–201.

[28] I. A. MASON, S. F. SMITH, and C. L. TALCOTT, From Operational Semantics to Domain
Theory, Information and Computation, vol. 128 (1996), no. 1, pp. 26–47.

[29] I. A. MASON and C. L. TALCOTT, Equivalence in functional languages with effects, Journal of
Functional Programming, vol. 1 (1991), pp. 287–327.

[30] , Reasoning about object systems in VTLoE, International Journal of Foundations of
Computer Science, vol. 6 (1995), no. 3, pp. 265–298.

[31] R. MILNER, Fully abstract models of typed � -calculi, Theoretical Computer Science, vol. 4
(1977), pp. 1–22.

[32] R. MILNER, M. TOFTE, and R. HARPER, The definition of standard ML, MIT Press, 1990.
[33] E. MOGGI, Computational lambda-calculus and monads, Fourth annual symposium on logic in

computer science, IEEE, 1989.
[34] A. M. PITTS, Evaluation logic, Ivth higher-order workshop, banff, Workshops in Computing,

vol. 283, Springer-Verlag, 1990.

36 IAN A. MASON AND CAROLYN L. TALCOTT

[35] G. PLOTKIN, Call-by-name, call-by-value and the lambda calculus, Theoretical Computer Sci-
ence, vol. 1 (1975), pp. 125–159.

[36] D. PRAWITZ, Natural deduction: A proof-theoretical study, Almquist and Wiksell, 1965.
[37] J.C. REYNOLDS, Idealized ALGOL and its specification logic, Tools and notions for program

construction (D. Néel, editor), Cambridge University Press, 1982, pp. 121–161.
[38] G. L. STEELE and G. J. SUSSMAN, Scheme: An interpreter for extended lambda calculus,

Higher-Order and Symbolic Computation, vol. 11 (1999), no. 4, pp. 405–439.
[39] C. L. TALCOTT, The essence of Rum: A theory of the intensional and extensional aspects of

Lisp-type computation, Ph.D. thesis, Stanford University, 1985.
[40] , A theory for program and data type specification, Theoretical Computer Science, vol.

104 (1992), pp. 129–159.
[41] , A theory for program and data specification, Theoretical Computer Science, vol. 104

(1993), pp. 129–159.
[42] , Reasoning about functions with effects, Higher order operational techniques in seman-

tics, Cambridge University Press, 1996.

SCHOOL OF MATHEMATICS AND COMPUTER SCIENCE

UNIVERSITY OF NEW ENGLAND

ARMIDALE 2351, N.S.W, AUSTRALIA

E-mail: iam@turing.une.edu.au

DEPARTMENT OF COMPUTER SCIENCE

STANFORD UNIVERSITY

STANFORD, CA 94305, USA

E-mail: clt@cs.stanford.edu

