Axiomatizing Operational Equivalence in the presence of Side Effects

Tan A. Mason*

L.F.C.S., Edinburgh University

1 Introduction

In this paper we present a formal system for deriving
assertions about programs with side effects. The as-
sertions we consider are of the following two forms:
(1) e diverges (i.e. fails to reduce to a value), writ-
ten Te; (ii) eg and ey are strongly isomorphic (i.e.
reduce to the same value and have the same effect
on memory up to production of garbage), written
eo =~ e1. The e, e; are expressions of a first-order
Scheme- or Lisp-like language with the data opera-
tions atom, eq, car, cdr, cons, setcar, setcdr, the con-
trol primitives let and if, and recursive definition of
function symbols.

The formal system we present defines a single-
conclusion consequence relation ¥ F @& where X is
a finite set of constraints and ® is an assertion. A
constraint is an atomic or negated atomic formula
in the first-order language consisting of equality, the
unary function symbols car and ecdr, the unary re-
lation atom, and constants from the set of atoms,
A. Constraints have the natural first-order interpre-
tation. The semantics of the formal system is given
by a semantic consequence relation ¥ |= @ which is
defined in terms of a class of memory models for asser-
tions and constraints. The main results of this paper
are

Theorem 1 The deduction system is sound: if X F
D, then ¥ | @.

Theorem 2 The deduction system s complete for ®
not containing recursively defined function symbols:

if ¥ = ®, then ¥ F .

Operational equivalence [11, 15] abstracts the op-
erational semantics of programs and is the basis for
soundness results for program calculi and program

*Current address: Computer Science Department, Stanford
University

tThis research was partially supported by DARPA contract
NO00039-84-C-0211

Carolyn Talcott!

Computer Science, Stanford University

transformation theories. Two expressions are opera-
tionally equivalent if they are indistinguishable in all
program contexts. The importance of the strong iso-
morphism relation is that strong isomorphism relative
to the empty set of constraints is the same as oper-
ational equivalence. Thus the formal system can be
used for proving operational equivalence, and is com-
plete for expressions which do not contain recursively
defined function symbols.

From the rules of the formal system and the proof
of completeness we obtain a decision procedure for
the semantic consequence relation. This is an impor-
tant step towards developing computer-aided deduc-
tion tools for reasoning about programs with memory.

Oppen [14] gives a decision procedure for the first-
order theory of pure Lisp, i.e. the theory of atom,
car, cdr, cons over acyclic list structures. Nelsen and
Oppen [13] treat the quantifier-free case over possibly
cyclic list structures. Neither treats updating opera-
tions. Boehm [1] defines a first-order theory for rea-
soning about programs in the language Russell which
includes facilities for allocating and modifying mem-
ory. Some relative completeness results are given, but
no decidable fragments are considered. The seman-
tics of the full first-order Lisp-like language was stud-
ied in [5, 6]. Here the model-theoretic equivalence
strong isomorphism was introduced and used as the
basis for studying program equivalence. Many ex-
amples of proving program equivalence can be found
in [8, 6, 7]. Felleisen [3] develops a calculus for rea-
soning about programs with memory, function ab-
stractions and control abstractions. Mason and Tal-
cott [9] give an alternative approach to treating pro-
grams with memory and function abstractions and
develop the theory of operational equivalence for this
case. More complete surveys of reasoning about pro-
grams with memory can be found in [5, 6, 7, 2, 3].

The remainder of this paper is organized as follows.
We first define our language and its operational se-
mantics. We then present the axioms and rules of

Page 1



the formal system. Following that we define mem-
ory models and semantic consequence and prove the
soundness theorem. Finally we outline the proof of
the completeness theorem. To do this we develop a
syntactic representation of the operational semantics
which 1s also useful for reasoning about programs in
general. A full account of the proof may be found
in [10].

We conclude this section with a summary of nota-
tional conventions. We use the usual notation for set
membership and function application. Let Y, Y,V
be sets. Y is the set of sequences of elements of Y
of length n. Y* is the set of finite sequences of el-
ements of Y. [y1,...,yn] is the sequence of length
n with ith element y;. [Yo — Yi] is the set of
functions f with domain Yy and range contained in
Y. We write Dom(f) for the domain of a func-
tion and Rng(f) for its range. For any function f,
f{y == ¢’} is the function f’ such that Dom(f’) =
Dom(f) U{y}, f'(y) = ¢/, and f'(z2) = f(z) for
z # y,z € Dom(f). N = {0,1,2,...} is the natu-

ral numbers and i, j,n, ng, ... range over N.

2 The Semantics

In existing applicative languages there are two ap-
proaches to introducing objects with memory. We
shall call these the Lisp approach and the ML ap-
proach. In the Lisp approach the semantics of
lambda abstraction is modified so that upon applica-
tion lambda variables are bound to newly allocated
memory cells. Reference to a variable returns the
contents of the cell and there is an assignment opera-
tion (setq or set!) for updating the contents of the
cell bound to a variable. With this modified seman-
tics one can no longer use beta-conversion to reason
about program equivalence. For example in the pro-
gram ((Az...setq(z,n+ 1)...)v) beta-conversion is
not even meaningful, z cannot be substituted for by a
value. Instead a cell must be allocated and z replaced
by the cell name or labeled value. In the ML ap-
proach cells are added as a data type and operations
are provided for creating cells and for accessing and
modifying the contents. Reference to the contents
of a cell must be made explicit. The semantics of
lambda application is preserved and beta-value con-
version remains a valid law for reasoning about pro-
grams. The Lisp approach provides a natural syntax
since normally one wants to refer to the contents of
a cell and not the cell itself. However the loss of the
beta rule poses a serious problem for reasoning about
programs. This approach also violates the principle
of separating the mechanism for binding from that of

allocation of memory [12]. Following the Scheme tra-
dition, Felleisen [2] takes the Lisp approach to provide
objects with memory. In order to obtain a reasonable
calculus of programs, the programming language is
extended to provide two sorts of lambda binding and
an explicit dereferencing construct. There have been
recent improvements in this calculus, but the prob-
lem of mixing binding and allocation is inherenent in
the approach.

We take the ML approach to introducing objects
with memory, adding primitive operations that cre-
ate, access, and modify memory cells to the call-by-
value lambda calculus. For brevity, we restrict our
attention to expressions not containing recursively de-
fined function symbols. The definitions and many of
the intermediate results lift naturally to the full first-
order language (see [6]).

We fix a countably infinite set of atoms, A, with
two distinct elements playing the role of booleans, T
for true and Nil for false. We also fix a countable set
X of variables disjoint from A.

Definition 1 The set of expressions, |E, is the small-
est set containing X U A and such that if x € X,
e; € E for j < 3, 61 € Ty, and §y € Ty then
let{z := eg}er, if(eg,e1,€2), d1(e1), and da(eq, e2)
are in E. The unary memory operations are [y =
{atom, car, cdr} and the binary memory operations
are Fy = {eq, cons, setcar, setedr}. We let U denote
the set of value expressions A U X, 1

A more compact notation for the above standard
inductive definition is given by the equation E = X U
AUlet{X := E}E Uif(E EE) UF(E) UTF,(E E),
we shall freely use this notation in the sequel.

An expression describes a computation over S-
expression memories — finite maps from (names of)
cells to pairs of values, where a value is an atom or
a cell. We call the value of a cell in a memory its
contents. The memory operations are interpreted rel-
ative to a given memory as follows. atom is the char-
acteristic function of the atoms, using the booleans
T and Nil; eq tests whether two values are 1dentical.
cons takes two arguments, creates a new cell (extend-
ing the memory domain) whose contents is the pair
of arguments, and returns the newly created cell. car
and cdr return the first and second components of a
cell. setcar and setcdr destructively alter an already
existing cell. Given two arguments, the first of which

1We let a,ap,... range over A, x,x0,y,2... range over X,
e, €g, ... range over Ik and u, ug, . .. range over U. The variable
of a 1et is bound in the second expression, and the usual con-
ventions concerning alpha conversion apply. We write FV(e)
for the set of free variables of e. seq(eg,...,en) abbreviates
if(eo,seq(er,...,en),s€q(e1, ... en)).

Page 2



must be a cell, setcar updates the given memory so
that the first component of the contents of its first
argument becomes its second argument. setcdr sim-
ilarly alters the second component. Thus memories
can be constructed in which one or both components
of a cell can refer to the cell itself.

To define the operational semantics we fix a count-
able set of (names of) cells, C, disjoint from A and
X. V= AUC is the collection of storable memory
values. The set of memories, M, consists of finite
maps from cells to pairs of values. Cells which ap-
pear in the range of a memory are assumed to lie in
its domain. For each n € N we also define a col-
lection of n-ary memory objects, Q") C V7 x M,
(elements of O™ are called objects, and we omit the
superscript). The cells in the n-tuple component of a
memory object must lie in the domain of its memory
component. The set of environments or bindings, B,
is the collection of finite functions from X to V. The
set of descriptions of computations, D, is a subset of
E x B x M. In a description the free variables of the
expression must be in the domain of the environment,
and cells in the range of the environment must be in
the domain of the memory. 2

The operational semantics of expressions is given
by a reduction relation > on descriptions. Tt is gen-
erated in the following manner. The action of the
memory operations is given by the primitive reduc-
tion relation, —, which is a subset of (F;(0) x O) U
(Fs (@(2)) x 0). s is the reflexive transitive closure of
the single-step relation +— which is defined in terms
of reductions of primitive expressions and reduction
contezxts. The single-step reduction relation, —, is
a subset of (D x D), as is +>. Finally, the evalua-
tion relation, <, is a subset of (D x Q). Evaluation
is reduction composed with the operation converting
value descriptions (u; 3; p) into memory objects.

The primitive reduction relation

6([”0; s 'Jvn—l];/‘t) - vl;lul

is the least relation satisfying the following condi-
tions.

ifveA

. T p
atom (v; j1) — {Nil;p otherwise

car(c; 1) — vo; f4

2We let ¢,cq,... range over C, v,v,... range over V,
ty 1oy« - - range over VI wu; p, uo; o, - . . range over O, 8,8, ...
range over B, and e; 3; i, e0; B0; ko, - - - range over ). We use
“” in some notations, for example objects and descriptions,
since some components of the these tuples are also collections
(sets or tuples) and we wish to emphasize the outer level tuple
structure. To simplify notation, we adopt the convention that
B(a) = a when a € A.

cdr(c; p) — vi; pt

lf Vg = U1

) T p
eq([vo, v1]; ) — {Nil; p otherwise

cons([vo, v1]; 1) — ¢; pf{c := [vo, v1]}
setcar([c, v]; u) — ¢; p{c = [v, v1]}
setedr([e, v]; 1) — ¢; p{c = [vo, v]}

where in the cases for car, edr, setcar and setcdr we
assume that ¢ € Dom(u) and p(c) = [vg,v1]. The
cons case holds for any ¢ such that ¢ ¢ Dom(y). Al-
though formally cons is multi-valued, the values differ
only by renaming of cells and generally we will not
distinguish them. Defining cons as a relation rather
than a function which makes an arbitrary choice is
the semantic analog of alpha conversion and greatly
simplifies many definitions and proofs. If g is a mem-
ory, then the function car, € [Dom(p) — V], is de-
fined by car,(c) = v & () (u(c) = [v,?']), cdr,
is defined analagously. Computation is a process of
applying reductions to descriptions. The reduction to
apply is determined by the unique decomposition of
a non-value expression into a reduction context filled
by a primitive expression.

Definition 2 The set of primitive expressions,
Eprim , @5 defined to be if (U, E E) U let{X := U}EU
Fy (U)UTFo(U,U) The set of contexts, °E, is defined
as usual, using the special symbol ¢ for holes. The set
of reduction contexts, R, is the subset of °IE defined
by R = {e} Ulet{X :=R}EUif(R,EE) UF (R)U
F5(U,R)UTF, (R, E).3

Lemma 1 If e € E then either e € U or e can be
written uniquely as R[e'] where R is a reduction con-
text and e’ € Fprim .

The single-step reduction relation — on I is de-
fined in by the following three reductions, the first
being (beta), the second (if), and the third (delta).

R[1let{z := u}e]; Bip R[[[F]];]]ﬂ{ﬁr = ﬁf(;%};)/;

. A Rleq]; By if B(u) # Nil
Rlllf(u’;ela‘ﬁ)]]aﬂaﬂ = { R[["O]];ﬁ;/i if ﬂ(u) - Nil
R[6(ur, ..., un)]; B; p = R[2]; p{a =o'} 4

where in the (beta) clause z ¢ Dom(f3) and
in the (delta) clause z ¢ Dom(g), d €
Fo, (o1, .. vn];p) — V5, and v; = B(u;) for
1<i<n.

3We let I, F' range over ¢l and R range over R. F[e]
denotes the result of replacing any holes in / by e. Free vari-
ables of e may become bound in this process. We often adopt
the usual convention that [ ] denotes a hole. To avoid prolif-
eration of brackets when dealing with composition of contexts
we write E; E'[¢] for E[E'[e]] and similarly for longer compo-
sition chains.

Page 3



A description e; 3; p € 1D evaluates to the object
v;p' € O, if it reduces to a value description denoting
that object: e; 8; p < v; ' iff

(Fu; 85 ) (63 B = w; 5 A B (u) = 0)
A description is defined, written | e; 3; p, just if
(Fos ' € O)(e; B; 4 = vi ).

A description is undefined, written 1e;3; p, just if
—(}e; B; p). We identify a closed expression with the
description consisting of it, the empty environment
and the empty memory. Thus 1 e abbreviates 1¢;0; 0.
We define operational equivalence following [15].

Definition 3 Two expressions are said to be opera-
tionally equivalent, written eq = ey, if and only if for
any closing context FE, Eleg] and Elei] are either
both defined or both undefined.

Alternatively one could define two closed expres-
sions to be trivially equivalent if both are unde-
fined, both return the same atom or both return
cells. Then two expressions are operationally equiva-
lent just if they are trivially equivalent in all closing
contexts. This is the usual characterization of op-
erational equivalence in the presence of basic data.
Both definitions are equivalent in this setting since
equality on basic data is computable. By defini-
tion operational equivalence is a congruence relation
on expressions. However it is not necessarily the
case that instantiations of equivalent expressions are
equivalent even if the instantiation is defined. Explic-
itly: it is not the case that | e and ey = e; implies
eo{z/e} = er{x/e} for arbitrary variable z and ex-
pressions e, €q, €1.

3 The Formal System

In this section we present the language and rules of
our formal system.

Definition 4 The assertion language 1. and the con-
straint language L are as follows: . = (E ~ E)U(1 E)
and L = (car(U) = U)U (edr(U) = U)U (U =
U)U=(U=U)U (atom(U)) U =(atom(U)).

The set of constraints £ 1s a subset of the atomic
and negated atomic formulas in the first-order lan-
guage consisting of equality, the unary function sym-
bols car and edr, the unary relation atom, and con-
stants from A. * We will freely use standard notions

‘We let ¢,... range over L, ®,... range over IL, and
3, Y0, 4, ... range over finite subsets of L.

such as first-order satisfaction, |=. The theory Th(4)
is defined by

Th(A) = {atom(a),~(a = d')|a,a’ € Aja # d'}

To state the rules, as well as the side conditions
on rules, we use the following notation. The result of
pushing a context F through an assertion & is defined

by

(1E[] it =te
E[®] = {E[[eo]] ~ Ele1] if @ =eo~es.

For ¥ € {car,cdr}, x is ¥-less in X just if =(Ju €
U)(3 | 9(x) = u) and (Yy € X)((0(z) = v) € % —
Y E =(¢ = y)). Dom(X) is the subset of FV(X)
defined by Dom(X) = {z € FV(X)|X = —atom(z)}.
For each constraint ¢ € £ there is a corresponding
assertion 7'(¢) € IL defined by

eq(ug,u1) ~ T w s ug = uy
eq(ug,u1) @ Nil ¢ is =(ug = uq)
atom(z) ~ T ¢ is atom(zx)
atom(z) ~Nil ¢ is ~atom(x)
d(x) ~u pis J(z) = u.

T(¢) =

where ¥ € {car, cdr}.

Definition 5 The consequence relation, &, is the
smallest relation that is closed under the rules given
in figures 1 through 9.

4 Soundness

In this section we present the semantics of our for-
mal system. A model is an environment-memory pair
such that cells in the range of the environment are
in the domain of the memory. We let 8;pu, Bo; po,
...range over models. We begin by defining what it
means for a model to satisfy an assertion or a con-
straint set. The semantic consequence relation be-
tween constraint sets and assertions is defined natu-
rally in terms of these satisfaction relations.

Definition 6 Two descriptions with the same model

are strongly isomorphic, written eq; B; pu =~ eq1; B; p, of

ezxactly one of the following holds:

1. Tey; By p and Teg; B p

2. There is a v;p' € O with Dom(p) C Dom(u')
such that

I\ G |1 C i) (eis By p = v; i)
1<2

The model-theoretic equivalence strong isomor-
phism was introduced in [5] and used as the basis for
studying program equivalence. The relation between

Page 4



. L ZU{piF o o
(1) TU{e}FT(p) (i) ——————= wherein (ii) TUTh(4) = ¢.
YF®

Figure 1: Structural rules

SU{plF®  SU{-plFd i) SU{d(z) =z} - B

(i)
SH o SH o

where in (i) ¢ € {atom(u), uo = u1} and in (ii) ¥ € {car, cdr}, 2 € Dom(X), and z € FV(®) UFV(X).

Figure 2: Left elimination

Ykeg~er Yhe ~e L XYkeg~er . YFeg(e,y) ~T
(i) ————— (iv)
T Y ke ~eg ' Yo~y

1) Y hkegr~ i
) e (i) Yk e~ e

Figure 3: Equivalence rules

(i Yk teq Yk ter (i) Yk teq Ykeg~eg .. TFatom(z)~T
i il iii
E"e():@l E"TE] El‘T’!?(l’)
Yk atom(z) ~T

T F 1t setd(z,y)

where in (iii),(iv) ¢ € {car, cdr}.

Figure 4: Divergence rules

YF® .
O St @
(i) X F R[let{z :=eo}e1] ~ let{z :=eo}R[e1] ifx & FV(R).

Y R[if(eg, e1,e2)] ~ if(eq, Re1], Rles])

Figure 5: Reduction context rules

(1) YFe~let{r:=e}z (i) T Fef{z/u} ~let{r:=ule (iii) X F if(Nil,eg,e1) ~e;

_ Y+ eq(u,Nil) ~ Nil
(iv) X+ seq(ep,e1) ~let{z:=egle; 2z & FV(eq) (v)

T if(u,en, e1) ~ eg

Figure 6: Rules concerning let and if

Page 5



(1) X F let{zq:= cons(T,T)}1let{z; := cons(T,T)}e
~ let{xs := cons(T,T)}let{xq := cons(T,T)}e
(ii) X F seq(eo,let{x := cons(ug, ui)}e1) ~ let{x := cons(ug, u1)}seq(eqn, 1)

(111) v let{;p = conS(Ua,Ud)}[[q)]]

where in (ii) z € FV(eg), and in (iii) ¢ (FV(X) U {uq,uq}) = Z and

A = {—~atom(z), car(z) = uq, cdr(z) = ug,~(x =y) |y € ZU (FV(®) — {z})}

Figure 7: Rules for cons

T F eg(zg, z2) ~ Nil

(1)

Y F seq(setd(zo, x1), setd(xa, x3), €) ~ seq(setd(xa, x3), setd(xo, 21), €)

(i) Xt seq(setd(x,yo), setd(x,y1)) ~ setd(x,y1) (iil) Tk seq(setd(z,y),z) ~ setd(z,y)

(iv) X F seq(setedr(zo, z1), setcar(za, z3), €) ~ seq(setcar(xs, x3), setedr(zo, 1), €)
(v) Xt setcar(cons(z,y),z) ~ cons(z,y) (vi) X F setedr(cons(z,z),y) ~ cons(z,y)
YU{d(z) =uo}F @
YU {d(z) = u1} F seq(setd(z, ug), [@])

Vil

where 9 € {car, edr} and in (vii) z € Dom(X), and z is ¥-less in X.

Figure 8: Rules for setcar and setcdr

If T is a context of the form

let{z := cons(T,T)}...let{z, := cons(T,T))}

seq(setcar(z1, u), setedr(z1, uf), ..., setcar(zn, uy), setedr(zy, ug), €).

and {z1,...,2,} NFV(e) =, then T F T'fe] ~e.

Figure 9: Garbage collection rule

Page 6



strong isomorphism and operational equivalence is

given by the following theorem.?

Theorem 3 If eg,e; € E, then eg = €1 if and only
if for every fB;pu such that FV(eg,e;) C Dom(gF) we
have eq; 3; p > e1; 3; p.

Definition 7 The notion of a model satisfying an as-
sertion, f;p 1 @, is defined for FV(®) C Dom(f)
by

te; fim yo=1e
) ) ;
BipbFL® < {eo;ﬁ;uzm;ﬁ;ﬂ if @=co=er.

The notion of a model satisfying a set of constraints
B; p Ec Xis simply first-order satisfaction adapted to
the memory structure framework. For any memory u
we define the corresponding first-order structure M,

by
M, = <Dom(u) U A, car,, cdr,, atom>

where Dom(p) U A is the domain of M, car,, cdr,
are treated as binary relations, and atom is a unary
relation. For B € B, ¢ € L such that FV(y) C
Dom(f) and Rng(3) C Dom(u) U A we write M, =
©[B] for the usual first-order satisfaction relation
where ¢ [(] is the interpretation of ¢ relative to the
environment 3, thought of as a Tarskian assignment.
Thus

Jé; @ is atom(x)
Jé; @ is ~atom(z)
My EelB] <  Blud) = Blus @ is ug = uy
I3 © 18 ug # Uy
Bu(8) = ) s 9(z) = u

where ¥ € {car, cdr}. We say 3; u |Ec X just if there
is a ' D f with FV(X) C Dom(g#’) and Rng(f') C
A UDom(u) such that M, | ¢ [8'] for ¢ € X.

Definition 8 The semantic consequence relation

Y & @ is defined by ¥ = @ iff for every B;p with
FV(®) C Dom(f) we have

BinbEe L = BipEr @

A constraint set ¥ is consistent just if B;p =g X for
some model 3; .

The proof of the soundness theorem is now a rou-
tine matter of checking that the axioms are valid and
that the rules preserve validity.

5This theorem holds for the full first-order language, not
just the fragment with no recursively defined functions.

5 Completeness

In this section we outline the proof of the complete-
ness theorem. We begin by developing a syntactic
representation of descriptions and computation. We
then present the key lemmas for the proof of com-
pleteness and the proof itself. Two forms of contexts
feature in the syntactic analog of reduction: syntactic
memory contexts and modifications. We define them
in turn.

Definition 9 The syntactic analog of a memory is a
memory context, I', which is a context of the form

let{z1:= cons(T,T)}...let{z, := cons(T,T)}
seq(setcar(zy, uf), setedr(zy, uf),

cey

setcar(zp, ul), setedr(z,, ul),
€).
where z; # z; when 1 £ j.

In analogy to the semantic memories, we define the
domain of T to be Dom(I') = {z,...,2,}. For
' as above we define the functions carp,cdrp €
[Dom(T) — U] by carr(z) = u? and cdrp(z;) = ul.
Two memory contexts are considered the same if they
have the same domain and contents. Thus a mem-
ory context is determined by its domain and selector
functions. We also define extension and updating op-
erations on memory contexts. T'{z := [ucar, Ucdr]}
is defined for z ¢ Dom(T') to be the memory con-
text T’ obtained by extending I' so that Dom(T”) =
Dom(T) U {z} and for ¥ € {car, cdr}, dr:i(z) = uy.
T'{car(z) = u} is defined for z € Dom(T) to be the
memory context T’ obtained by altering T so that
carri(z) = u. T{edr(z) = u} is defined similarly.

If X C X—Dom(T), and 7 = FV(Z)UXUDom(T),
then we define ©¥ — the set of constraints corre-
sponding to the memory context I' in the presence of
free variables X — as follows,

Y =%uA
A= U Amatom(z), 9(2) = ug, (= = )}
2€Dom(T)
ug=vp(z)
ve{car,cdr}
y€Z—{z}

Definition 10 A modification, M, is a context of the
form

seq(setdi(z1,u1), ..., set¥n(zn, un),€)

where sety; € {setcar, setcdr} and z; = z; implies
i=j or set; # setd;.

Page 7



We define Dom(M) = {z1,...,2,} and Ipr(z;) =
u; if setd; = setd for § € {car,cdr}. Thus
Dom(dy) = {zi € Dom(M)|setd; = setd} for
¥ € {car, cdr}.

In analogy to the semantic reduction relations we
define the relations —y, —y, and 5. In order to en-
sure that definitions are meaningful we introduce the
notion of coherence. Roughly a constraint set and
a memory-modification context are coherent (written

Coh(X,T; M)) if Dom(T') NFV(X) = @, modifications
in M are to elements of Dom(X), ¥ decides equality
on Dom(X), distinct elements of Dom(M) are prov-
ably distinct in ¥ and ¥ contains at most one car or
cdr assertion for any z in Dom(X). (The last condi-
tion is a technicality to make various definitions and
proofs simpler.) Note that coherence ensures that
I 18 single-valued modulo X equivalence. For ¥ and

I'; M such that Coh(X,T; M) we define the relation
[; M[e] —= s M'[€']

analagously to the definition of —. For example,
letting X = FV(T; M[e]) and ¢ € {car, cdr}, the
clauses for a representative selection of memory op-
erations are as follows:

If ©X = —atom(u) then

T; M[atom(u)] —s T'; M[Ni1].
If (Ju’ € Dom(9pr))(2 [ (u' = u)) then
[ M[9(u)] —s T M[9ar(u)].
If X UTh(A) = —(uo = u1) then
[ Meg(uo, v1)] —= T'; M[Ni1].
If z € X — (Dom(T) UFV(E) U X) then
T; M cons(uo, u1)] —s T{z i= [uo, w]}; M[2].

For ¥ and T'; M such that Coh(X,T'; M) we define the
relation

[; M; Rle] =s I MY R[],
analagously. For example
T; M; R[1let{z := u}e] —x T; M; R[e{z/u}]

and assuming that D;M[6(u1,...,u,)] —x
I'; M'[u'], and Dom(I') — Dom(T') is disjoint from
FV(T; M; R[6(u1, . ..,un)]), and § € F,. Then

[ M; R[0(ur, ..., un)] —s T M R[u].

For general use in reasoning about programs one
would want to strengthen the definition of syntactic
reduction by using full semantic satisfaction rather
than first-order satisfaction in the side conditions.

The weaker definition is adequate for proving com-
pleteness and simplifies the proof. Before we state
the key lemmas, we require one last set of definitions.
The rank of an expression r(e) is just its size. The
rank of an assertion r(®) is the maximum rank of
the expressions occurring in ®. At(y) is the set of
atoms occuring in x where x 1s a finite set of expres-
sions, constraints, and assertions. A car-cdr chain of
length < n is a reduction context of the form © =
Do(P1(...Vk(e)...)) where 9; € {car,cdr},j < k,
and k& < m. For finite X C X and finite A C A,
we say X is n-complete w.r.t. [X, A] just if for every
0, Oy, car-cdr chains of length < n, and y,yo € X, if
Y EO[y] = u and T | O¢[ye] = uo, then
(2 E atom(u)) V (X | —atom(u)),

for @« € AU{T,Nil, up}

EEFu=a) Vv (EE-(u=a),

and if ¥ = —atom(u)) then there are u,, uqy € U such
that

(Z Ecar(u) = u,) A (2 = cdr(u) = uy)

while if © }= atom(u) then it is not the case that there
are ug, ug € U such that

(X E car(u) = uq) V (T = cdr(u) = uq)

The following five lemmas enable a straightforward
proof of the completeness theorem.

Lemma 2 If X s inconsistent, then ¥ F ®, for any
®cl.

Lemma 3 Ife sy e, then D Fe~e¢.

Lemma 4 If Coh(X,0) and ¥ is r(e)-complete w.r.t.
[FV(e),At(XZ,€)], then there exists T; M and an €'
such that e v>x, T; M[e'] and exactly one of the fol-
lowing holds:

1. ¢ = R[¥(u)],? € {car,cdr} and ¥ U Th(4) =

atom (u).

2. ¢ = R[set¥(ug,u1)], setd € {setcar, setedr} and
Y UTh(A) E atom(ug).

3. ¢ = u, and Coh(X,T; M).

Lemma 5 For any consistent &, finite X C X, ® €
I., and n € N there exists N € N and a family of
constraint sets {X;}i«n such that

1. Each 3; is n-complete w.r.t. [X, At(Z;, ®)], and
COh(Ei, @)

Page 8



2 (B (Bim ke X 6 (i< N) (B ke i)

5 WHE® i< N
' Y ®

15 a derived rule.

Lemma 6 Let ¢; = Ty; Mi[u;] with Coh(X,T';; M;)
fori<2. IfY¥Eeg~e then Xk eg ~e.

Proof (Completeness): Assume ¥ | ®. By
lemma 2 we may assume that X is consistent. By
lemma 5 it suffices to prove that ¥ F ® under the
added assumptions that Coh(X,0) and X is r(®)-
complete w.r.t. [FV(®), At(X, d)]. By lemma 4 we
have that for each e; in ® there exists T';; M; and an
e} such that e; ~x T';; M;[ef] and exactly one of the
following holds:

1. e = Ri[9:(wi)], ¥i € {car,cdr}, and ¥ U
Th(A) & atom(u;).

2. e = Rilsetv;(u;, us)], setd; € {setcar,setcdr}
and ¥ U Th(A) = atom(u;).

3. e, = u;, and Coh(X,T;; M;).

By lemma 3 we have ¥ F ¢; ~ T;; M;[ei] and by
soundness we have ¥ |=e; ~ T';; M;[ei]. We consider
two cases, depending on the nature of ®.

Case & = te: Since ¥ is consistent ¢/ € U is
impossible.

In the other two cases we can show that X F
1T; M[e’], and hence that X+ fe.

Case ® = (eg ~ e1):  We may assume that ~(X |
1e;) since the case when ¥ | te; follows directly
from the previous case. Hence we have X F ¢; ~

[y; Mi[u;] and X | e; ~ T';; M;Ju;] for i < 2. Thus
¥ E Tg; Mo[ug] =~ T'1; MiJui] and by lemma 6 X F
Fg; MO[[UO]] ~ Fl; Mlﬂul]].

UCompleteness

6 Conclusion

We have presented a formal system for reasoning
about equivalence of first-order Lisp- or Scheme-like
programs that act on objects with memory. The se-
mantics of the system is defined in terms of a notion of
memory model derived from the natural operational
semantics for the language. Equivalence is defined
relative to classes of memory models defined by sets
of constraints. The system is complete for programs
that use only memory operations (no recursively de-
fined functions, arithmetic operations, etc.). Thus
the system can be seen to adequately express the
semantics of memory operations. Presumably this
could be extended to a relative completeness result

for expressions built from memory and other alge-
braic operations, or for the full language, but we have
not explored this possibility.

Equivalence in all models is the same as opera-
tional equivalence. Thus we have a means for reason-
ing about operational equivalence of programs. The
formal system provides a richer language than op-
erational equivalence since it provides a method for
reasoning about conditional equivalence and equiva-
lence with respect to restricted sets of contexts. This
is essential for developing a theory of program trans-
formations, since most of the interesting transforma-
tions are based on having additional information, i.e.
on being able to restrict the contexts of use.

Implicit in the proof of completeness is a decision
procedure for deciding when an expression is defined
and whether two expressions are equivalent for all
models of a set of constraints. There are three key
algorithms. The first algorithm is an algorithm for
deciding first-order consequence for constraints by a
simple extension of an algorithm for putting a set
of equations and inequations into a canonical form.
The second algorithm generates a set of r(e)-complete
constraints each of which completely determines the
computational behavior of the expressions in ques-
tion. The third algorithm finds a renaming of bound
variables of a memory context that transforms one
object expression into another that is equivalent mod-
ulo a set of constraints, or proves that no such bijec-
tion exists. Mindless application of these algorithms
of course results in combinatorial explosion. An in-
teresting open problem is to find strategies that are
reasonably efficient for a useful class of queries and
to incorporate this into a system for reasoning about
programs.

Work is in progress to extend the formal system
to a full higher-order Scheme-like language (with un-
typed lambda abstraction). Felleisen [2, 3] gives an
equational calculus for reasoning about Scheme-like
programs but such calculi do not deal adequately
with conditional equivalence. The success of our ap-
proach in the first-order case depended on being able
to define a semantics for conditional equivalence. In
this case there is a natural model-theoretic equiva-
lence (strong isomorphism) such that equivalence in
all models 1s the same as operational equivalence.
The existence of such a model-theoretic equivalence in
the higher-order case remains an open question. The
naive extension of the notion of strong isomorphism
to the higher-order case does not work. Also opera-
tional equivalence in the first-order fragment does not
imply equivalence in the higher-order language since
non-atoms are no longer necessarily cells. Thus some
refinement of the rules will be required.

Page 9



A cknowledgements

We would like to thank the

following people for carefully reading earlier versions

of this paper, and pointing out numerous mistakes
and confusions: Louis Galbiati, Matthias Felleisen,
Furio Honsell, and Elizabeth Wolf.

References

(1]

2]

(3]

(4]

[5]

[7]

[8]

Boehm, H.-J. Side effects and aliasing can have
simple axiomatic descriptions, ACM TOPLAS,
7(4), pp. 637-655. 1985.

Felleisen, M. The calculi of lambda-v-cs con-
version: A syntactic theory of control and state
in imperative higher-order programming lan-
guages, Ph.D. thesis, Indiana University. 1987

Felleisen, M. A-v-CS: An extended A-calculus
for Scheme, Proceedings of the 1988 ACM con-

ference on Lisp and functional programming, pp.

72-85. 1988.

Jgrring, U. and Scherlis, W. L.. Deriving and us-
ing destructive data types, IFIP TC2 working
conference on program specification and trans-

formation, (North-Holland). 1986.

Mason, I. A. Equivalence of first order Lisp
programs: proving properties of destructive pro-
grams via transformation, Symposium on logic
in computer science, (IEEE), pp. 105-117. 1986.

Mason, I. A. The semantics of destructive Lisp,
CSLI Lecture Notes No. 5, Center for the Study
of Language and Information, Stanford Univer-

sity. 1986.

Mason, I. A. Verification of programs which de-
structively alter data, Science of Computer Pro-
graming, 10, pp. 177-210. 1988.

Mason, I. A. and Talcott, C. L. Memories of S-
expressions: Proving properties of Lisp-like pro-
grams that destructively alter memory, Depart-
ment of Computer Science Report No. STAN-
(CS-85-1057, Stanford University, 1985.

Mason, I. A. and Talcott, C. .. Programming,
Transforming, and Proving with function ab-
stractions and memories. Proceedings of the 16th
EATCS Colloquium on Automata, Languages
and Programming. Stresa. 1989.

Mason, I. A. and Talcott, C. L. A Sound and
Complete Axiomatization of Operational Equiv-
alence between Programs with Memory. Depart-
ment of Computer Science Report No. STAN-
(0S-89-7777, Stanford University, 1989.

[11]

[12]

[13]

[14]

[15]

Morris, J. H. Lambda calculus models of
programming languages, Ph.D. thesis, Mas-
sachusetts Institute of Technology, 1968

Mosses, P. A basic abstract semantic algebra, in:
Semantics of data types, international sympo-
stum, Sophia-Antipolis, June 1984, proceedings,
edited by G. Kahn, D. B. MacQueen, and G.
Plotkin, Lecture notes in computer science, no.

173 (Springer, Berlin) pp. 87-108.

Nelson, C. G. and Oppen, D. C. Fast decision
procedures based on congruence closure, Com-
puter Science Department Report STAN-CS-
77-647, Stanford University, 1977.

Oppen, D. C. Reasoning about recursively de-
fined data structures, Computer Science Depart-
ment Report STAN-CS-78-678, Stanford Uni-
versity, 1978.

Plotkin, G. Call-by-name, call-by-value and the
lambda calculus, Theoretical Computer Science,

1, pp. 125-159, 1975.

Page 10



