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Abstract

In this paper we present a preliminary analysis of the suitability of using PVS as a tool for developing
operational semantics and programming logics in a semi-automatic fashion. To this end we present a for-
malized proof of the Church—-Rosser theorem for a version of the call-by-value lambda calculus in the spirit
of Landin’s ISWIM. The proof is developed in the PVS system, and is used as a test bed or benchmark
for evaluating the applicability of that system for carrying out more complex operational arguments. Our
approach is relatively unusual in that it is based on the named variable approach, and concentrates on the
call-by-value version of the g rule. Although there are numerous computer-based proofs of the Church-
Rosser theorem in the literature, all of the existing proofs eliminate the need to treat o conversion. The
novel aspects of our approach are that: we use the PVS system, especially its built-in abstract data types
facility, to verify a version of the Church—Rosser theorem; we formalize a version of the A-calculus, as it
normally appears in textbooks, rather than tailoring it to suit the machine or system; we treat an ISWIM
variation on the call-by-value version of the A-calculus, rather than the simpler traditional call-by-name ver-
sion. However the main aim of the work reported here was to evaluate PVS as a tool for developing, state
of the art, operational based programming logics for realistic programming languages.

Keywords: XA-calculus, operational semantics, theorem proving, PVS.

1 Introduction

In this paper we present a formalized proof [4] of the Church—Rosser theorem for a version of the
call-by-value lambda calculus [23] in the spirit of Landin’s ISWIM [9]. The proof is developed
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in the PVS [2] system, and is used as a test bed or benchmark for evaluating the applicability
of that system for carrying out more complex operational arguments, such as computing with
contexts [11], developing Feferman-Landin logic [15] or proving the Curry-Howard isomorphism
theorem for various versions of typed lambda calculi, and the corresponding logics [28].

Our approach is relatively unusual in that it is based on the named variable approach, and
concentrates on the call-by-value version of the 3 rule. Our desire to handle the more complex 3
rule is motivated by our desire to extend this work to more realistic programming languages. The
proof is based on the, now standard, Tait—Martin-Lof notion of parallel reduction.

Although there are numerous computer-based proofs of the Church—Rosser theorem in the
literature [26,8,25,22,17,20] (see section 5 for a brief survey), all of the existing proofs eliminate
the need to treat o conversion by using reasonably standard encoding tricks. « conversion can
be avoided either by eliminating the syntactic category of named variables in favour of de Bruijn
indices [3], or by using the variables of the logical framework itself [6], rather than incorporating
one into the encoded system.

Only the treatment by McKinna and Pollack [17] uses named variables, rather than de Bruijn
indices or the variables of the logical framework itself. However McKinna and Pollack, following
on in Gentzen and Prawitz’s footsteps, make a rigorous syntactic distinction between free and
bound variables. Our named variable approach differs from McKinna and Pollack in that we do
not make such a distinction between free and bound variables. Consequently, unlike McKinna and
Pollack, we must formalize a-equivalence, prior to developing the various notions of reduction.
Again this desire to handle the A-calculus as it is, rather than how the PVS system (or any other
theorem prover) would prefer it to look, is motivated by our desire to extend this treatment to
richer systems that may not be so easily streamlined. In a similar vein, McKinna and Pollack
also use what they term tricky representations, that are faithful to the intuitive notion, but whose
faithfulness is left unformalized. A typical example from [17] is the representation of a renaming
of variables as a Lisp-style association list, i.e. a list of pairs of variables, and using a Lisp-style
assoc operation to obtain the new name for a variable. The fact that such an alist represents a
function is an accidental feature of assoc, as is the fact that consing onto a the front of an alist
shadows any old values associated with the variable. Indeed they point out that this representation
makes it very difficult to construct bijective renamings, to the point that they avoid doing so. In a
similar vein McKinna and Pollack almost exclusively use lists for representations, when the natural
mathematical treatments use functions. Our approach, on the other hand, elects to use the natural
mathematical representation wherever possible. We will discuss this, and its consequences in more
detail shortly. Thus the novel aspects of our approach are that:

» we use the PVS system, especially its built-in abstract data types facility, to verify a version of
the Church—Rosser theorem;

» we formalize a version of the A-calculus, as it normally appears in textbooks, rather than tailoring
it to suit the machine or system;

» we treat an ISWIM variation on the call-by-value version of the A-calculus, rather than the
simpler traditional call-by-name version.

However the main aim of the work reported here was to evaluate PVS as a tool for developing,
state of the art, operational based programming logics for realistic programming languages.
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2 A Whirlwind Tour of the Church—-Rosser Theorem

Following in the footsteps of [24] we provide a whirlwind tour of the call-by-value A-calculus
and the Church—Rosser Theorem. The Church—Rosser Theorem was historically taken to be a
consistency proof for a system designed to be a functional foundation of Mathematics (i.e. -
calculus) [1]. These days the A-calculus and the Church—Rosser Theorem is part of almost any
Theoretical Computer Scientist’s education.

Our treatment of the A-calculus follows that of Landin [9] (a la ISWIM) in that we include
constants and primitive operations, as well as the more usual A-abstractions and applications. The
primitive operations each posses an arity, whose existence we will suppress in the remainder of
this paper. We start with an infinite set of variables, X (x,y, z range over X), a set of constants,
A, and set of primitive operation symbols, O, and define by induction the set of A-expressions A.
For our purposes A is the least set satisfying:

Au=XUAUAXAUAA)UO(A, ..., A)

The inductive nature of A allows for a myriad of rank functions, as well as structural recursions.
Simple definitions that use structural recursions are the sets of variables, free variables (FV (e)),
and bound variables occurring in an expression. As a prelude to defining (capture avoiding) substi-
tution, eg[z := e4], and the companion notion of renaming of bound variables (a.k.a a-conversion),
careful treatments of the A-calculus will define, by structural recursion, the notion of a variable
renaming. One nice property possessed by variable renamings is that it preserves rank, unlike
substitution. a-conversion and substitution are then themselves defined by structural recursion. At
this point it usual to define a notion of a-equivalence, =, and either remark that \-expressions are
now only distinguished up to =, or much less frequently form the quotient A/ = . The latter of
course requires first establishing that = isa congruence, and that the operations of interest (such
as renaming and substitution) are functional with respect to it. The rule for deducing the = of
\-abstractions, \zg.eq = \z;.€;, reduces to showing eg[zg := y] Ze, [z := y] for suitable y. From
a logical point of view we have, at least, two choices: we can require that this hypothesis is true
for some fresh y (i.e. y & FV(ep) UFV(ey)), or we can require that it is true for all such y. Even
though these two forms will generate the same relation, the precise choice will have non-trivial
consequences for the rigorous machine checked proof.

The time is now ripe to define (call-by-value) computation on A terms. To do this one specifies
the set of values, V/, as a (sometimes inductively defined) subset of the A terms, which in this case
consists of constants, variables, and A abstractions. The single step 3-value-reduction relation,
5 is parametric in a § function, ¢ : O(A™) — V, and is generated by the rules in figure 1. As
defined 2% is neither reflexive, nor transitive.

As is standard, given a relation R, we define R* to be the transitive reflexive closure of R. A
relation R is said to have the diamond property written, G(R), iff

(‘v’eo,el, 62)(60 R er N e R ey = (363)(61 R ez N\ es R 63))

A relation is said to be Church-Rosser or confluent iff &(R*). The Church—Rosser theorem states
that (% ). Since +2%+ in neither reflexive nor transitive it is not the case the ©( 2% ). To see
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(By) (Az.e)v LN e[z :=wv] forwvavalue.

(0) oler,...,en) 0 ifer,... en € Dom(§) and é(o, 1, ... ,e,) = .
By
epg—> €1
(Cx) p
AT.ep — Ax.€q
By By
egH— €1 egrH—r €1
(Ciett) o (Cright) .
e(eo) — e(ey) eo(e) — ey (e)
By !
e—e
(Cai) . for0 <i <n.
o€, €€, €19, ... en)—0(e1,...,€,€ €19,...,€)

Fig. 1. Single Step 3-value-reduction

this consider the following two counterexamples. In each case the dotted arrow does not belong to

Bv.

Reflexivity: (Az.y) Aw.((Az.z)2))

y <
Transitivity: (Az.zz)(Aw.((Az.y)z))

(Az.zx)(Aw.y) Aw.((Az.y)z)(A\z.y)z))

= —

(Aw.y)(Aw.y)

The Tait—Martin-Lof proof of this theorem involves defining a parallel reduction relation, =,
which is reflexive, merges left and right application reduction into a single rule, and allows, in a
single step, both the abstraction and the value to be reduced in the 53, reduction step, see figure 2
for the complete definition. The proof then follows from establishing three facts:

(i) ©(+=) holds. This is the delicate part of the proof. Our version of the proof is a structural
induction on the proof that e, — e; and proceeds by case analysis on the last step in this
proof. This is not the only method of proof, for example Takahashi [29] has recently published
a proof that does not analyse the reductions, but rather relies on taking the maximum parallel
reduction step (called the complete development). We do not follow this version of the proof.

(i) O(+2») implies that (= "). This actually holds for any relation R, and has a nice geo-
4
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(Preg) e—e
er2se vt

(Pg,) > for v a value.

(Az.e)v—— €[z := ']
(8) oler,...,eq)——=v ifer,..., e, € Dom(8) and 6(o,e1,... ,e,) = v.
(P ) 60#)61

A
A\T.eg — \T.eq
60|L>€1 62}L>€3 61'#6; for0 <i<mn.
(Papp) » (PJ) »
eo(e2) — e1(e3) o(er,...e,)—o(el,... eh)

Fig. 2. Parallel S-value-reduction

metric proof. It is also relatively simple to establish using a double induction..

L My M M L My M2

N1 Ni —> K11 ——> Kjo

No fills out to No ———> K21

N N > K

(iii) —= " is the same relation as 22 " Pollack points out [24] that this step is usually considered
trivial, but can cause problems for the named variable approach. In our version of the proof,

neither of these observations is true. The proofs are non-trivial, but non-problematic.

2.1 A summary of the Encoding & Proof

To summarize, our encoding of the A-calculus, and the subsequent proof of the Church—Rosser

theorem has the following shape:
e Syntax:

Define the syntax of the A-expressions, and related notions of expression rank, free and bound

variables, renaming, and substitution.
* Alpha:
Define

[¢]

and establish that it is an equivalence (congruence) relation, and that renaming, and

substitution are functional modulo = . Several lemmas concerning the interaction between re-

naming, and substitution also need to be established.
5



Quotient:
Formalize the notion of identifying A-expressions only up to

« B ando:
Define single step S-value-reduction (parametric in a ¢ function)

e Closures:
Develop a general mechanism for generating the transitive, reflexive closure of a relation, as
well as a method for establishing facts about such closures (e.g. rank induction).

e Paralld:
Define the notion of single step parallel reduction, and establish some basic facts concerning it.
For example that it preserves values, and is preserved by substitution:

e}

e—e = (e€V = € €V)
(eg—e1 A vg——v1) = e|T := Vo] = e1[z := v1]

 Proof:
The proof now consists of the three steps described above.
) holds
) implies that & (+—2 )
- 25" is the same relation as 2%~

(s
o

3 An Overview of PVS

PVS is a verification system developed by SRI and draws on almost 20 years of experience at
designing such systems. PVS has a very sophisticated type system, which includes predicate
subtypes, dependent types, parameterized theories, a mechanism for defining abstract data types,
numbers (both real and integral), ordinals, and forms of induction up to ¢,. This power, of course,
comes at a price. In this case the price is that typechecking is undecidable. As a consequence
the typechecker generates TCCs (Type-Correctness Conditions) that need to be discharged either
by the PVS system or its user. The advantage of the PVS type system is that preconditions and
postconditions can be incorporated into a function’s type. A precondition is incorporated by declar-
ing a more restrictive parameter type, while a postcondition is incorporated by declaring a more
restrictive return type.

With complicated specifications in PVS, it is possible to get overwhelmed by TCCs. Accord-
ingly, a mechanism is provided to alleviate the buildup of TCCs via judgements, that make avail-
able more specific information to the typechecker. Judgements come in two varieties. Constant
judgements state that a particular constant has a more specific type than its declared type, while
subtype judgements state that one type is a subtype of another. We point out in the proof where we
make use of the judgement mechanism.

A background collection of theories is provided in the PVS prelude. Included are theories for
numbers, set operations, finite sets, ordinals, functions, induction schemes and abstract data types,
including a list definition. The prelude also contains a number of judgements.

The PVS prover accepts commands in Emacs via a Lisp-like interface. These commands con-
sist of high level commands called strategies and a number of more specific commands known as
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rules. Strategies are designed to tackle a broad range of problems and ideally finish proofs au-
tomatically. Rules, on the other hand, give the user much more control over the proof, although
the actions taken are generally more atomic. For example, the split rule splits the current proof
into a number of subproofs, while the prop strategy splits the proof and then applies propositional
flattening and simplification. It is generally a good idea to attempt proofs using the higher level
strategies first, resorting to lower level commands only when necessary. In addition to increasing
the level of automation, this approach produces proofs that are more resistant to changes in the
specifications.

PVS provides a mechanism for defining abstract data types (ADTSs) inductively using a list of
constructors. From these constructors, a complete set of axioms is automatically generated which
contains:

» Extensionality Axioms (two objects are the same if they are constructed from the same compo-
nents).

» Eta Axioms (an object constructed from the same components of X is identical to X)
» Accessor axioms (a component of a constructor is the appropriate constructor argument)
* Induction Schemes (for induction on the structure of the ADT)

» Recursive Combinators (for defining rank functions either for the natural numbers, or the set of
ordinals)

In addition to ADT axioms, PVS automatically generates induction schemes for all inductive defi-
nitions.

A PVS specification is split up into theories and data type definitions. Each theorem consists
of a (possibly empty) list of parameters, importing and exporting statements, type definitions,
constant definitions, function definitions, judgements, and lemmas. The parameters can be types,
subtypes, or constants. Exporting statements are used to specify the names that are made visible to
theories that are importing the current theory. Importing statements specify a list of theories to be
imported and can be either parametrized or unparameterised.

4 A Tour of the Encoding the A-calculus & the Church—Rosser Proof

4.1 Syntax

The set of variables is defined as a type with the property that for every finite set of variables, there
is a variable not contained within it. From this definition a new function can be defined on finite
sets of variables, with the property that (Vy € Fin(X))new(y) € .

The set of A\-expressions is defined as an abstract data type.

A[A: TYPE+, O: TYPE+, # - [O — nat]]: DATATYPE
BEGIN

IMPORTING X

Var(z: X): Var?

Az X, ez A): \?

app(e: A, €': A): app?

K(a: A): K?



0Coz O, 1z listfA]): 67
END A

The datatype takes three parameters, a non-empty type A for the atoms, a non-empty type O
for the primitive functions, and a function # which maps each primitive function to its arity.

The rank of a A-expression is defined using the automatically generated recursive combinator
(see section 3). The rank is used throughout our specification for carrying out inductive proofs
on A-expressions. It is proved that the rank of an expression is larger than the ranks of all its
subexpressions.

rk(e) = € (XUA)
rk(A\zx. e) =1+rk(e)
rk(e(eo)) = 14 rk(e) + rk(eo)
rk(o(er,eg, ... e,)) =1+r1k(e)) +rk(ex) + ... +rk(en)

We develop the notion of free variables (F'V) via an inductive definition.

FV(e(eg)) = FV(e) UFV(ep)

(
(
FV(\z.e) = FV( ) —A{z}
(
FV(o(ey,eg,...,e,)) =FV(e;) UFV(ex) U...UFV(e,)

We can apply the new function to the set of free variables of an expression to get a fresh variable
and thus avoid accidental capture. The problem here is that the new function is defined on finite
sets of X, and FV (e) is defined as having type setof (X), so taking the new of FV(e) will lead
to the generation of a TCC. Including a judgement, however stating that FV(e) € Fin(X) in our
specification suppresses the production of such TCCs. The prelude contains judgements about
finite sets unions, intersection and so forth (e.g. (VX,Y € Fin(7))(X UY) € Fin(T)). Thus,
even expressions of the form new (FV(e) UFV (eq)) typecheck without producing TCCs.

Defining F'V allows us to treat renaming and substitution. The renaming function replaces all
free occurrences of one variable with another. To achieve this it may sometimes be necessary to
rename the bound variables of an expression to prevent capture.

(Ay.2)[z == y] # Ay.y
We do this by renaming all A bound variables.
(Ay.x)[z :=y] = Az.y for some new variable z
In general for A-abstractions, renaming is defined as
(Az.e)ly := z] = Azg.(e]x := xo][y := 2]) where 7 = new(FV(e) U{y,z})

It is in defining the renaming function that we first run into trouble with TCCs. As mentioned
in section 3, TCCs need to be proved by the PVS system, or the user. Unfortunately it is possible

8



to generate unprovable TCCs, often from fairly innocuous specifications. For example, consider
the lambda case of our renaming function:

ely := z] : Recursive A =
Caseseof :

Az.eg @ letzg = new(FV(e) U {y,z})in
Ao (€0l := mol[y := 2])
Endcases
Measure rk(e)

To prove that the function terminates, we need to show that each expression in the recursive
calls is smaller than the original expression. Now clearly rk(eq) < rk(e), as eq is a subexpression
of e, but in general PVS knows nothing about rk(eg[z := x,]). This will lead to the unprovable
TCC:

Ve' : rk(e') < rk(e)

To overcome this problem we build more information into the declared type of the renaiming
function. In particular we express that the rank of its value is no greater than the rank of its
argument:

ely := 2] : Recursive {eg € A | rk(eo) < rk(e)} =

This gives PVS the information it needs to establish that the nested recursion in the A case termi-
nates.

4.2 Alpha

o

We formally define using an inductive definition. As mentioned in section 2, several such
definitions are possible. Consider, for example, the first case mentioned for A-abstractions. Then
A\To.e0 = Ax1.e1 and \z;.e; = \zq.ey if Jy, yo Such that eg[xg := y1] = eilr1 == y1] and eq [z :=
Yo = es]zo := yo|. The problem with this is that transitivity is difficult to prove because y; and
1o are not necessarily the same variable (subsequent lemmas prove that the choice of variables
is irrelevant but rely on = being transitive). The other case for \-abstractions requires eolro =

Y] = e1]|z1 := y] for all y not free in ey or e;. However this definition is unwieldy in proofs where
we require the new variable to be outside the free variables of some other expression. Accordingly

the relation for = is not either of the above, but relies instead on the existence of a finite set of
variables. For Azy.e; and Az;.e; to be = the rule requires that Yy outside of this finite set, and

not contained within the free variables of either expression eg[zq := 1] = e1]zy := y1). This gives
9



us the greatest control over the new variable, and hence the greatest ease at proving theorems.

3T € Fin(X) suchthat Vz € TUFV(e)) UFV(ey) eolzo := 2] = ey[z1 := 2])

o
ATg.€0 = Ax1.€1

Interestingly enough, proving the simplest properties of = is quite challenging. For example, the

following three properties of = are proved simultaneously by induction on the rank of expressions,
an approach similar to that used in [11]:

@ ep=e = eolz=y|=e[z =1y
) (@#z Az#y Az #y) = ez :=yllz = y1] =efzy == y1][z := 9]
© y&FV(e) = e[z :=y|ly:=z]=elz = 2]

4.3 Quotient

In defining the quotient space modulo « equivalence, =, we need to build a comprehensive theory
about the new type. Many of the lemmas are similar to those found in a PVS ADT file, but also
require redefining such things as renaming and free variables. These are done with respect to the
old functions. For example, let ¢ be the function which maps a A-expression to its a: coset. The

free variables of a A-expression of A/ = is defined as:

[lle

FV(E)={z | (3e)(q(e) = E A z € FV(e))} where E is in the quotient space A/

[e%

However = preserves FV, and therefore:

g(e) = FE = FV(e) =FV(E).

From now on e, e;, ... will range over the newly formed quotient space. Working with the quotient

space allows us to forget about =, which makes definitions and lemmas a lot more intuitive,
and also makes proofs easier. The one difficulty which arises from the quotient space is that \-
abstractions now have infinitely many representations. We prove, however, the following important
property about these representations:

y € FV(ey) = Ax.ep = \y.e; < e = e[z :=y].

44 f[fand§

The 8 and § relations are defined on the quotient space, and are not inductive. The only thing of
note about the /3 relation is that it only allows 5 reduction on values. The § relation reduces prim-
itive functions to values, and requires each argument to be reduced to an atom before evaluation.
This relation is also parametric in a specific § function. A predicate for a valid § function is also
defined which requires the function only to evaluate primitive functions with the correct number
of arguments. In addition, certain combinations of arguments may not produce a valid result for
a certain primitive operation. For example, one would assume that dividing by zero would fail to
reduce under a reasonable § function.

10



(e R"e1 Neg #e1) = (Je)(eo Re A eR* ey A rk(e,er) < rk(eg,e1))

Fig. 3. Rank property for R*
4.5 Closures

In defining 3 and ¢ reduction we develop the notion of the compatible closure of a relation. This
is defined as being the minimal superset of the relation that is compatible with the structure of
A-expressions. In the case of 3 and §, the compatible closure allows reduction of subexpressions.

eo Re; = Az.eg R Az.e; A e(eg) Re(er) Aeg(e) Re(e) Ao(... ,ep,...) Ro(... ,e1,...)
We use a different definition to [24] for the transitive reflexive closure of a relation.
eR*e and ey Re; ANeg R ey = ey Res

To induct on the definition of the transitive reflexive closure, we define a rank. The difficulty
here is that there may be more than one way to prove that a pair lies in the transitive reflexive
closure. A path between two expressions e and ey is a list whose first and last elements are e and
eo respectively, and with the property that every pair of consecutive elements are in the relation R.
We define a predicate rk?(e, eg, k) to be true if there is a path of length £ + 1 between e and ey.
So, for example eq R e; implies that &7 (e, e1, 1) is true.

rk?(e,e,0)
rk?(ep,e1,k) AN eRey = rk?(e, e, k+ 1)

We then take the rank rk(e, eg) of two expressions to be the minimum of all such £ for which
rk?(e, eq, k) holds, or 0 if =(e R* ep). This rank gives the important result shown in figure 3,
which is an integral part of all inductive proofs on the transitive, reflexive closure of a relation.

4.6 Parallel

The definition of —— is inductive with the only difficulty coming from the g-reduction and \-
abstraction cases. As in the case for =, we have at least two ways to define the relation. In this
case we can either choose an individual representation for each A-abstraction, or consider each
possible representation. Our —— uses the latter approach, although it is likely that there is little
difference between the two. In fact, as soon as it is established that renaming preserves -, the
initial representation becomes irrelevant. To illustrate our handling of A-abstractions we provide
the formal definition for the S-reduction case:

(Vz & FV(e))(Jeo, €1, vo, v1)(
(e = (\z.€9)(v0) A € =ei[z:=v1] A eg—e1 A vgr—11)) = e—é
Before we give a detailed analysis of the proof of &(+—) let us outline our motivations for
forming the quotient space. There are many possible —— relations over the original (non quotient)
11
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A. The difficulty in defining such a relation is how to incorporate = into it. We consider the two
approaches that we attempted. Our first approach involves replacing equality, =, the P..q axiom
of figure 2 of section 2 by = (i.e: e=ey = erse). We had difficulty proving that this gave
us the correct transitive reflexive closure. We also could not establish the diamond lemma for the
B-reduction and A-abstraction cases.

The other approach we consider is defining —2 without =, and then defining another relation,
say =25, by:

(Feg,e1)(e=eo A €' =e1 A egrrser) = e e

Unfortunately this too leads to problems in proving —— for applications, A-abstractions and ¢-
reduction.

Ideally we would like to add = statements into each of the six cases, so for example, the non-3
application case would look something like (where e and ¢’ are applications):

e}

(360,61,62,63)(6%60(61) A€ =eye3) N eg—res A ej—re3) = e—e

Defining —= like this is a messy process and subsequently proving anything about it is likely to

be difficult. It is clear that some mechanism is desirable for removing = from our definitions and
lemmas, so it can be ignored except where required. We feel that the most intuitive and elegant

method is to form the quotient space modulo =,

4.7 Proof

Before we prove ¢(+——) we need to establish an important property of —— that is required
for the B-reduction case, namely that —— is preserved by substitution (see section 2.1). To see
where it is used, consider the following case in the O( —— ) proof. Suppose that e —— e1, e —— e,
v+— vy and v +—> v,. Then

(Az.e)v

/ | \62*[36 i

ei[z := v1] V9]

Now by the induction hypothesis we can find an ¢’ and a v’ so that e; ¢’ and v; —— v’ for
i € {1,2}. Thus we can complete the diagram:

(A\z.€)v
[ =]/ \[ = 9]
\[ ) /



The \-abstraction case requires only that ~2 is preserved by renaming. Suppose e — ¢; for

i € {1,2}. Then
(Az.e)

Ax.eq AT.es

Thus by the induction hypothesis, there exists an e’ such that e; — ¢’ for ¢ € {1, 2}. Now for any
y & FV(e1) we can complete the diagram using \y.e'[x := y], since:

Ay.erz == y| = Az.eq Az.eg = Ay.ezT :=y]

\ /

Ay.e'[z = y]

The primitive operation case causes another problem as there are two ways for such an ex-
pression to reduce, namely by d-reduction or by reduction on each of its arguments. Fortunately ¢-
reduction can only be performed if the arguments are all atoms. Furthermore, it is not hard to prove
that under ~2, atoms can only reduce to themselves. Suppose that o(a) ~= v, and o(@) = o(b)
where a; — b; for 1 < i < n. However a; € A implies that a; = b;. Thus o(b) == v,.

All in all, proving the diamond lemma for —— is the hardest step in our proof. The lemma
is split up into different sub-lemmas (one for each case), to make editing, and revising the proofs
easier.

Proving that —— * = is a relatively simple process in comparison. The proof consists of
a number of separate Iemmas which are given below:

ﬂv*

(PBs) erlrey = e e
(PsBs) e’y *ey = e *eg
(BPs) eryep = ey e
(BsPs) e+ *ey = e e

The lemmas (PBs) and (BPs) are proved by induction on the relevant inductive definition (parallel
reduction and compatible closure respectively). In contrast, the proofs of (PsBs) and (BsPs) are
carried out by induction on the rank of the transitive reflexive closure.

5 Previous, Current, and Subsequent Work

We finish of this paper with a discussion of: previous related work, the conclusions drawn from
the work presented here, and finally our work with PVS subsequent to the work reported here.
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5.1 Previous Work

Presumably because of its importance to the foundations of (Theoretical) Computer Science, the
Church—Rosser theorem has been the subject of several machine based theorem proving stud-
ies [26,8,25,22,17,20].

The earliest treatment was by Shankar using the Boyer-Moore theorem prover [26], and later
appears as a chapter in his PhD thesis [27]. The formalization of the A-calculus uses de Bruijn
indices, and the proof is the standard Tait—Martin-L6f version. One notable point about this proof
is that it is carried out in a very weak logic, one that has no explicit quantifiers.

The next treatment was Huet’s formal development of the theory of residuals in the A-calculus
using the Coq system [8]. He uses de Bruijn indices in his formalization and establishes Church—
Rosser as a corollary to his treatment of residuals.

Rasmussen [25] ports Huet’s treatment to Isabelle. The emphasis of his treatment is on the
difficulties involved in translating one mechanical proof on one platform to another mechanical
proof on another platform.

Nipkow [20] presents a very general and abstract treatment of Tait—Martin-Lof style proofs of
Church—Rosser in Isabelle. His treatment is based on a general theory of commutating relations,
and covers both 5 and 7 reduction systems. He also encodes and compares both the original
proof that parallel reduction has the diamond property, as well as the more recent one due to
Takahashi [29].

Pfenning in [22] presents a development of the Tait—Martin-Lof proof in his EIf implementa-
tion of the Edinburgh LF [6]. The novel aspect of this treatment is that it uses higher order abstract
syntax to encode the lambda calculus. This encoding does not have a syntactic category for vari-
ables of the (object) A calculus, but rather uses the variables of the LF framework. For example
the A constructor is modeled by a constant in the framework of the form A : (A — A) — A, where
A is the syntactic category corresponding to (object) A expression.

5.2 Conclusions concerning the Work Reported Here

Our work differs from the previous work reported above in two important ways. The first and
most obvious difference is that we use the PVS system, whereas the work reported above relied on
older systems. Prior to the work reported here, little use had been made of the abstract datatype
facility in PVS. The work reported here helped debug these facilities of PVS, and thus helped
refine the system. This refinement of the PVS system is an ongoing process, for example the
prover doesn’t automatically apply the correct extensionality and eta axioms, so that the specific
axiom needs to be explicitly stated in the prover command. However, the bottom line is that the
abstract datatype mechanism is extremely useful in encoding operational approaches to semantics,
as is demonstrated by our subsequent work.

The second and more important difference is that we directly formalize and reason about «
equivalence. Something that has not been done previously, to our knowledge. Indeed the main
conclusion of this work, and of our subsequent work as well, is that it is indeed possible to formal-
ize o equivalence, and remain faithful to the presentations found in text books and journals.
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5.3 PVS Statistics

The actual proof of Church—Rosser in PVS took the first author approximately four months, al-
though some of this time was spent learning PVS. Some time was also wasted attempting a
direct proof of Church—Rosser without first forming the quotient space. The actual machine
checked proof involves the proving of two hundred and thirty six (236) distinct facts, and takes
PVS three hundred and sixty seconds (362) of CPU time running on a Linux machine config-
ured with 2 GBytes of main memory and 4 x550 MHz Xeon PIII processors. The dump file con-
taining all the PVS definitions, facts, and proofs is 2.396 MBytes and is available from http:
//mcs.une.edu.au/"pvs/ [4].

5.4 Subsequent Work

After successfully carrying out this first experiment reported here. We undertook a second sophis-
ticated and substantial use of PVS, one that established a recent result in operational semantics.
This experiment was of interest not only because it required the substantial development of cur-
rent higher order techniques in operational semantics, but also because it exposed several gaps in
the published presentation of the result. Thus this experiment exemplifies the possible benefit of
serious formalization offers standard mathematical practice, which typically leaves much unsaid.

Much work has been done to develop methods for reasoning about operational approximation
and equivalence. An early example is Robin Milner’s context lemma [18] which greatly simplifies
the proof of operational equivalence in the case of the typed A calculus by reducing the contexts
to be considered to a simple chain of applications. Mason and Talcott ([13], [14]) introduced the
CIU characterization of operational equivalence which is a form of context lemma for imperative
languages. This lemma was then generalized by Carolyn Talcott to a very wide class of program-
ming languages in [30]. It is this lemma that we verified in this second experiment. This lemma
is fundamental to our formalization effort since it is the corner stone upon which we define the
semantics of our specification logic [15]. Again we took great pains to formalize the actual theo-
retical treatment, rather than adapting it to the tastes of both the machine, and PVS. The results of
this experiment have been briefly discussed at [12] and appear as [5].
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