Inferring the Equivalence of Functional Programs
that Mutate Data

lan Mason Carolyn Talcott
Stanford University Stanford University
IAM@QCS.STANFORD .EDU CLT@SAIL.STANFORD.EDU

1. Introduction

In this paper we study the constrained equivalence of programs with effects. In
particular, we present a formal system for deriving such equivalences. Constrained
equivalence 1s defined via a model theoretic characterization of operational, or ob-
servational, equivalence called strong isomorphism. Operational equivalence, as
introduced by Morris [23] and Plotkin [27], treats programs as black boxes. Two
expressions are operationally equivalent if they are indistinguishable in all pro-
gram contexts. This equivalence is the basis for soundness results for program
calculi and program transformation theories. Strong isomorphism, as introduced
by Mason [14], also treats programs as black boxes. Two expressions are strongly
isomorphic if in all memory states they return the same value, and have the same
effect on memory (modulo the production of garbage). Strong isomorphism implies
operational equivalence. The converse is true for first-order languages; it is false
for full higher-order languages. However, even in the higher-order case, it remains
an useful tool for establishing equivalence. Since strong isomorphism is defined
by quantifying over memory states, rather than program contexts, it is a simple
matter to restrict this equivalence to those memory states which satisfy a set of
constraints. Tt is for this reason that strong isomorphism is a useful relation, even
in the higher-order case.

The formal system we present defines a single-conclusion consequence relation
¥ F & where X is a finite set of constraints and & is an assertion. The semantics
of the formal system is given by a semantic consequence relation, ¥ |= ®, defined
in terms of a class of memory models for assertions and constraints.

The assertions we consider are of the following two forms: (i) e fails to return
a value, written 1 e; (ii) eg and ey are strongly isomorphic, written eg ~ eq. In this
paper we focus on the first-order fragment of a Scheme- or Lisp-like language, with
data operations cell, eq, car, cdr, cons, setcar, setcdr, and control primitives let and
if, and the recursive definition of function symbols.

A constraint set is a finite subset of atomic and negated atomic formulas in
the first-order language consisting of equality, the unary function symbols car and
cdr, the unary relation cell, and constants from the set of atoms, A. Constraints
have the natural first-order interpretation.

To illustrate the use of the formal system, we give three non-trivial examples
of constrained equivalence assertions of well known list-processing programs. We

also establish several metatheoretic properties of constrained equivalence and the
formal system. The main results concerning the formal system are:

Theorem (Soundness): The deduction system is sound: ¥ F & = ¥ = &.

Theorem (Completeness): The deduction system is complete for ® not con-
taining recursively defined function symbols: ¥ =& = X + ®.

We also establish results relating the various notions of equivalence. Since
both operational equivalence and strong isomorphism can be defined by quantifying
over certain sets of contexts, it is of interest to compare these relations for various
fragments of a full higher-order language. In this paper the two fragments of interest
are the first-order fragment and the zero-order fragment (the subset of the first
order fragment not containing recursively defined function symbols). In each of
these fragments strong isomorphism (~,, , ~¢,) and operational equivalence (=, ,
24,) coincide. Furthermore, equivalence in one fragment coincides with equivalence
in the other.

Theorem (Fragments):

€q g1"0 €1 i=4 €n gzo €1

o o

€0 ~fo €1 i=4 €0 Mo €1

An early effort in the direction of equational theories for proving correctness
of higher-order imperative programs is Demers and Donahue [6]. They present an
equational proof system for deriving assertions about programs in the language
Russell, an extension of the higher-order typed lambda calculus with cells and
destructive cell operations. Their work is motivated by a desire to clarify the
meaning of program constructs via an equational theory rather than an operational
or denotational semantics. They consider one binary and three unary relations in
their system. The unary relations express the legality, well-formedness and purity
of expressions, while the binary relation represents a form of program equivalence.
The simultaneous deduction of legality, well-formedness, purity and equivalence
makes the rules very complex. No formal semantics for the proof system is given,
and there are no formal results on the equational theory or its relationship to
the original lambda calculus. Boehm [3] defines a first-order theory for reasoning
about programs in the language Russell. Program constructs are defined by two
classes of axioms. The first group concerns the nature of the value returned. The
second group describes the effect on memory. Some relative completeness results
are given, but no decidable fragments are considered. The underlying model theory
is complex and rather cumbersome. The semantics of a full first-order Lisp-like
language was studied in Mason [14, 13]. Here the model-theoretic equivalence
strong isomorphism (~) was introduced and used as the basis for studying program
equivalence. Many examples of proving program equivalence can be found in Mason
and Talcott [16, 14, 15, 18, 21, 20]. Felleisen [7] and Felleisen and Hieb [9] develop
a calculus for reasoning about programs with memory, function abstractions and
control abstractions. Mason and Talcott [17, 19] develop the theory of operational

equivalence for programs with memory and function abstractions. More complete
surveys of reasoning about programs with memory can be found in Mason [14, 13,

15] and Felleisen [7, §]

The remainder of this paper is organized as follows. In §2. we define our first-
order language, its operational semantics, the class of memory models, and the
corresponding semantic consequence relations. In §3. we present the axioms and
rules of the formal system and derive some simple consequences. In §4. we extend
the formal system by adding an induction principle. This addition is necessary
in order to prove properties of recursively defined functions. Three non-trivial
examples of its use are provided. In §5. we prove the soundness theorem. §6. is
devoted to the proof of the completeness theorem. To do this we develop a syntactic
representation of the operational semantics which is also useful for reasoning about
programs in general. In §7. we relate the notions of operational equivalence and
strong isomorphism in the first-order and zero-order fragments and their extension
to include higher-order objects. In particular we present results that essentially
characterize the difference between operational equivalence and strong isomorphism
in the presence of higher-order objects. In §8. we present our conclusions and
describe future directions of research.

We conclude this section with a summary of notational conventions. We use
the usual notation for set membership and function application. Let Y, Yy, Y7 be
sets. Y™ is the set of sequences of elements of Y of length n. Y* is the set of finite
sequences of elements of Y. y = [y1,...,yn] is the sequence of length n with ith
element y;. P, (Y) is the set of finite subsets of Y. [Yo — Yi] is the set of total
functions, f, with domain Y, and range contained in Y;. We write Dom(f) for the
domain of a function and Rng(f) for its range. For any function f, f{y := ¢} is
the function f’ such that Dom(f’) = Dom(f)U{y}, f'(y) = ¥, and f'(z) = f(z) for
z#y,z € Dom(f). N={0,1,2,...} is the set of natural numbers and 4, j, n, ng, ...
range over .

2. The Operational Semantics

In existing applicative languages there are two mechanisms for, or approaches
to, introducing objects with memory. We shall call these the imperative and func-
tional approaches. In the imperative approach the semantics of lambda application
is modified. Lambda variables are bound to unary memory cells. Variable cells are
not first class citizens, and can not be explicitly manipulated. Reference to a vari-
able returns the contents of the cell, and there is an assignment operation (:=, setq,
or set!) for updating the contents of the cell bound to a variable. In the functional
approach cells are added as a data type, and operations are provided for creating
cells, for accessing, and for modifying their contents. Reference to the contents of
a cell must be made explicit. In the imperative approach one can no longer use
beta-conversion to reason about program equivalence. Beta-conversion is not even
meaningful in general, as variables that can be assigned cannot simply be replaced
by values. For example the program (Az.seq(setq(z,1),x))2 evaluates to 1. The

4

result of replacing all occurrences of z is an illegal program, while replacing only
the final z alters the meaning of the program. Also, a variable x represents a value
only if it is not assigned. Thus, whether or not (Az.e)z is equivalent to e depends on
the context in which it occurs. To have a reasonable calculus one needs two sorts of
variables: assignable and non-assignable. In the functional approach the semantics
of lambda application is preserved, and beta-value conversion remains a valid law
for reasoning about programs. The imperative approach provides a natural syntax
since normally one wants to refer to the contents of a cell and not the cell itself.
However, the loss of the beta rule poses a serious problem for reasoning about pro-
grams. This approach also violates the principle of separating the mechanism for
binding from that of memory allocation (cf. Mosses [24]). Lisp and Scheme adopt
both the imperative and the functional mechanisms for introducing memory. ML
adopts only the functional mechanism. Following the Scheme tradition, Felleisen [7,
9] takes the imperative approach to introducing objects with memory. In order to
obtain a reasonable calculus of programs, the programming language is extended
to provide two sorts of lambda binding and an explicit dereferencing construct.
In order prove several basic equivalences it is necessary to extend the calculus by
meta principles (cf. the safety rule [7] thm 5.27, p.149). A key problem in devel-
oping such calculi is the trade-off between having a calculus rich enough to prove
desired equivalences and having a calculus with nice theoretical properties such as

Church-Rosser.

We take the functional approach to introducing objects with memory, adding
primitive operations that create, access, and modify memory cells to the call-by-
value lambda calculus. In the absence of higher-order objects, or structured data
(tuples, records, ...) memories with cells that contain only a single value are not
adequate for representing general list structures. In the higher-order case we could
work with simple unary cell memories. Since we are working in the first-order case,
we treat memories with binary cells. An alternative is to introduce structured data
in the first-order case. We foresee no problem with doing this and plan to explore
this approach in the future. Our work-to-date has focused attention on the memory
aspects of computation.

2.1. The language

We fix a countably infinite set of atoms, A with two distinct elements play-
ing the role of booleans, T for true and Nil for false. We also fix a countable
set, X, of variables and for each n € N a countable set, F,,, of n-ary function
symbols. We assume the sets A, X, and F,, for n € N, are pairwise disjoint.
We let F,, denote the set of n-ary memory operations. The unary memory op-
erations are Fy = {cell, car, cdr}, and the binary memory operations are Fy =
{eq, cons, setcar, setcdr}. Welet I, abbreviate F,,UF,,, and [F abbreviates [J,, oy

Definition (U E): The set of value expressions, U, is defined to be XU A. The
set of expressions, E, is defined to be the least set containing U such that if z € X
n €N, e € Eforj<mn, and | € F,, then let{x := eg}e;, if(eq,e1,e2), and
fle1,...,en) are in .

This standard inductive definition is expressed more compactly by the following
system of equations.

U=XUA

E=TUU1let{X:=E}E Uif(EEE) U | | F,(E")
neN

We will use this equational form of defining domains in the remainder of this pa-
per. We also adopt the following notational conventions. a,ag,... range over A,
x,xo,Y, 2, ... range over X, u, ug, ... range over U, and e, eg, ... range over [E. The
variable of a let is bound in the second expression, and the usual conventions con-
cerning alpha conversion apply. We write FV (e) for the set of free variables of e. We
write e{z := ¢’} to denote the expression obtained from e by replacing all free oc-
currences of z by €/, avoiding the capture of free variables in e’. seq(e) abbreviates
e, while seq(eq, ..., e,) abbreviates if(eg, seq(ey, ..., e,), seq(er, ..., e,)).

N.B. Throughout the remainder of this paper ¥ will range over {car, cdr}, and
setd will range over {setcar, setcdr}.

Definition (D): The set of (recursive function-) definition sets D is set of
finite sequences of definitions of the form <f(x1,..., z,) < > where f is an n-ary
function symbol.

D = (| J<Fa(X") « B>)*
n€EN

Let § € D be a definition set. The defined functions of § are those f € F for which
there is a definition <f(2y,...,2,) ¢ e> occurring in J, for some z1, ..., z,, and e.
The variables (z1,...,2,) are called the formal parameters of the definition, and
e is called the body. A definition set, §, is well-formed if no function symbol is
defined more than once, for each <f(z1,...,2,) < e>in §, the variables 2y, ..., 2,
are distinct, FV(e) C {z1,...,2,}, and the function symbols occurring in e are
among the defined functions of §. We shall assume that definition sets are well-
formed unless otherwise stated. Within a single definition the formal parameters
are bound in the body, and we may freely rename them (subject to maintaining

well-formedness).

2.2. Operational semantics

Expressions describe computations over S-expression memories — finite maps
from (names of) cells to pairs of values, where a value is an atom or a cell. We call
the value of a cell in a memory its contents. The memory operations are interpreted
relative to a given memory as follows: cell is the characteristic function of the cells,
using the booleans T and Nil; eq tests whether two values are identical; cons takes
two arguments, creates a new cell (extending the memory domain) whose contents
is the pair of arguments, and returns the newly created cell; car and edr return
the first and second components of a cell; setcar and setedr destructively alter

an already existing cell. Given two arguments, the first of which must be a cell,
setcar updates the given memory so that the first component of the contents of
its first argument becomes its second argument. setcdr similarly alters the second
component. Thus memories can be constructed in which one or both components
of a cell can refer to the cell itself.

To define the operational semantics we fix a countable set of (names of) cells,
C, disjoint from A X, and F. V = A U C is the collection of storable memory
values. The set of memories, V], consists of finite maps from cells to pairs of values.
Cells which appear in the range of a memory are assumed to lie in its domain. For
each n € N we also define the collection of n-ary memory objects, O(*) C V" x M,
(elements of O™ are called memory objects, or simply objects, and we omit the
superscript). The cells in the n-tuple component of a memory object must lie in
the domain of its memory component. Thus a memory object consists of a memory
together with a sequence of values which ezist in that memory. The interpretation
of the memory operations will be given in terms of their action on memory objects.
The set of environments or bindings, B, is the collection of finite functions from
X to V. The set of descriptions of computations,), is a subset of E x B x ML
In a description the free variables of the expression must lie in the domain of the
environment, and cells in the range of the environment must lie in the domain of
the memory. A description whose expression component is a value expression is
called a value description. This is all summed up in the following definition.

Definition (Semantic Domains):

Values: V=AuC

Memories: M = {p€[Z = (ZUA)?] | Z e P,(C)}
Objects: 0" = {o;pu | p € M, v € (Dom(p) UA)"}
Bindings: B={B€[X>V]|XeP,X)}

Descriptions: 1 = {e; 8;p | FV(e) C Dom(8), Rng(3) C Dom(u) U A, u € M}

We let ¢,cq,... range over C, v,vo,... range over V, pu, pg,... range over M|
v i, Vo; fo, - . . range over O, B, Bo, ... range over B, and e; 3; y, eo; Bo; fo, - . . range
over . We use “” as an infix tupling construct in some notations, for example

objects and descriptions, since some components of these tuples are also collections
(sets or tuples), and we wish to emphasize the outer level tuple structure. We ex-
tend environments to value expressions by adopting the convention that f(a) = a
when a € A.

The operational semantics of expressions relative to a definition set, J, is given
by a reduction relation, v, on descriptions. It is generated in the following manner.
> is the reflexive transitive closure of the single-step relation, —, which is defined
in terms of reductions of redexes and reduction contexts. The single-step reduction
relation is a subset of (Dx D), as is . The action of the memory operations is given
by the primitive reduction relation, £, which is a subset of Unen(Fn(07) x O).

7

Finally, the evaluation relation, —, is a subset of (ID x @). The evaluation relation
is the composition of the reduction relation with the operation of converting value
descriptions (u; §; 1) into memory objects (3(u); u). Officially, all of these relations
should be parameterized by the definition set d. Since we need only refer to a single
arbitrary definition set, we will not make this parameter explicit.

Computation is a process of applying reductions to descriptions. The reduction
to apply is determined by the unique decomposition of a non-value expression into
a reduction contezt filled by a redez.

Definition (Fygx): The set of redexes, Frax, is defined as

Frax = if(U, K F) Ulet{X := U}YREU | | F, (U")
neN

Definition (°E): The set of contexts, I, is defined inductively using the special
symbol ¢ for holes:

‘E={e} UXUAULet{X = ‘EFEUif(E,E, “E) U |] Fa(
neN

Definition (R): The set of reduction contexts, R, is the subset of *|E defined by

R={c}Ulet{X :=RIEUif(R,EE) U] Fapms1(U",R,E")
n,meEN

Welet C, C’ range over °|E and R range over R. C[e] denotes the result of replacing
any holes in C' by e. Free variables of e may become bound in this process. We
often adopt the usual convention that []| denotes a hole.

Lemma (Decomposition): If e € E then either ¢ € U or e can be written
uniquely as R[e’] where R is a reduction context and e’ € Fpay.

Proof : By induction on the complexity of e. When e € U the result is im-
mediate. If e = if(eq, €1, €2), then there are two possibilities. If eq € U, then let
R = ¢ and ¢/ = e. Otherwise by the induction hypothesis eg = Rg[e’] uniquely.
Let R = if(Ryo,e1, e2). The remaining cases are similar. O

Definition (—): The single-step reduction relation — on D is defined by

(beta-value) R[1et{z := u}el; fs > Rel; Bz == f(w)}ipt o & Dom()

(f Rlst(u e eallipies { fle s 70 20
(delta) R[f(u1, .-, un)]; Bs po= Rlz]; B{z =o'}
if o ¢ Dom(8), | € Fa, and {([B(ur), ., Blun)]s) 2 v's i
(rec) R[f(ur, ..o un)]; Bs p= Rle]; B{zr = B(ur), ... 20 = Blun) }; p

if z1,...,2, € Dom(B3) and <f(z1,...,z,) + €>in

The side condition in (beta-value) is to prevent free s in R[| from being trapped.

The primitive reduction relation, 3,, in (delta) is defined according to the
nature of f € F,,.

Definition (ﬁz): The primitive reduction relation f([vo, ..., vn_1];) 2o p s
the least relation satisfying the following conditions.

cell(v;) - {ITV;li,u gtﬁefw(?se

car(c; p) 2 vo; p ¢ € Dom(p) and p(c) = [vo, v1]

cdr(c; p) & vi; p ¢ € Dom(p) and p(c) = [vo, v1]

eq([vo, vilip) - { Wt otherin

cons([vo, v1];) = ¢; pic := [vo, v1]} for any ¢ such that ¢ ¢ Dom(u)
setcar([e, v]; p) 2 ¢; pfe == [v,v1]} ¢ € Dom(p) and p(c) = [vo, v1]

setedr([e, v]; p) L e; pie = [vo, v]} ¢ € Dom(p) and p(c) = [vo, v1]

Although formally cons is multi-valued, the values differ only by renaming of
cells and generally we will not distinguish them. Defining cons as a relation rather
than a function which makes an arbitrary choice is the semantic analog of alpha
conversion, and greatly simplifies many definitions and proofs.

Definition (—): A description e;8;p € D evaluates to the object v;u’ € O,
written e; 3; u — v; ¢, if it reduces to a value description denoting that object.

e;Bip—vip' & (Fufip) (e Bips w Bip A B (u) = v)

As for primitive reductions, single-step reduction and evaluation are single-valued
relations modulo renaming of cells.

Definition (| 1): We write | e; 8; 1 just if e; 3; i returns a value (evaluates to
some object), and 1 e; B; p if e; 3; p fails to return a value.

be;Bip & (Fusp' € 0)(e; fip — vip')
Te;Bip & (e Bip)

There are two ways for a description to fail to return a value: reduction terminating
in an attempt to access or update the contents of a non-cell, and infinite reduction.
The first case corresponds to an error, and is the only case which occurs in the
absence of recursively defined functions. The treatment of errors and their relation
to program equivalence is an important and non-trivial problem. We have chosen
to consider errors as failure to produce a value in order to focus on properties of
sharing and assignment.

2.3. Operational equivalence

We define operational equivalence following Plotkin [27]. For brevity, we iden-
tify a closed expression with the description consisting of it, the empty environment,
and the empty memory. Thus te abbreviates 1e; 0; (.

Definition (22): Two expressions are said to be operationally equivalent, written
eo = ey, if and only if for any closing context C' (i.e. one for which FV(C[eg]) =
= FV(C[e1])) Cleo] and C[e1] either both return a value or both fail to return

a value.

(YC €°F | FV(Cleo]) = FV(CLea]) = (A 1 CLe]) v (A 4 CLes)))

1<2 1<2

By definition operational equivalence is a congruence relation on expressions. Not
all pairs of expressions are operationally equivalent. In particular, T and Nil are
not operationally equivalent. It is important to note that being equivalent to a
value is a much stronger condition than just returning a value. The usual charac-
terization of operational equivalence in the presence of basic data is the following.
Define two closed expressions to be trivially equivalent if both fail to return values,
or both return the same atom or both return cells. Then two expressions are oper-
ationally equivalent just if they are trivially equivalent in all closing contexts. Both
definitions are equivalent in this setting since equality on basic data is computable.
These observations are summarized in the following lemma.

Lemma (opeq):

I e e = (VO €“E)(Clea] 2 Clar])

2. —(T 2 Nil)

3. le does not imply that (Ju)(u = ¢).

4 0= & (VCEE | FV(Cleol) = FV(Car]) = 0)(Clec] 2° Cleal), where

~0

for closed expressions ef, €| ef =" €} iff
(/\ 1)
i<2
or
(va;uo,vl;ul)((/\ e; — vis i) A ((vo = v1 A vo,v1 € A) V (v, v1 € 0)))
i<2
Proof :
(1) Note that for any C', if C' is any closing context for C[e;], j € 2, then C'[C]

is a closing context for e; for j € 2.
(2) The context if(e, car(T), T) will distinguish T and Nil.

(3) For example cons(z,y), if(cell(x), setcar(z,y), x), and if(cell(x), car(z), x)
always return values, but none are operationally equivalent to a value.

10

(4) The if direction is trivial. For the other direction suppose (A; 5 Cle;] —
v py). If vg,v1 € A and vy # vy, then the context if(eq(vo,C), car(T), T) will
distinguish the expressions. Similarly, if v € A and vy € C then the context
if(cell(C), T, car(T)) will distinguish the expressions.

O

The impact of (opeq.3) is that in the case of programs with memory, returning
a value is not an appropriate characterization of definedness. This is in contrast to
the purely functional case and is due to the presence of effects.

It 1s not necessarily the case that instantiation of a variable by an value-
returning-expression preserves equivalence. In other words it is not the case that | e
and eg = ey implieseg{z := e} = e1{z := e} for arbitrary variable 2 and expressions
e, eg, e1. As a counter-example we have eq(z, 2) 2 T but eg(cons(T, T), cons(T,T)) =
Nil.

2.4. Strong Isomorphism and Constrained Equivalence

We now define strong isomorphism and constrained equivalence. The latter
is achieved by defining what it means for a model, or memory state, to satisfy an
assertion or a constraint set. The semantic consequence relation between constraint
sets and assertions is defined naturally in terms of these satisfaction relations.

Definition (model): A model is an environment-memory pair such that cells in
the range of the environment are in the domain of the memory. We let 3; i, Go; po,
...range over models.

Definition (~): Two descriptions with the same model are strongly isomorphic,
written eg; 0; p ~ ey; B; i, if both diverge or both evaluate to the same object up to
production of cells not accessible from either the value or the domain of the original
model:

L. tey; By and teg; B p, or

2. (Bvip' €0 | Dom(p) C Dom(u))(AicaGpi | 1 C ps)(eis B5 p — vi i)

The relation between strong isomorphism and operational equivalence is given
by the following theorem, proved in §7.

Theorem (Strong Isomorphism): 1If ¢g,e1 € E, then e = ¢7 if and only if
for every ; u such that FV(eg, e1) C Dom(/3) we have that eg; 5; u ~ e1; 8; po.

By defining the assertion language I. = (E ~ E) U (1E), we can consider the
strong isomorphism relation on descriptions as a notion of satisfaction, f=y,.

Definition (I.):

L= (E~TF)U({F)

11

Definition (}=1,): The notion of a model satisfying an assertion, §; pu =5 @, is
defined for FV(®) C Dom(g) by

Te B if®=rte
; ¢ & .
Biw {eo;ﬁ;p:el;ﬁ;p if ® =ey~e.

We let @, ... range over L.

The set of constraints, £, is a subset of the atomic and negated atomic formulas
in the first-order language consisting of equality, the unary function symbols car
and cdr, the unary relation cell, and constants from A.

Definition (£):
L= (car(U)=T) U (edr(U) = T)U (U =TU)U—(U=T)U (cell(U)) U =(cell(U))

We let ¢, ... range over £, and 3, Xg, A, ... range over P, (L).

The notion of a model satisfying a set of constraints 3; u =, ¥ is simply first-
order satisfaction adapted to the memory structure framework. For any memory y
we define the corresponding first-order structure M, by

M, = <Dom(p) U A, car, cdr,, cell>

where Dom(u) U A is the domain of M, car,, cdr, are treated as binary relations
(they correspond to the obvious partial functions with domain Dom(y)), and cell
is the unary relation corresponding to the set Dom(u).

Definition (¥9,): If p is a memory, then the binary relation, ¥, C Dom(u) x V,
is defined by

cary(c) = v & (') (p(c) = [v,v]) and cdry(c) =v & (') (u(c) = [v',v])

For § € B, ¢ € L such that FV(¢) C Dom(F) and Rng(3) C Dom(u) U A
we write M, = ¢ [F] for the usual first-order satisfaction relation, where ¢ [§] is
the interpretation of ¢ relative to the environment 3, thought of as a Tarskian
assignment. Thus

Bz) € A if ¢ is =cell(2)
B(z) € Dom(pu) if ¢ is cell(z)

My Eelfl & Bluo) =P(ur) if pisug=uy
Bluo) # /7’(“1% if ¢ is —(up = uy)

u) ifpisd(x)=u

Definition (=): By p g X if there is a §/ D § with FV(X) C Dom(3') and
Rng(#') C A UDom(u) such that M, | ¢ [F'] for every ¢ € X.

Definition (X = ®): The semantic consequence relation ¥ |= @ is defined by

SE® & (You | FV(®) CDom(B))(Bip Er B = fip 1, ®).

12

A constraint set X is consistent just if 3; y =2 X for some model 3; .

In order to make the consequences of the above definition of satisfaction ex-
plicit, we state the following definitions and results, freely using standard notions
such as first-order satisfaction, |=. Context will always disambiguate the overload-
ing of the symbol |=. We do not distinguish between an element of A and the
constant that denotes it. In particular we let A = <A cell, a>,¢ca, and define the
diagram of U as in Chang and Keisler [5].

Definition (Diag(?()): The diagram of the set of atoms, Diag(2l), is defined by
Diag(A) = {-cell(a),~(a=a') | a,a’ € A,a #a'}

Definition (¥™): The memory structure theory, 3™, corresponding to a set of
constraints, X, 1s defined by

yym=xu Dlag(ﬁ) U Ecell
Teen = {cell(z) | (Fu € U)((car(z) =u) €T V (cdr(z) = u) € X)}

Definition (7): For each constraint, ¢ € £, there is a corresponding assertion,
T(p) € L, defined by
d(r) ~u if pisd(z) =u
eq(uo,u1) =T if pisug = uy
T(p) = < eq(ug,uy) ~Nil if ¢ is =(ug = uy)
cell(z) ~ T if ¢ is cell(z)

cell(z) ~ Nil if ¢ is ﬂcell(.a:_).

The following theorem is used in the completeness proof, in particular (lemma
0).

Theorem (Sat): For ¢ € L we have 7" |E ¢ & X ET(p).

Proof (Sat):

(<) Assume that =(X™ = ¢). Hence there exists a model
B =<B, car®, cdr®, cell®>

and an assignment 3 such that B | (¥™ U {-¢})[8]. Now since Diag(%) C T
we may assume that B = <By U A, car®, cdr®, cell®> and that 3 is the identity
on A. Furthermore, since A is infinite and X is finite, we may also assume that
cell® = By. Notice that we may alter the values of car® and cdr® on By — {6(x) |
r € FV(X2 U {¢})} without effecting the satisfaction of ¥™. Thus we may assume
that By C {f(z) | x € FV(X U {¢})}. Consequently define z® to be the memory
with domain Bq defined by pu®(b) = [car®(b), cdr%(b)]. Then it is easily checked
that 3; u® = ¥ and =(8; 4™ . T(p).

(=) Suppose that =(X = T(¢)). Then there exits a model #; 4 with Dom(g) D
FV(ZU{p}) such that g;p = X and =(8; p =1, T'(¢)). Now put B = <Dom(u) U
A, car?, cdr;, Dom(p)> where 97 (z) = ¥, (z) when z € Dom(u), and Nil otherwise.
Then, since M, = X[F] we have that B |= 3[F], and by construction B = T [F].
Also since —(f8; 4 =1, T(p)), we know that B | —¢[F]. Thus =(X™ | ¢). Osat

13
3. The Formal System

In this section we present the rules of our formal system. To state the rules,
as well as the side conditions on them, we make the following definitions.

Definition (C[®]): The result of pushing a context C' through an assertion ®
is defined by

_ [1Ce] if ® =te
C[[¢ﬂ = {C[[Eo]] ~ C’[[el]] P =ey~e.

Definition (Cells(X)): Cells(X) is the subset of FV(X) defined by
Cells(X) = {z € FV(X) | X [cell(2)}.

If 2 € Cells(X), then « must be interpreted as a cell.

Given a variable z and a constraint set ¥ there are two distinct ways of adding
information concerning the contents of (the cell associated with) . The first is
simply to add an assertion of the type #(z) = u. The second is to add an assertion
of the form x = y, where y is a variable whose contents are already specified by
Y. To prevent this latter form of adding information, we introduce the notion of
a variable z being ¥-less in X. It is used to express the side conditions in the
introduction and elimination rules for setd.

Definition (J-less): z is ¥-less in X just if =(3u € U)(X E J(z) = u) and
(Vy e X)((W(y)=v) € = T = ~(z =y)).

If z is ¥-less in X, then the only way to consistently add information concerning
J(x) is by adding an assertion of the form #(z) = u. Furthermore, if # is ¥-less in
Y, then we can add ¥(z) = u to ¥ without changing equality consequences of X.
This is summed up in the following lemma.

Lemma (9-lessness): Suppose z € Cells(X) is J-less in 3. Then
0. X is consistent.

1. (Yu e U) (2 U {d(z) = u} is consistent).

2. BU{d(z)=u} Eug=u)iff (T | up = uy).

The following theorem justifies our liberal use of the first order satisfaction
relation.

Theorem (Decidability): IfX € P, (L) and ¢ € £, then it is decidable whether
or not ¥ U Diag(2) = .

Proof: This result follows from the fact that the quantifier-free theory of equal-
ity and uninterpreted function symbols is decidable, a result first proved by Acker-
mann [1]. Note that (EUDiag(?) = ¢) < (EUD = ¢), where D is the restriction
of Diag(2) to the set of constants that appear in either ¥ or . This has the con-
sequence that 3 U Diag(2) = ¢ can be decided in time quadratic in the size of X,
(Nelson and Oppen [25]). O

14

3.1. The Rules

Definition (X F ®): The consequence relation, b, is the smallest relation on
P, (L) x IL that is closed under the rules given below.

Officially we should make § a parameter of the consequence relation, but, as
in the presentation of the operational semantics, we will not make this parameter
explicit. The rules are partitioned into several groups. Each group of rules is given
a label, for future reference, and members of the group are numbered. For example
(S.1) refers to the first rule in the group of structural rules (the first group below).
A rule has a (possibly empty) set of premisses and a conclusion. In the case that the
set of premisses is non-empty the rule is displayed with a horizontal bar separating
the premisses from the conclusion. A pair of rules that differ by interchanging
premiss and conclusion is presented as a single rule with a double bar.

We begin with the structural rules. (S.i) asserts the obvious connection be-
tween a constraint, ¢, and its translation into the assertion language, T'(¢). The
second structural rule, (S.ii), allows us to replace any set of constraints with a
logically equivalent set. It 1s used to put constraint sets into a form necessary for
application of another rule — for example (set.vii). It also incorporates trivial
facts concerning equality and the nature of the atoms.

Structural rules (S).

(i) ZU{p}FT(p)

.. SU{ptF @
(i) —— assuming ¥ U Diag(2) = ¢
YF

The left elimination rules, (L.i, L.ii), enable one to reason by cases, while
(L.iii) allows us to name the car and cdr of a cell.

Left elimination (L).

(i YU {cell(z)} F @ YU {-cell(z)} - @

YFO
(i) SU{-(uo=u1)} P YU{ug=ui1} - &
' YFO
SU{d(z)=2}+®

(1ii)

assuming that z € Cells(X), and z ¢ FV(®) UFV(X)

YFEo®

The fact that ~ is an equivalence relation is expressed by the rules (E.i, E.ii,
E.iii), while (eq.i) asserts that eg objects are also strongly isomorphic.

Equivalence rules (E).

Yheg~er XYher~es Ykeg~er

(111) by " €1 X €p

(1) TFeg~eg (i1)

i

YFeg~es

15
Rule concerning eg (eq).

YFoeg(x,y) ~T

(1)

Y~y

The rules (D) express our treatment of error situations as a form of failure to
return a value, i.e. as a form of divergence. Two divergent expressions are strongly
isomorphic, (D.i). An expression strongly isomorphic to a divergent expression is
itself divergent, (D.ii). The memory operations ¢ and setd diverge when their first
argument is not a cell, (D.iii, D.iv)

Divergence rules (D).

. Xk teg Y Fte . Xk teg Yhegr~e
(i Yheg~er (i) Yk te

. Xk ocell(z) ~Nil) Y F cell(z) ~ Nil

" T F19(2) Y TSt setd ()

The reduction context rules express the extent to which constrained equivalence
is a congruence. Note that all these rules are false for arbitrary contexts. In the
case of 1 assertions, (R.i) determines how this information is propagated.

Reduction context rules (R).

YFO
O S RLe]
(11) Y F Rl[if((fo, €1, 62)]] ~ if(@o, Rl[(fl]], R[[@z]])
(i) X F R[let{z :=ep}e1] ~ let{z := eg} R[e1] z € FV(R)

The first 1et rule expresses the fact that the identity applied to an expression
is equivalent to the expression itself. The second rule is simply beta-value reduction
restricted to the first-order notion of a value.

Rules concerning let (let).

(1) Tke~let{z :=c}x (il) ZFef{z :=u}~let{z:=ule

There are three rules concerning if. The first expresses a simple connection
between if and let, recall that seq(eg, e1) abbreviates if(eg, e1,€1). The second
expresses the fact that an if reduces to its else clause when its test evaluates to
Nil. The third expresses the fact that an if reduces to its then clause when the
test evaluates to a non-Nil value.

16

Rules concerning if (if).
(i) Y F Seq(eo, 61) ~ let{z :=ep}es assuming that z & FV(e1)
Y F eg(u,Nil) ~ Nil

i) T Fif(Nil,eg,e1)~e i
() (N1, 0, e1) = €1 (i) Yk if(u,eq,e1) > €o

There are three rules concerning cons. The first two assert that the time of
allocation is irrelevant to the result of a cons. The third rule is essentially an
introduction rule for cons. It expresses the fact that cons allocates a new cell with
its arguments as the cells contents.

Rules for cons (cons).
(i) Xk let{zq:= cons(T,T)}let{z; := cons(T,T)}e
~ let{z; := cons(T,T)}let{zq := cons(T,T)}e
(i1) X F seq(eq,let{x := cons(ug, ui)}er) ~ let{x := cons(ug, u1)}seq(eq, 1)
subject to the condition that = € FV(eg)

SUAF®
(“1) E |— let{l‘ = COTLS(UQ; ud)}[[é]]

A = {cell(z), car(z) = uq, cdr(z) = ug, ~(z = y) | y € ZUFV(®)—{z}}

z & (FV(X)U{ua,ud}) = Z and

There are seven rules concerning the setd operations. (set.i) asserts that two
successive setd) operations may be commuted, provided that they are altering dis-
tinct cells. (set.ii) asserts that successive modifications to the same cell is equiv-
alent to simply carrying out the second modification. (set.iii) asserts that set?
returns as its value the modified cell. (set.iv) asserts that successive setcar and
setcdr operations may always be commuted. (set.v, set.vi) assert that updating
a newly allocated cell is equivalent to allocating it with the more recent contents.
(set.vii) is an introduction and elimination rule for set¥. The side condition that
z is ¥-less in ¥ is needed to ensure, amongst other things, that the consistency of
YU {d(x) = uo} is equivalent to the consistency of T U {dJ(z) = u1 }.

Rules for setcar and setedr (set).

) Y F eg(zo, x2) ~ Nil
(i)

Y F seq(setd(zo, 21), setd(za, x3), €) ~ seq(setd(xa, x3), setd(zo, 21), €)
i) Xk seq(setd(z,y0), setd(z,y1)) ~ setd(z, y1)
i) X F seq(setd(z,y), z) ~ setd(z,y)

(
(
(iv) X F seq(setedr(z,y), setcar(w, z), e) ~ seq(setcar(w, z), setedr(z, y), €)
(v) Xt setcar(cons(z,y),x) ~ cons(z,y)

(

vi) Xk setedr(cons(z, z),y) ~ cons(z,y)

XU {19(93).: ﬂg} o
(Vii) if z € Cells(X) is Y-less
TU{d(z) = u1} F seq(setd(z, ug), [®])

17

The garbage collection rule allows for the elimination of garbage — cons cells
no longer accessible from the program text. Let T' is a context of the form
let{z := cons(T,T)}...let{z, := cons(T,T))}

seq(setcar(z1,uf), setedr(z1,ud), . .. setcar(z,, ul), setedr(z,,ul), ¢).

Garbage collection rule (G).

(i) TFETe]~e. provided {z1,...,z,} NFV(e) =0

The unfolding rule (U) corresponds to the (rec) rule for single-step reduction.
It is necessary in order to account for evaluation of recursively defined function
symbols.

Unfolding rule (U).
(1) Tk fler,...,en) ~let{zy :=e1}...let{z, := e, }e
where <f(z1,...2,) ¢ e>isin § and z; are chosen fresh.

3.2. Consequences

To illustrate the use of these rules we present some simple consequences.

Lemma (Mon): The provability relation is monotonic in the set of constraints,
if ¥ - ®, then X UX' F ®. In other words the rule (monotonicity) is derivable.

. SO
(monotonicity) —————
T TUYHD

Proof (Mon): By induction on the length of proof and cases on the last rule
applied. We consider the two most interesting cases.

(coms.iii) Assume that ¢ FV(X’) and that we have derived
Y F let{z := cons(uq, uq) }[P]

where the last rule applied is (comns.iii). Then by induction hypothesis SUL/UA’ F
® where A’ = AU{~(z = y) | y € FV(X')}. Hence by (cons.iii) we are done.
Ocons iii

(set.vii) Assume we have derived ¥ U {¥(x) = u1} seq(setd(z, ug), [?]) and
the last rule applied is (set.vii) in the forward direction. Thus z € Cells(X), « is
U-less in 3, and XU {¥(x) = uo} F ®. Using (L.ii) repeatedly, we may assume that

18

for ¥(z) = u € ¥’ we have either YUY Ez =2 or TUY | =(z = z). We first
decompose ¥/ into two sets X, and g so that z is ¥-less in XU Xy UX,. Let
Yo={u=u | (F)W(z) =ueX ASUY Ez=2)}
Yo=Y -{drz)=ueX | TUY Ez=2}

Then

YUSUE, U{d(z) =uo} F @ by induction hypothesis
TUZoUZ, U{d(z) = us} + seq(setd(z, ug), @) by (set.vii)
LU U{d(z) = ur} + seq(setd(z, ug), ®) by (S).

The proof for application of (set.vii) in the reverse direction is similar. Oget. vii
OMon
Lemma (Equality): Equals may be replaced by equals, if ¥ = oz = y and
Y F @, then ¥ F ®{x := y}. In other words the rule (equality) is derivable.
YU{z=y}+d
SU{z=y} F®{z:=y}

(equality)

Proof (Equality): By induction on the length of proof. Again we consider only
the interesting cases.

(S.) X Ez=ythen TU{p}E iz =y}
(Sdi) HYXkEepthenXTU{plErz=y o ZEz=y.

(set.vii) Note that if ZU {¥(z) = u} E ¢ = y and X is O-less for z, then
Y |« =y, and use (S.ii) in the case z € {z, y}.

DEquality

Lemma (Examples):
i) {cell(x)} F setcar(x, car(z)) ~ x
ii) Y F cdr(cons(z,y))

~y
i) X | seq(seq(en,e1),e2) ~ seq(eon, seq(er, e2))

(
(
(
(iv) Tk eq(e,y) =~ cq(y,)
(v) YFeg(z,z) =T

(vi) X F =cell(a) =T

(vil) X F eg(ag,a;) ~Nil assuming ao # a1
Tk cell(z) ~Nil T+ cell(y) ~ T

Tk oeg(z,y) ~Nil

(viii)

19

(ix) Xk let{xo := cons(ul,ul)}let{z: := cons(uf,uf)}e
~ let{z; = cons(uf,ud)}let{xq := cons(ug,ul)}e
provided {zo, 21} NFV(ud, ud ud uf) =0
(x) Yk let{y:=eg}let{r :=e1}es ~ let{z := let{y :=eplei }es if y & FV(ea)

Proof (Examples):
(i) TLet X' = {cell(z), car(x) = y}. Then by (set.ii,iii) we have

'+ seq(setcar(z, y), setcar(z,y)) ~ seq(setcar(z,y),)

and by (set.vii) we have X' - setcar(z,y) ~ z. Now, using (L,S,E,R) we obtain
Y F setcar(z, car(z)) ~ =.

(i) X F let{z := cons(z,y)}edr(z) ~ let{z := cons(z,y)}y by (8.1, cons.iii).
Thus X edr(cons(z,y)) ~ let{z := cons(z,y)}y by (R.iii,let.i). The result now
follows by (E,G) and the simple exercise showing that

let{z := cons(z,y)}y ~ let{z := cons(T, T)}seq(setcar(z, z), setedr(z,y), y).

(iii) By (R.ii) and the definition of seq.
(iv) By (L.ii,S,E).
(v,vi,vii) By (S).

(viii) To show that ¥ F eg(z,y) ~ Nil it suffices by (L.ii, S.i) to show that
Y U{zx =y} F eg(z,y) ~ Nil. By (Equality, Mon, E, S.i) and the assumptions
we have that YU {& = y} F T ~ Nil. The result now follows by (S.i, E).

(ix) This is left to the reader. A similar derivation can be found in the proof of
completeness.

(x) This is an instance of (R.iii).
DExamples

Expressions in contexts that correspond to the same memory construction are
strongly isomorphic. A simple example of this is the lemma (set absorption)

Lemma (set absorption):
(1) Flet{z := cons(x,y)}seq(setcar(z,w),e) ~ let{z := cons(w, y) }e

(2) F let{z := cons(x,y)}seq(setcdr(z,w),e) ~ let{z := cons(x,w)}e

20
Proof: We prove (2), the proof of (1) is identical.

Flet{z := cons(z,w)}e
~ let{z := let{z' := cons(z,y)}setedr(z', w)}e (set.vi,R.iii,R.i)
~ let{z' := cons(z,y)}let{z := setedr(z', w)}e (examples.x)
~ let{z' := cons(z,y)}let{z := seq(setcdr(z’,w),2’)}e (set.iii,cons.iii)
~ let{z' := cons(z,y)}seq(setcdr(z', w),let{z := z'}e) (R.iii,cons.iii)

~ let{z := cons(z,y)}seq(setcdr(z, w), €) (let.ii) and renaming z' to z
0O

3.3. Extensions

The inference system presented above is minimal by design in order to simplify
the proof of completeness. The choice of rules is not necessarily the best if we want
a basis that extends nicely. In particular a number of sound rules that are derivable
in that system are no longer derivable when new rules are added. Two such rules
are (monotonicity) and (equality). For the present we shall add these as official
rules of inference:

Monotonicity (Mon).

. YFo
O v a
YUY FO
Equality (Eq).

YU{z=y}lr+®
YU{z =y} + ®{z =y}

(i)

One difficulty with constrained equivalence is that it is not a congruence. One
cannot, in general, place expressions equivalent under some non-empty set of con-
straints into an arbitrary program context and preserve equivalence. Informally, we
say a context C' does not invalidate a set of constraints X if the following principle
is valid.

Y&
® S

There are some simple examples of this phenomena. The most trivial case is
when X is empty. An easy case is when X contains only assertions of the form
cell(z), —cell(x), x = y, or =(x = y), and C is any context that does not trap
the free variables of X.. A somewhat harder case is when ¥ any constraint set and
C' is of the form let{z := e}e where (under constraint) e has no write effect

21

(evaluation of e will not execute any setcars or setcdrs) and x is not free in X.
Work of Lucassen and Gifford, [11, 12], makes progress in this direction, but needs
to be modified if it is to apply in an untyped language. In what follows we shall
adopt the most trivial version of context introduction as a rule.

Context Introduction (CI).

) 0@
O o cra

Another approach to overcoming this difficulty is to extend the system by
adding a constraint propagation logic. Here one derives assertions of the form

So F C[=4].

The intended meaning of an assertion of the form Yo F C[X1]), is that if Xy holds
when evaluation of C[] begins, then 37 will hold at the point in the program text
where the hole appears. One consequence of the semantics of constraint propagation
is that the following context propagation rule is valid.

YoF O3] S+ @

(GP) So - C[@]

Notice that this rule is a variant of the invalid (}) principle. In particular the
necessary side condition to validate (}) is that ¥ F C'[X]. This approach is taken
in [21, 20].

4. Induction and Recursion

Although addition of the unfolding rule makes the inference system computa-
tionally adequate for the first-order case (§6. lemma 1.), it is inadequate to prove
properties of recursively defined functions. As a first step to solving this problem
we present a mechanism for introducing induction principles. In order to do this
we define the notion of a ranked set (of memory objects).

Definition (ranked set): A ranked set is a pair (P, r) where P C O is a set of
memory objects and r is a function from P to N.

For example (list, length) is a ranked set. Here list is the set of memory objects
v; p such that {z := v};pu =y, cdr™(z) ~ Nil for some n € N (where cdr®(z) is =
and cdrn+1(1:) is cdr(edr™(z))), and length is the length function. Another example
is (sexp, size) where sexp is the set of tree-like objects (no infinite car-cdr chains),
and size is the number of reachable cells.

Let (P,7) be a ranked set of memory objects. To add P, r-induction to the
inference system we first extend the language of constraints to include sets

22

Thus for each value expression v € U, P(u) is a constraint, and for each natural
number, n, (u) = n is also a constraint. The semantics of these constraints are
given by the following.

o [Gipulr P(u) just if B(u);pu € P.
o [GipulbEer(u) =njustif fu);p € P and r(B(u); p) = n.

The P, r-induction principle for constrained equivalence is the following. Let
& be a family of equations of the form eq ~ e; with distinguished free variable z.
To show {P(xz)} £ @ for each ® in £ it suffices to show that {P(z),r(z)=n} £
for each n € N, and each ® in &, assuming that {P(z),r(x) = m} = ® for m < n
and ® € £. This is made precise in the following theorem.

Theorem (P, r-induction):
(Vn e N)(Zp,(€,n)) = (VO € E)({P(z)} F @)
where Zp (&, n) abbreviates

((Vm < n)(Y0 € E)({P(x).r(x) = m} |= @)) = (V& € E)({P(),r(x) = n) |- ®)

Proof : Let P, r, £ be as above and assume

t (Yn e N)(Zpr(€ n))

We want to show that for any ® € &, and any model 3;p that g;u = P(z)
implies 8; u =, ®. Assume 3;p =, P(z). Then by definition of rank function,

B =g r(2) ~ n for some n € N. We call this the rank of 8; . By induction on
the rank of 3; u we have

(Vm < n)(¥® € E)({P(x), r(x) = m) = ®)

and by t and the definitions of = we are done. O

The reason for formulating the rule using a family equations is to overcome the
lack of quantifiers. Thus we must strengthen the induction hypothesis by making
explicit the necessary instances of the equations.

Given a particular ranked set, we can derive various sound induction rules
using (P, r-induction). For lists we proceed as follows.

Definition (A7, (z) {z = [z4,24}): For z € X and n € N we define A7, (z) to
be the set of constraints {list(z), length(z) = n}. Furthermore, if 2,, 24 € X, then
we let {z = [2,, z4]} denote the set {cell(z), car(z) = 4, cdr(z) = z4}.

We may write £(z) to emphasize the choice of distinguished variable and,
assuming that y does not occur free in £(z), we write £(y) for the result of replacing
z by y in each member of £(z). It is easy to see that the following is a sound rule.

23
List Induction Rule (LI).

{Alg (), 2 =NilF ®geemy I

where

{AL(za) F Place(my)

H =

AT (), Ay (xa) {z = [za, zal} E @ S 4
and the notation {¥ - ®}g¢g(5) denotes the set of judgements of the form X - @,
for ® a member of £(z). Within such a construct ® is bound and can thus be
renamed without changing the meaning. On the surface this is an infinitary rule.
However, in practice the family of equations £ are presented in a simple schematic

form.

In the cases where & is finitely presented, or presented as a schemata, the
induction rule (LI) can easily be encoded in, for example, the Edinburgh logical
framework [10, 2], or reformulated in the style of Boyer and Moore [4].

We give three examples of the usage of the List induction principle. They serve
to illustrate the variety of theorems provable. The proofs also provide examples of
rather different families of equations. The third example best illustrates the need
for non-trivial families of equations.

4.1. Iterative List Traversal

In this example we deal with two programs for appending lists. The first is
the traditional pure program, append, that concatenates its first argument with its
second, copying the top level list structure of its first argument in the process.

Definition (append):
append(z,y) < if(eq(x,Nil),y, cons(car(x), append(cdr(z),y)))

The problem with this definition of append is that to perform the cons in the
non-trivial case we must first compute the result of append-ing the edr of the first
argument onto the second. This is easily seen to entail that append will use up
stack proportional to the length of its first argument. The second program is an
iterative version written using setcdr. It utilizes the destructive operations in the
following way. Instead of waiting around for the result of doing the append of the
cdr of the first argument before it can do the cons, it performs the cons with a,
possibly, dummy cdr value and later on in the computation rectifies this haste. The
result is a program that need not use any stack.

24
Definition (iterative.append):

iterative.append(z, y) +

if(eq(z,Nil), y, let{w = cons(car(z), y)}seq(it.app(cdr(z), w,y), w))
it.app(z, w,y) +

if(eq(z,Nil),

Ty

let{z := cons(car(x), y)}seq(setedr(w, z), it.app(cdr(zx), z, y)))

The following result could and should be taken as verification of the correctness of
the iterative.append program, since we are reducing its behavior to that of a very
simple program.

Theorem (append): {list(z)} F iterative.append(z,y) ~ append(z,y)

Before proving (append) we prove following lemma. It demonstrates that one
can postpone setting the cdr of a newly created cell until the cell is referenced.
This 1s the key property used in the optimization of append to iterative.append.
An analogous result holds for the car. In stating the lemma we make use of our
notation for pushing a context through an assertion defined in §3.

Lemma (delaying assignment): If w & FV(e) then

Flet{w := cons(z,y)}[seq(setcdr(w,z),e,e') ~ seq(e, setedr(w, z), €')]

Proof (delaying assignment):

Flet{w := cons(z,y)}seq(setedr(w, z), e, e') ~ let{w := cons(z, z)}seq(e, ')
by (set absorption)
~ seq(e, let{w := cons(z,z)}e) by (cons.ii)
~ seq(e, let{w := cons(z,y)}seq(setcdr(w, z), €))
by (set absorption, CI)

~ let{w := cons(z,y)}seq(e, setedr(w, z), €' by (cons.ii)

O

Proof (append): We argue by cases, depending on whether 2 = Nil or =(z =
Nil).

25
(z = Nil) The result is trivially true when & = Nil since:

{x = Nil} F iterative.append(z,y)
~ if(eq(z,Nil), y, let{w = cons(car(z),y)}seq(it.app(cdr(z), w,y), w))
by (U, let.ii)

12

if (T, y, let{w := cons(car(Nil), y)}seq(it.app(cdr(Nil), w, y), w))
by (S.i, R.i)
~y by (itii, S.i)

~ append (z,y) by identical reasoning

Ohx=mi1
(=(x =Nil)) In this case we use the following two lemmas (proved below)

Lemma (A):
{z = [2q4,24]} F cons(zq, append (z4,y)) ~ append(z,y)
Lemma (B):

{list(xzq)} b cons(zq, append(z4,y)) ~ let{w := cons(z4,y)}
seq(it.app(z4, w,y), w)

Then, letting X5, = list(z), list(z4), 2 = [24, 24] We reason as follows. The first
three steps unfold and simplify the definition of iterative.append. The next two
steps evaluate car(z) and cdr(z) relative to .

Yyt b iterative.append(x, y)

~ if(eq(x,Nil), y, let{w = cons(car(z),y)}seq(it.app(cdr(z), w,y), w))
using (U, let.if) twice

~ if(Nil, y,let{w := cons(car(z),y)}seq(it.app(cdr(z), w,y), w))
by (examples.viii, S.i, R.i)

~ let{w := cons(car(z),y)}seq(it.app(cdr(z),w,y), w)) by (if.ii)

~ let{w := cons(zq,y)}seq(it.app(cdr(z), w,y), w)) by (S.i, R.i)

~ let{w := cons(z.,y)}seq(it.app(zq, w,y), w)) by (cons.iii, S.i, R.i)

~ cons(zq, append(z4,y)) by (B, monotonicity)

~ append (z,y) by (A, monotonicity)

Dﬂ(le\lil)

26

Proof (A): This is left as an exercise. Oa

Proof (B): Let

Colza] = cons(aaq, append(z4,y))
Cilza] = 1let{w := cons(z,,y)}seq(it.app(zq, w,y), w))

The proof is by List induction with induction variable z; and £ defined as follows:
&={Co[za] = Cilza] | 22 € X = {w,y}}
(Base Case) Let Yp45. = Al (24), 24 = Nil. Then

Tpase F let{w := cons(z,, y) }seq(it.app(zq, w,y), w))
~ let{w := cons(xq,y)}seq(Nil, w) by (U, let.ii, if.ii, R.i, cons.iii)
~ let{w := cons(xq,y)}w by (if.i, let.ii)
~ cons(q,y) by (let.i)

~ cons (x4, append (x4, y)) as in the z = Nil proof, (R.i)

Dbase
(Induction Step) Let X, = A’l';:'tl(:ed), AL (Tad), a = [Tad, Tad). Then

Yiise F it.app(za, w, y)
~ let{z := cons(car(zq),y)}seq(setedr(w, z), it.app(cdr(zq), 2, y))
by (U, let.ii, S.i, if.iii, examples.viii)
~ let{z := cons(xqd,y)}seq(setedr(w, z), it.app(cdr(zq), z, y), w)
by (S.i, R.i)
Now we introduce the context let{w := cons(z4, y)}seq(e, w) using (cons.iii, R.i)
and the definition of seq, and permute the conses using (examples.ix) to obtain
Tiise F let{w := cons(z,, y) }seq(it.app(zq, w, y), w)
~ let{z := cons(zqq,Y)}
let{w := cons(z4,y)}seq(setcdr(w, z), it.app(cdr(zaq), z, y), w).

Using (delaying assignment) we have

Flet{w := cons(za4,y)}seq(setedr(w, z), it.app(cdr(zq), z,y), w)
~ let{w := cons(zq,y)}seq(it.app(cdr(zq), z,y), setedr(w, z), w).

27

Using (coms.iii) and (examples.ix) we introduce let{z := cons(zaq,y)}e and
permute the conses, and using (S.i,cons.iii) we evaluate cdr(z4) to z44 obtaining
st B let{w := cons(z4,y) }seq(it.app(z4,w,y), w)
~ let{w := cons(zq,y)}
let{z := cons(xqq,y)}seq(it.app(zq4q, 2, y), setedr(w, z), w).
Rearranging and applying the induction hypothesis we have

Yiist F let{z := cons(xaq, y) }seq(it.app(xdd, z,y), setedr(w, z), w)
~ let{z := cons(2qd,y)}seq(setcdr(w, seq(it.app(xdd, z,y), z)), w)
by (R.ii)

12

seq(setedr(w, let{z := cons(zqq, y) }seq(it.app(zqq, z,Y), 2)), w)
by (R.iii)

12

seq(setedr(w, cons(xq4, append (244, y))), w)
by (R.i) and the induction hypothesis
~ let{wq := append(x4,y)}setedr(w, wq)

by (R.iii, A, R, set.iii, CI)
Finally, by (cons.iii), and permuting conses we have

Yiist F let{w = cons(za4,y)}
let{z := cons(zaq,y)}seq(setcdr(w, seq(it.app(x4d, 2, y), 2)), w)
~ let{wq := append(x4,y)}let{w := cons(zq,y)}setcdr(w, wq)
~ let{wq := append(x4,y)}cons(xq, wq) by (set absorption, CI)

~ cons (x4, append(zq,y)) by (R.iii)

Oinduction OB Ij{-xppend

4.2. Copying and Modifying

In this example we treat the relationship between three programs, copylist,
reverse, and inplace.reverse. copylist copies the top level or spine of its argument,
which is assumed to be a list.

Definition (copylist):

copylist(x) + if(eq(x,Nil), z, cons(car(x), copylist(cdr(z))))

reverse produces a new list whose elements are the same as its arguments, except
that they appear in the reverse order.

28
Definition (reverse):

reverse(z) < rev(z,Nil)

rev(z,y) if(eq(z,Nil),y, rev(edr(z), cons(car(z),y)))
wnplace.reverse also produces list whose elements are the same as its arguments,
except that they appear in the reverse order. However it constructs this list by

re—using the cells in top level or spine of its argument. Tt is called nreverse in most
dialects of Lisp.

Definition (inplace.reverse):

inplace.reverse(x) « in.rev(x,Nil)

in.rev(x,y) < if(eq(x,Nil),y, in.rev(cdr(z), setedr(z, y)))

A property of inplace.reverse is that when applied to the result of copying
the top level structure of a list it is equivalent to reverse. This is typical of the
theorems that can be proved about destructive versions of list and other structure
manipulating functions. Tt states that if we can prove that the top level structure
of the argument list is accessible only to the reverse program, then we are free to
optimize by doing an inplace reverse.

Theorem (inplace reverse):

{list(x)} F inplace.reverse(copylist(x)) ~ reverse(x)

Proof (inplace reverse): By (U) and the rules concerning let we have

{list(x)} F inplace.reverse(copylist(x)) ~ let{z := copylist }in.rev(z,Nil)
{list(x)} F reverse(x) ~ rev(x,Nil)
Thus we need only show
{list(z)} F let{z := copylist(z)}in.rev(z,y) ~ rev(z,y).
This is done by List-induction with £ is the set of equations consisting of the
equation to be proved, together with all variants obtained by replacing y by any

variable other than z.

E ={let{z := copylist(x) }in.rev(z,y) ~ rev(z,y) | ye X —{z}}

29

(Base Case) The base case is trivial. Letting Ypgse = A(l)ist(:c),x = Nil, we
have

Ypase F Let{z := copylist(x)}in.rev(z, y)
~ let{z := if(eq(x,Nil), z, cons(car(zx), copylist(cdr(x))))}in.rev(z, y)
~ let{z :=Nil, }in.rev(z,y)
~y
~ rev(z,y)
Obase

(Induction Step) Let Xy = Azzl(m), AL (24), 2 = [24,24). Firstly observe

that by the definition of copylist, the assumptions regarding z and the let rules
we have

Yiist F let{z := copylist(x)}in.rev(z, y)
~ let{z := cons(zq4, copylist(xq))}in.rev(z, y)
~ let{zy4 := copylist(z4)}Llet{z := cons(z,, z4) }in.rev(z, y)

Now unfolding and simplifying the definition of in.rev, evaluating cdr(z) and using
the laws for setcdr and seq we have

{z = 24, 24)} & in.rev(z, y)
~ in.rev(cdr(z), setedr(z,y))
~ seq(setedr(z,y), in.rev(zq, 2))
Using the above, (cons.iii), and (set absorption)
let{z := cons(xa, zd) }in.rev(z,y) ~ let{z := cons(xzq,y)}in.rev(zq, 2)
Using context introduction and cons rules we can show that:
Yiist F let{zq := copylist(xq)}1let{z := cons(xa, z4) }in.rev(z, y)
~ let{z := cons(zq,y)}let{zq := copylist(xq)}in.rev(zq, z)

Finally by the above, the induction hypothesis, (cons.iii) and the definition of rev
we have

st B let{z := copylist(z)}in.rev(z,y)
~ let{z := cons(z,,y)}let{zq := copylist(z4)}in.rev(zq4, z)
~ let{z := cons(z,,y)}rev(zy, 2)
~ rev(z,y)

Oinduction Dir

30

4.3. Copying and Delaying

This example is an instance of a class of useful theorems about delaying struc-
ture traversal (cf. [18]). The idea is that by copying a structure, applications of
functions that traverse the structure but have no effect on interior components can
be postponed until the results are needed — i.e. moved across arbitrary computa-
tions that intervene between the call and the first use of the result. We prove the
delay theorem for the case of append.

Theorem (delaying append): If z not free in eg and w is fresh, then
{list(z)} F let{z := append(z,y)}let{xo := en}er
~ let{w := copylist(x)}let{xo := ep}let{z := append(w,y)}es

Note that even though the statement of the theorem does not explicitly involve
effects, the evaluation of the arbitrary expression eq can have quite dramatic effects.

Proof (delaying append): Let

Colen, e1] = let{z := append(z, y)}let{xo := eo}e1
Cilen, e1] = Let{w := copylist(z)}1let{xo := eg}let{z := append (w, y) }e1

The proof is by List-induction taking £ to be:

&= {Coﬂ@o,@l]] ~ Cl|[60,61]] | €p, €1 € E,Z ¢ FV(E())}

(Base Case) Let Yp45. = Al (2),2 =Nil. Then

Ypase - let{z := append(z,y)}let{zo := egte; ~ let{z := y}let{zp :=eg}e;
by unfolding and simplifying the call to append
~ let{zg := ep}let{z := y}eq by (let.ii, CI)
~ let{w := x}let{xg := eg}let{z := append(w,y)}e1
by (U, S.i, Rui, let.ii, CI)
~ let{w := copylist(xz)}let{y := eg}let{z := append(w,y)}e;

by the definition of copylist and assumptions regarding =

Obase

31
(Induction Step) Again let Xy = Azzl(z), AT (xq), 2 = [xa, 24].

st F let{z := append(z,y)}let{zq := eo}ey

~ let{zq := append(zq,y)}let{z := cons(zq, z4)}1et{zo :=en}ey
by unfolding and simplifying the call to append

~ let{zq := append(zq,y)}let{zo := ep}let{z := cons(zq4, z4) }e1
by (cons.ii, CI)

~ let{wq := copylist(zq4,y)}
let{zo := ep}let{zq := append (w4, y)}let{z := cons(xa, z4) }e1
by the induction hypothesis

~ let{wq := copylist(xq4,y)}
let{zo := eg}let{z := cons(za, append(wq,y))}e1
by (R.i, let.i, CI)

~ let{wy := copylist(z4,y)}
let{zo := eg}let{z := append(cons(z,, wq),y))}e1
by the definition of append and (CI)

~ let{wq := copylist(xq4,y)}
let{zg := eg}let{w := cons (x4, wq)}let{z := append(w,y)}e;
by (let.i, R.i, CI)

~ let{wy := copylist(z4,y)}
let{w := cons(z,,wq)}let{xy = eg}let{z := append(w,y)}e;
by (cons.ii, CI)

~ let{w := copylist(z,y)}let{zq := eg}let{z := append(w,y)}e

by definition of copylist

Oinduction Oda

5. Soundness

In this section we state and prove the soundness theorem.
Theorem (Soundness): If X F ® then ¥ = ®.

Proof (Soundness): It suffices to show that each rule preserves soundness,
i.e. soundness of the premisses implies soundness of the conclusion. We restrict

32

our attention to those rules for which this result is non-trivial. The proofs for the
remaining rules are either trivial or else minor variations on the ones given.

Lemma (S): X U{¢} E T(p) for ¢ € L.

Proof (S): Suppose §; u =2 XU {¢} and without loss of generality that FV (X U
{¢}) € Dom(B). Then by definition §; u = . This together with the definition
of T is sufficient to force that g; u =1, T(p). Os

Lemma (L): Suppose that 9 € {car, cdr}, z € Cells(X), and z ¢ FV(®)UFV(X).
Then

YE®

Proof (L): Suppose that =(X | ®). Then without loss of generality we may
assume that there is a §; u such that Dom(g) = FV(X) UFV(®) with S;p g 2
and —(f; u =1, @). Since z ¢ FV(Z) UFV(®) we have that §{z :=9,(8(z))}; p Er
S U {i(z) = 2} and ~(B{z = D,(3()) }i bor, B). Thus ~(S U {9(z) = =} b= ®).
O

Lemma (cons): Suppose that ® € L,z ¢ (FV(Z) U {uq,uq}) = Z and
A = {cell(z), car(x) = uq, cdr(z) = ug, ~(x = y) | y € ZU(FV(®)—{z}}.
Then

SUAED
Y | let{x := cons(uq, uq) }[P]

Proof (cons): Suppose that FV(EZ) C 3, # ¢ Dom(f) and that ;u | T
Furthermore assume that —(8; u = let{x := cons(uq, uq)}[®]). Thus choosing
¢ € Dom(u) and letting ;1 = B{z := c}; uf{e := [B(uq), B(ua)]} we have that
-4 | ®). Consequently it suffices to show that 8';p' Ez ¥ UA. This is
routine. Oeons

Lemma (set): Suppose that ® € I,z € Cells(X) and x is cdr-less in X. Then

YU {cdr(z) =ug} P
YU {edr(z) = u1} | seq(setedr(z, ug), [P])

Proof (set): Pick 3; usuch that 5; p = 3, FV(®)UFV(X)U{z, u;} C Dom(f),
B(x) = ¢ and for i < 2 put

Y = YU {cdr(z) = us}

pi = plc:=[car,(c), Bui)]}
by =@

®; = seq(setedr(z, ug), [®]).

33

Furthermore, without loss of generality, assume that FV(X;) C Dom(F). We show
that 3; po =z Xo iff 8; 1 |E2 £1. The result then follows by observing that 8; o £
O iff 35 41 | ®4. Clearly 3; pu; = {cdr(z) = u;} since by construction cdr,,(¢) =
B(u;). Thus it suffices to show that for any ¢ € ¥, M, E ¢[f] & M., E ¢[F].
This is trivially true if ¢ is of the form cell(y), —cell(y),uo = u1,~(ug = uy) or
car(y) = u, so suppose that (edr(y) = u) € X. Since 2 is cdr-less in ¥ we have that
Y —(x = y), consequently cdr,,(B(y)) = cdry, (6(y)). Thus M, = (cdr(y) =
) 8] it My, b (cdr(y) = u) 5], Ches

Osoundness

6. Completeness

In this section we state and prove the completeness theorem.

Theorem (Completeness): X | ® implies & F @ if there are no occurrences
of function symbols f € F,, in ®.

The proof of the completeness theorem involves the symbolic evaluation of
arbitrary expressions, with respect to a suitable set of constraints, to a canonical
form. The symbolic evaluation of an expression, with respect to a set of constraints
¥, requires keeping track of three things: the newly allocated memory; the modifi-
cations to the original memory (described by X); and the remaining computation.
The remainder of a computation is simply an expression. The newly allocated
memory and the modifications to the original memory are represented by special
kinds of contexts called syntactic memory contexts, I', and modification contexts,
M, respectively. Using these contexts we define, relative to 3, a form of syntactic
reduction, ©3x. It is defined in such a way that

(e Bpe) = (The~e).

Suppose X |= eg ~ e1, and there are no occurrences of function symbols f €
F, in eq,e;. If X contains enough information concerning the nature of the free
variables of ¢;, then we can find T;; M;; el

* /
e; =y I M;;e;

P)

and either e} € {R[J(u;)], R[setv(us;, u})]}, and £ U Diag(R) = —cell(u;) or else
e; = u;. The former case corresponds to a stuck state. In the latter case the
canonical form of ¢; 1s then defined simply to be T';; M;; u;. We show that one can
use the introduction on the left rules to force ¥ to contain the necessary informa-
tion. Consequently suppose that ¥ does contain sufficient information and that
the canonical form of e; is T';; M;; u;. Then we have X + e; ~ T'y; M;; u;. Thus by
soundness ¥ = ¢; ~ T;; M;; u;. Consequently ¥ |= Tqo; Mo;ug ~ T'y; My;uy. The
completeness result then follows by showing that equivalent canonical forms are

provably equivalent.

34

To obtain additional insight, consider the semantic question of deciding for
any X and ® whether ¥ |= ®. Since all computations terminate we can decide for
any §;u such that FV(®) C Dom(3) whether 3;p = ®. The size or rank of an
assertion 1s just the maximum of the sizes or ranks of its left-hand- and right-hand-
expressions. The size or rank of an expression is just the usual notion. We say X
is complete for @ if 2 determines the structure of its models up to depth the size
of &. If FV(e) C Dom(f3), the size of e is < n, and §; o and §; u1 are the same
to depth n (agree on cells reachable from Rng(F) by paths of length < n), then
e; f3; po and e; B; 1 have the same computation sequences. Thus if ¥ is complete
for ®, then to decide ¥ = ® we need only pick some §;u such that Z;u E X
and FV(®) C Dom(3) and check whether §;u = ® (For consistent X it is easy to
find such models). Finally we note that for any ¥, ® we can find a finite set of
constraints {¥; | i < N} such that

e for i< N, X; is complete for @,
e for i < N, any model of X; is a model of 3, and
e any model of X is a model of ¥; for some (unique) i < N.

Thus ¥ E® & (Vi < N)(X; = ®) and we have seen how to decide the right hand
side of the equivalence.

The completeness proof parallels the decidability argument using syntactic
representations of memories and reduction. We begin by developing these repre-
sentations. We then present the key lemmas for the proof of completeness and the
proof itself. Finally we prove the lemmas.

6.1. Memory contexts and Modifications

Definition (Memory contexts): The syntactic analog of a memory is a mem-
ory context, I', which is a context of the form

let{z := cons(T,T)}...let{z, := cons(T,T)}

seq(setcar(z1,u?), setedr(z1,ud), ... setcar(z,, ul), setedr(z,,ul), ¢).

where z; # z; when ¢ # j. In analogy to the semantic memories, we define the
domain of T' to be Dom(T) = {z1,...,2,}. For T as above we define the functions
carp, cdrr € [Dom(T) — U] by carr(z;) = u? and edrr(z) = uf. Two memory
contexts are considered the same if they have the same domain and contents. Thus
a memory context i1s determined by its domain and selector functions. We also
define extension and updating operations on memory contexts. T'{z := [Ucar, Ucdr]}
is defined, for z ¢ Dom(T'), to be the memory context I'" such that Dom(I') =

Dom(T') U{z} and

 fouy ifzl ==z

!
ori(e) = { Jr(z') otherwise.

35

['{car(z) = u} is defined, for z € Dom(T), to be the memory context T such that
Dom(T") = Dom(T) and

e
carpi(2') = {u ifef=2z and cdrp/(2') = cdrp(2').

carp(z') otherwise

Similarly for T'{edr(z) = u}. In the case when T is empty, ' = ¢, we write {z :=
[tear, Uedr] } instead of €4z := [ucar, Uedr] }-

To express the constraints implicit in a memory context I' we define for any &
the extension of ¥ by T relative to a given set of variables X.

Definition (X¥): If X € P, (X — Dom(T)) and FV(X) N Dom(T) = §, then we
define B as follows

EX =XU Acontents) Adistinct

Acor’lter’lts = U {CGH(Z), ’0(2') = Uy | Uy = 791"(2')}
z€Dom(T")

Adgisines = |) {~(z=9) | y € FV(Z) UX U (Dom(I') — {z})}.
2€Dom(T)

The effects that the evaluation of an expression has on the original memory,
described by constraints, are represented by contexts called modifications. They
are simply sequences of assignments to variables that are not in the domain of the
memory context, but are assumed to be cells.

Definition (Modifications): A modification, M, is a context of the form
seq(sett(z1,u1),. .., set¥n(2n, upn), €)

where setd; € {setcar, setedr} and z; = z; implies i = j or setd; # setd;. We
define Dom(M) = {z1,..., 2.} and dar(2;) = u; if setd; = setd for J € {car, cdr}.
Thus Dom(Jar) = {2 € Dom(M) | setd; = setd} for ¥ € {car, cdr}.

6.2. Y-Reduction

In analogy to the semantic reduction relations we define the relations g,
—y, and 5. In order to ensure that definitions are meaningful we introduce the
notion of coherence. Roughly a constraint set and a memory-modification context
are coherent (written Coh(X,T; M)) if Dom(I') N FV(X) = @, modifications in
M are to elements of Cells(X), X decides equality on Cells(X), distinct elements of
Dom(M) are provably distinct in ¥ and X contains at most one car or cdr assertion
for any z in Cells(X). (The last condition is a technicality to make various definitions
and proofs simpler.) Note that coherence ensures that ¥4 is single-valued modulo
¥ equivalence.

36

Definition (Coherence): If I' is a memory context and M is a modification as
above then we say (X, T'; M) is coherent, written Coh(X,T'; M), if the following five
conditions hold:

(1) Dom(I)NFV(X) =0

(2) Dom(M) C Cells(X)

(3) If zg, 21 € Dom(¥yy) are distinct, then ¥ | —(zg = 21).

(4) If zg, 2y € Cells(X), then ¥ = (2o = 21) or & | —(zg = 21).

(5) If z € Cells(X), then there is at most one formula (J9(z) = u) € ¥ with

Y E (2 =), and if (¥(z) = u) € X, then z € Cells(X).

We write Coh(X, M) for Coh(3,T'; M) when Dom(T) is empty, when Dom(M) is
empty we write Coh(X,T') for Coh(X,T; M), and when Dom(T') and Dom(M) are
both empty we write Coh(X) for Coh(X,T; M).

Definition (M {¥(z) = u}x): Suppose that M is a modification, Coh(X, M)

and z € Cells(X). Then M{car(z) = u}x is defined to be the modification M’

with Dom(carar) = Dom(carar) U {z}, Dom(cdrar) = Dom(cdras), and for 2’ €
Dom(dar1)

! 3 —

CGT’M'(Z/) = {ZGTM(Z) gg Ilz (_;(Z:_Z,Z) and cdrM/(z') = cdrM(z').

Similarly for M {cdr(z) = u}x.

Definition (£5): For ¥ and I'; M such that Coh(Z, T; M) we define the relation
U; M[e] L5 T7; M'[¢'] as follows (letting X = FV(I'; M[e]))

' p I; MNil] if ¥ U Diag(?) = —cell(u)
05 Meeli(u)] == {F;M[[T]] it X cell(u)

. [M[9r(u)] if u € Dom(T)
M9 (u)] = ¢ T; M[Op(w)] if (Fu' € Dom(du)) (2 | (v = u)), or
T'; M[[u'] ifu € Cells(X) A T E (J(u) =u)

' b T; M[T] if ¥ U Diag(2) &
I'; M[eg(uo, u1)] =% {F; M[Nil] if B U Diag(2A)

T; M[cons(ug, u1)] Srs T{z := [ug,u1]}; M[2] if z € X — (Dom(I') UFV(¥) U X)

) N P I'{d(u)=u'}; M[u] if u € Dom(T)
[M[setd(u,u')] == { [M{0(u) = u'}s[u] if u € Cells(X)
For general use in reasoning about programs one would want to strengthen the
definition of syntactic reduction by using full semantic satisfaction rather than
first—order satisfaction in the side conditions. The weaker definition is adequate for
proving completeness and simplifies the proof.

37

Definition (—x): For X and I'; M such that Coh(X,T'; M) we define the relation
T; M; Rle] —s T'; M'; R[e'] as follows. Let X = FV(T'; M; R[e]). Then

T; M; R[e;] if =¥ U Diag(2l) & —(u = Nil)
T'; M;R[es] if X (u=Nil)

(beta) T M; R[let{x := u}le] —x T'; M; Rle{x := u}]

(rec) U M R[f(ur, ..., un)] —s T M Rle{ar :=uq, ..., 2 1= un }]

(delta) T;M;R[f(u,...,u,)] —s T'; M'; R[u]

(if) [; M; R[if(u, e1,e2)] =% {

where in (rec) we assume that <f(x1,...,2,) < > is in § and the x; are chosen
fresh, and in (delta) we assume that f € F,,, T; M[f(u1, ..., u,)] 2z T'; M'; 4’ and
Dom(I') — Dom(T') is disjoint from FV(T'; M; R[f(u1, . .., un)]).

Lemma (Coherence): Coherence is preserved by syntactic reduction.

If a modification, M, and a constraint set, 3, are coherent, then the modifica-
tion of X implicit in M is made explicit in Xpr. To construct Xpr from X we first
remove the set of all assertions in ¥ concerning components of cells that are mu-
tated by M. The set removed is referred to as A;O;get. Then we add to X — A%’;get

the set of assertions, A?&ﬁgn concerning the components updated by M.

Definition (Xy): For Coh(X, M) we define Ty as follows

EM — (E . Af]"olrget) U Azja‘;sign
A?‘;sign — {19(2) = uy | Uy = 19M(2),Z S Dom(ﬁM)}

AMTET — [(W(x) =u) € X | (32 € Dom(Iu)) (B = 2 = 2)}

The Context Modification Introduction lemma combines and generalizes the
cons and setd introduction rules to arbitrary memory—-modification contexts.

Lemma (CMI): If Coh(X,T; M), ® €L, and X = FV(T; M; R[®]) then

(S) - @
Y+, M; R[?]

is derivable.

Proof (CMI): This is a simple consequence of the introduction rules (cons.iii)
and (set.vii), together with the congruence rules and the definition of coherence
(particularly the fifth condition). The only point to observe is that if ¥ is the
disjoint union of ¥’ and {car(z;) = wf, cdr(z;) = “)z('i}z,EDom(M); then each z; is
car-less and cdr-less in ¥/. Do

38

6.3. Proof of Completeness

Before we state the key lemmas, we require one last set of definitions. As
we mentioned earlier, syntactic reduction is defined so that if ¥ contains enough
information concerning the nature of the free variables of e, then

*
erss M€,

and either ¢’ € {R[¥(u)], R[setd(u, u’)]}, and XUDiag() |= —cell(u) or else ' = u.
The last case corresponds to the successful reduction of the expression to a value,
while the former case corresponds to a stuck state.

Definition (X-stuck state): An expression e is said to reduce to a X-stuck
state if ¢ oy I'; M[e’], and either ¢/ = R[0(uo)] or ¢ = R[setd(uo,u1)], and
Y U Diag() E —cell(ug).

In order to formalize the notion of a constraint set ¥ containing enough
information, we make the following definitions. At(X) is the set of atoms oc-
curring in X. A car-cdr chain of length n is a reduction context of the form
O =91 (J2(...Un(e)...)) where ¥; € {car, cdr}. Note that the chain of length 0 is
Jjust €. Finally we define the notion of n-completeness for constraint sets relative to
a finite set of variables and atoms. The idea is that such a constraint set contains
sufficient information to completely determine the evaluation of any expression of
size less than n built from the given variables and atoms.

Definition (n-Complete w.r.t. [z,4]): X is n-complete w.r.t. [z, A] if for
every ©,0q, car-cdr chains of length < n, and y,yo € z, if ¥ | O[y] = v and
Y E Oofyo] = uo, then

Yru=a)VEE-(u=0a)) a€ AU{T Nil ug}
Y = cell(u
Y ocell(u)) = —(Jug, uq € U)((Z | car(u) = uq) V (X [cdr(u) = uq))

Y cell(u)) V (Z E ~cell(u))
)
)

= (Jug,uqg € U)((Z E car(u) = uy) A (T = edr(u) = uyq))

(
(
()
(

The following five lemmas enable a straightforward proof of the completeness
theorem. Lemmas 0., 1., 3., and 4. hold for the full first-order language. Lemma 2.

holds only for those expressions that contain no occurrences of recursively defined
function symbols.

Lemma (0): If ¥ is inconsistent, then ¥ + &, for any ® € 1.
Lemma (1): Ifey ¢/, then Tk e~ ¢,

Lemma (2): Assume e contains no occurrences of recursively defined function
symbols. If ¥ is r(e)-complete w.r.t. [FV(e), At(X,e)] and Coh(X), then either e
reduces to a Y-stuck state, or else there exists T'; M, and a u such that e ~>x T'; M[[u]
and Coh(X3,T'; M).

39

Lemma (3): For any consistent ¥, z, ® € I, and n € N there exists N € N and
a family of constraint sets {X;};<n such that

1. Each X; is n-complete w.r.t. [Z, At(X;, ®)], and Coh(X%;).

2. (VBp)BinkEeX & (F<N)(Bin e %))
Y;F® i< N
Y-
Lemma (4): Let ¢; = I'y; M;[u;] with Coh(X,Ty; M;) fori < 2. If ¥ Eepg ~ ey
then X F eg ~ e;.

1s a derived rule.

Proof (Completeness): Assume ¥ | &, and & contains no occurrences of
recursively defined function symbols. By lemma 0 we may assume that X is con-
sistent. By lemma 3 it suffices to prove that X F ® under the added assumptions
that Coh(X) and X is r(®)-complete w.r.t. [FV(®), At(X, ®)]. By lemma 2 we have
that for each e; in ® there exists T';; M; and an €} such that e; Ss I;; M;[el], and
exactly one of the following holds:

1. ef = Ri[Vi(w;)], 95 € {car, cdr}, and X U Diag(2) = —cell(u;).

2. e} = Ri[setd;(u;, u})], setv; € {setcar, setedr} and X U Diag(2) | —eell(u;).
3. el = uy, and Coh(X,T;; M;).

By lemma 1 we have ¥ F ¢; ~ T';; M;[ei], and by soundness we have X = ¢; ~
[';; M;[e']. We consider two cases, depending on the nature of ®.

3]

(® =1e) Since X is consistent, the case when ¢’ € U is impossible. In the other
two cases we use (S), (D) and (CMI) to show that ¥ F 1T'; M[¢'], and hence that
YXFtTe.

(®=(e0 ~e1)) We may assume that =(X |= Te;), since the case when ¥ = Te;
follows directly from the previous case. Hence we have ¥ F ¢; ~ T';; M;[u;], and
Y E e ~ Ty M;Jui] for i < 2. Thus ¥ | To; Mo[ug] =~ T'1; Mi[ui], and by lemma
4 ¥k FU;MQ[[UQ]] ~ Fl;Mlllul]]'

DCompleteness

6.4. Proofs of the Lemmas

Lemma (0): If ¥ is inconsistent, then ¥ + &, for any ® € 1.

Proof (0): If X is inconsistent, then by (Sat) either ¥ =T = Nil in the usual
first-order interpretation, or else ¥ |= —cell(x) and ¥ = d(z) = z for some z,z € U.
In the former case the result follows by the structural rules and properties of if.
In the later case it suffices to observe that ¥ F 12 and so since ¥ F e{y := z} ~
let{y := z}e we can conclude, by choosing y new, that ¥ F te for any e. The
result follows without much effort. Oy

Lemma (1): If ey ¢/, then Sk e~ ¢

40
Proof (1): Tt suffices to show that if Coh(X,T; M), then
T;Me] s T, M'[e'] = (SFT; M[e] ~ T, M[e']).

Let X = FV(M[e]), &' = (%), and note that the proof naturally divides up
into three cases depending on the decomposition of e into R[e,].

(if) In this case e = R[if(u,e1,e2)] and by hypothesis either ¥ = (u = Nil) or
Y U Diag(?) = —(u = Nil). Thus either X' F u ~ Nil or X' F eq(u,Nil) ~ Nil,
by (S.1). In the former case ¥/ F if(u,eq,e2) ~ es by (if.ii,R.i,E), and so by
(CMI)

Y ET; M; R[if(u,e1,e2)] ~ T; M; R[es].

In the latter case X' F if(u, €1, ea) ~ e by (if.iii) so again by (CMI)

YT, M; R[if(u,e1,e2)] = T; M; R[e1].

(beta) In this case e = R[let{x := u}eg], and by (let.ii) X' - let{z := u}eq ~
eo{x := u}. Hence by (CMI)

Y FT; M; R[let{x := u}eo] ~ T; M; Rleo{x := u}].

(rec) In this case e, = f(u) and we use (U, CMI, let.ii).

(delta) In this case e, = f(#) and consequently we may assume that
T MIf(@)] s T M'[w]

and (Dom(I”) — Dom(T')) N FV(T; M; R[f(a)]) = @. The proof naturally divides
up into seven cases, depending on f. In four of these cases, corresponding to when
f € {cell, car, cdr, eq}, we have that I' = IV and M = M’. Consequently in these
cases we need only show that X/ - f(2#) ~ u’ and invoke (CMI) to obtain the result.
We begin by considering these four cases.

(f(z) = cell(u)) In this case there are two possibilities, either v/ = Nil or v’ = T.
In the former case we have that ¥ U Diag(2) E —cell(u) and so X' U Diag(%) =
—cell(u). Hence by (S.i) we have that X' F f(2) ~ «'. Similarly in the latter case
we have that 3% = cell(u) and so X' |= cell(u). Hence again by (S.i) we have that
Y Ff(u) ~ o'

(f(u) = eq(uo,u1)) Again there are two possibilities, either v’ = T or u/ = Nil.
In the former case we have that ¥ U Diag(2l) | ug = u1 and so by construction of
Y’ and (S.i) we have that X' F eg(ug, u1) ~ T. In the case where u’ = Nil, we have
that ¥/ U Diag(1) = ug # u1 and so by (S.1) ' F eq(ug, uq1) ~ Nil.

(f(u) = car(u)) In this case we have that ¥’ = car(u) = ' and hence by (S.i)
X'k car(u) ~ o'

(f(2) = cdr(u)) This case is a trivial variation on car.

41

(f(a) = cons(uo,u1)) In this case we have that I" = T'{u’ := [ug, u1]} and that
u’ ¢ Dom(T) U X. Now note that

't cons(ug, u1) ~ setedr(cons(ug, T), u1) by (set.vi)
~ setedr(setcar(cons(T,T)), ug), u1) by (set.v,R.i)
~ let{u' := cons(T,T)}setcdr(setcar(u’, ug), u1) by (let.i,R.iii)
~ let{u’ := cons(T,T)}setcdr(seq(setcar(u’, ug), u'), uq)
by (set.iii,R.i,CMI)
~ let{u’ := cons(T,T)}seq(setcar(u’, ug), setedr(u’, uy))
by (R.ii,CMI)
~ let{u' := cons(T,T)}seq(setcar(u, up), setcdr(u’, ur), u’)

by (set.iii,CMI)
Thus we have shown that X/ F cons(uo, u1) ~ {v' := [uo, v1]}; ¢/, and so by (CMI)

Y+ [; M; Rcons(ug, u1)] ~ T; M; R[{u" := [uo, u1]}; u]
~ [M; {u := [uo, u1]}; R[u] by (Rii,Riii,CMI)
~ T{u' := [ug,u1]}; M; R[u]

by (Rii,Riii,cons.ii,cons.iii, CMI) and (Example.iii)

(f(u) = setcar(uo,u1)) In this case ug = u' and there are two possibilities,
either ug € Cells(X) or ug € Dom(T'). In the latter case, assuming that T'(ug) =
[ul, uf] we have that T/ = T'{ug := [ug, ul]}. Now by (set.iii) ¥’ - setcar(ug,u;) ~
seq(setcar(ug, uy), ug), and so by (CMI)
Y T; M; R[setcar(ug, uq)] ~ T'; M; R[seq(setcar(ug, uy), ug)]
~ T'; seq(setcar(ug, u1), M; Rlug]) by (S.i,Rii,set.i,set.iv,CMI)
~T'; M; R[v] by (S.i,Rii,set.ii,set.iv,CMI)
while in the former case, assuming that uy € Dom(M), we have that M’ =
M{car(ug) = u1}. Now by (set.iii) X/ b setcar(ug,u1) ~ seq(setcar(ug,u1), ug),
and so by (CMI)
Y FT; M; R[setcar(ug, u1)] ~ T'; M; R[seq(setcar(ug, u1), ug)]
~ T'; M; seq(setcar(ug, u1), Rlug]) by (S.i,Rii,set.i,set.iv,CMI)
~T; M'; R[v] by (S.i,Rii,set.ii,set.iv,set.ii, CMI)

The case when (3z)(X | z = ug A z € Dom(M)) is almost identical to the above
argument.

42

(f(u) = setedr(ug,u1)) This case is a trivial variation on setcar.
]

Lemma (2): Suppose that e does not contain any recursively defined function
symbols. If ¥ is r(e)-complete with respect to [FV(e), At(X, e)], and Coh(X), then
either e reduces to a Y-stuck state or else there exists I'; M, and a u such that

e s T'; M[u] and Coh(X,T; M).

Proof (2): This follows from the simple observation that if e —y, ¢’ and X is r(e)-

complete w.r.t. [FV(e), At(X, e)], then X is r(e’)-complete w.r.t. [FV(e'), At(X, e’)].
Consequently the three cases above are the only ones in which further reduction is
not possible. O

Lemma (3): For any consistent £, Z, ® € I, and n € N there exists N € N and
a family of constraint sets {X; }i<n such that

1. Each X; is n-complete w.r.t. [Z, At(X;, ®)], and Coh(L;).
2. (VBp)BinkEe X & (Fi<N)(Bin e L))
Y, F® i< N
X ®
Proof (3): This is a simple consequence of the introduction on the left rules. Os

Lemma (4): TLet e; = T;; M;Ju;] with Coh(X,Ty; M;) fori < 2. f X = eg ~ ey,
then X F eg ~ ey.

1s a derived rule.

Proof (4): By lemma 0 we may assume that ¥ is consistent. Using a simple
construction from constants one can show that for any consistent X there is a 8;
such that

1. Dom(f) = FV(X) UFV(To; MoJug]) UFV(T1; Mq[ui]) and 85 p =r 3,
2. Blr)=py ifSEFz=y.

Given such a 3; u we show that if eq; 5; 4 ~ eq; B; u, then X Feg ~ ey.

If eg; B; 0 ~ e1;B; i, then there exists an object v;pu’ € O with Dom(u) C
Dom(p'), po, p1 with g/ C pi, and B; D § with 8;(u;) = v such that e;;8; p Ky
u;; Bi; pi - Now put

Gi = {z € Dom(T;) | Bi(x) € Dom(y;) — Dom(u')}

Then by construction u; € G; and if 2 € Dom(T';) —G;, then 9, (z) ¢ G;. Similarly
if z € Dom(M;), then Y, (z) € G;. Consequently we can show that

YTy MiJus] ~ Ug,; T MiJus]
for T'g, and T} memory contexts with the property that Dom(T'¢,) = G; and

G; NFV(T5; M;[u;]) = 0.

43
Now by the garbage collection axioms we have that
Y F Ty M;Ju] ~ T M;Ju;].

Also note that, putting e/ = T%; M;[u;], that e}; 8; 4 & uy; 8i; /. Consequently
we can construct a bijection 7 : Dom(T}) — Dom(T") such that (extending =
as the identity off Dom(T()) ¥ E F(l?r()(;‘lf)) = ’191"11 (w(z)) for all 2 € Dom(T})
Y E w(ug) = ug.

Consequently T'y; ug and T'; uy differ only up to a-conversion and Y-equality
and hence we may assume they are the same. For y € Dom(dar,) N Dom(dar,)
we have ¥ = Jar,(y) = Yar, (y) and we may assume they are the same. If y €
Dom(¥ar,) — Dom(dar,), then there must be some u such that ¥ = Jd(y) = u.
Otherwise we could choose p such that 9,(3(y)) is not the value assigned by M.
In this case we can assume that Jy7,(y) = u, consequently for some M} we have
that My = M{; seq(setd(y, u),). Using the derived rule (Example.i), {cell(z)} F
setcar(x, car(z)) ~ x, we can prove

(EIZ(D)M{, Fosetd(y,u) ~y
and hence that
Yk Fo; Mé[uo]] ~ FQ; M()l[U()]].

Consequently we can remove y from Dom(My). Repeating this we can transform
My and M; into the same modification. Hence X F eq ~ e;.

Oa

7. Relating notions of equivalence and fragments

In Mason and Talcott [17, 19] we presented a study of operational equivalence
and strong isomorphism in the presence of function abstractions and mutable binary
cells. The first-order language presented in this paper can be thought of as a
fragment of the higher-order language. Since both operational equivalence and
strong isomorphism are relations defined relative to a class of contexts, it is of
interest to compare these relations on various fragments. In this section we consider
three fragments, zero-order, first-order, and full higher-order, and summarize results
presented in [19] (where more detailed proofs may be found).

In order to distinguish analogous domains of different fragments we subscript
the syntactic and semantic domain symbols by ‘zo’ for zero-order, ‘fo’ for first-
order, and ‘ho’ for higher-order. Thus [Fr, is the set of first-order expressions (the
set [E defined in §2.) and E,,, the zero-order expressions, is the set of first-order

expressions that do not contain any function symbols f € F. [is the set of
higher-order expressions, defined below.

44

Definition (Uns Fre): The set of higher-order value expressions, Upe, and the
set of higher-order expressions, [y, are defined, mutually recursively, as follows:

Uho = X + A +)\XE’K)

Fio = U+ if(Fho, Fro, Fho) + 2pp(Fho, Fro) + | Fn (F,)
neN

The definitions of the various semantic domains can be found in [17]. An
important point is that memories in My, can now contain closures (a lambda ab-
straction together with an environment from By,). The notion of context, reduction
context and redex is extended to take into account the enlarged syntax. The only
modifications to the reduction relations, & and +, are to revise the (equality)
clause, and to replace the (rec) clause by the (beta-value) clause. The new clauses
are:

T,y fvg=vi andv; EAUC for i < 2
Nil; pu otherwise

(beta-value) R[app(uo,u1)]; B; p = Rleo]; BU Boiz := B(ur)}; p

(equality) eq([vo, v1]; 1) £ {

where in the (beta-value) clause we assume that §(ug) = Az.eo; fo, § and By agree
on the intersection of their domains, and z € Dom(G U fy).

In what follows A € {zo,fo,ho}, and °Ea is the set of all contexts in the
fragment [Ea . We now define 2 to be operational equivalence with respect to the
fragment [Ea . Similarly we define ~a, to be strong isomorphism with respect to
fragment TEx .

Definition (Ca =a): For eg,e1 € Ea we define

coCae1 & (YO €°Ea | FV(Ceo]) = 0 = FV(Cler]) (4 Cllea] = 4 Cler])

ep=aer & eplaer AepLaeg

Definition (~): Two expressions eg, €1 € Ea are strongly isomorphic if for every
A-memory p € Ma and A-environment 3 € Ba such that e;; 8; 4 € Da for i < 2
we have that one of the following holds:

L. tey; B p and Tes; Bsp, or
2. (Fuip’ € Oa | Dom(p) C Dom(p))(A;co(Fui € Ma | 4" C pi)(es; Bin —
v; i)
Note that first-order and zero-order value expressions coincide, and hence so
do the respective notions of memory contexts and models. Also we will take =,
to be defined as a relation on first-order expressions (quantifying over zero-order

contexts) as this simplifies the comparisons. The situation is summarized in the
following theorem.

45

Theorem (Fragments):

e
eo Zho €1 = eg Zio €1 & eg =y €1
J}eﬂa IIC ﬁd
€0 ~ho €1 = €0 Zfo €1 & €0 Mg €1

x:b

Proof: The horizontal implications are simple consequences of the correspond-
ing containment relations for the relevant contexts. The implication labeled (a) is
a consequence of the weak extensionality property (ciu) that is proved in [19]. The
negated implication (b) is due essentially to type discrimination capability of the
language. A counterexample is eqg = eg(z,z) and e; = T. Then we have ey &, €3
and eg ~y, €1 but neither ey &, €1 nor ey ~p, €3 hold since eg(Az.z, Az.z) ~ Nil.!
The implication ({}°) is a consequence of weak extensionality for the first-order
fragment (fo.ciu), also proved in [19]. The implication ({}¢) follows from the fact
that if eg ~,o €1 does not hold then we can find a zero-order memory context T,
a sequence of values uq,...,un, and reduction context R such that, letting C be
I[R[let{z1 = u1,...,2n = un}e]], Cleo] is defined and Cfe1] is not defined.
The converse arrows for (c,d) now follow from the above and the fact that the
zero-order relations are meaningful for first-order expressions. An example that
establishes the negated implication (e) is a simple matter. Az.z Zn, Az.seq(z, x)
but clearly the two value expressions are not strongly isomorphic. O

With the exception of the structural rules, the inference rules of our system
(including induction) are sound in the higher-order case as well. The structural
rules (actually the translation of constraints to assertions) must be modified to
account for the fact that, as noted in the proof of (Fragments), equivalence of two
value expressions does not imply their eg-ness. This is because computationally eq
is not allowed to make any non-trivial distinctions between higher-order objects,
while operational equivalence and strong isomorphism do make such distinctions.
In fact, with the exception of (examples.v), all of the consequences given at the
end of §3. lift to the higher-order case.

As noted in (Fragments) strong isomorphism is a stronger notion than op-
erational equivalence for the full language, any two operationally equivalent A-
expressions will provide a counterexample, provided that they are distinct. What
is surprising perhaps is that these are essentially the only counterexamples. The
following theorem, a generalization of the theorem [14], p.48], states that opera-
tional equivalence and strong isomorphism coincide on a natural fragment of the

full higher-order language, £, , .

1 This particular counterexample is an artifact of our choice of semantics for eq. However, any
choice consistent with an extensional interpretation of operations has a corresponding counterex-
ample.

46

Definition (E-»): The set of Ad-free expressions E,y is inductively defined as

A+ X +app(Eax, Fax) + i (Fax, Fax, Fan) + 1ot {X = oy JEon + | Fa(E2y)
neN

Theorem (foc): If eg,eq € E,y and eg = eq, then eg ~ €.

Proof: See [19]. O

8. Summary and Conclusions

We have presented a formal system for reasoning about equivalence of first-
order Lisp- or Scheme-like programs that act on objects with memory. The seman-
tics of the system is defined in terms of a notion of memory model derived from the
natural operational semantics for the language. Equivalence is defined relative to
classes of memory models defined by sets of constraints. The system is complete for
the zero-order fragment (programs that use only memory operations, and make no
use of recursively defined functions, arithmetic operations, etc.). Thus the system
can be seen to adequately express the semantics of memory operations. The system
is also computationally adequate for the full first-order language, in the sense that
any closed first-order expression that returns a value is provably equivalent to a
canoniacl form. We have also indicated how induction principles can be added in
order to reason about recursively defined functions. Presumably the completeness
result could be extended to a relative completeness result for the first-order lan-
guage and for extensions to abstract algebraic data types rather than unstructured
atoms, but we have not explored this possibility.

Equivalence in all models (unconstrained equivalence) is the same as opera-
tional equivalence. Thus we have a means for reasoning about operational equiva-
lence of programs. The formal system provides a richer language than operational
equivalence since it provides a method for reasoning about conditional equivalence,
and equivalence with respect to restricted sets of contexts. This is essential for de-
veloping a theory of program transformations, since most of the interesting trans-
formations are based on having additional information, i.e. on being able to restrict
the contexts of use. With minor modification to the structural rules, the extended
set, of rules is also valid in the higher-order case, and provides a very useful tool for
reasoning about program equivalence in the richer language.

Implicit in the proof of completeness is a decision procedure for deciding when
an expression is defined and whether two expressions are equivalent for all models
of a set of constraints. Thus our work can be seen as an extension of the early
work on Nelson and Oppen. There are three key algorithms in our procedure. The
first algorithm is an algorithm for deciding first-order consequence for constraints
by a simple extension of an algorithm for putting a set of equations and inequa-
tions into a canonical form. The second algorithm generates a set of r(e)-complete
constraints each of which completely determines the computational behavior of the
expressions in question. The third algorithm finds a renaming of bound variables of

47

a memory context that transforms one object expression into another that is equiv-
alent modulo a set of constraints, or proves that no such bijection exists. Mindless
application of these algorithms of course results in combinatorial explosion. An in-
teresting open problem is to find strategies that are reasonably efficient for a useful
class of queries and to incorporate this into a system for reasoning about programs.
Oppen [26] gives a decision procedure for the first-order theory of pure Lisp, i.e.
the theory of cell, car, cdr, cons over acyclic list structures. Nelsen and Oppen [25]
treats the quantifier-free case over possibly cyclic list structures. Neither treats
updating operations.

Work is in progress to extend the formal system to a full higher-order Scheme-
like language (with untyped lambda abstraction). Felleisen [7, 8] gives an equational
calculus for reasoning about Scheme-like programs, which is extended and simpli-
fied in Felleisen and Hieb [9]. Such calculi do not deal adequately with conditional
equivalence. The success of our approach in the first-order case depended on being
able to define a semantics for conditional equivalence. In this case there is a natural
model-theoretic equivalence (strong isomorphism) such that equivalence in all mod-
els is the same as operational equivalence. The existence of such a model-theoretic
equivalence in the higher-order case remains an open question. Moggi [22] shows
that, in principle, purely equational reasoning in arbitrary computational monads
can be lifted to higher-order intuitionistic logic. It is not clear just how the lift-
ing construction distorts the reasoning, and further exploration of this approach is
needed to determine if it can be used for proving properties of programs.

Acknowledgements

This research was partially supported by DARPA contract N00039-84-C-0211
and NSF grants CCR-8718605 and CCR-8917606 and CCR-8915663. We would like
to thank the following people for carefully reading earlier versions of this paper, and
pointing out numerous mistakes and confusions: Louis Galbiati, Matthias Felleisen,
Furio Honsell, Jussi Ketonen, Elizabeth Wolf, and the three anonymous referees.

9. References

[1] W. Ackermann. Solvable Cases of the Decision Problem. North Holland, Am-
sterdam, 1954.

[2] A. Avron, F. Honsell, and I. A. Mason. An overview of the Edinburgh Logical
Framework. In G. Birtwistle and P.A. Subrahmanyam, editors, Current Trends
tn Hardware Verification. Springer Verlag, Heidelberg, 1989.

[3] H.-J. Boehm. Side effects and aliasing can have simple axiomatic descriptions.

ACM TOPLAS, 7(4), 1985.

[4] Robert S. Boyer and J. Strother Moore. A Computational Logic. Academic
Press, 1979.

[6] C.C. Chang and H.J. Keisler. Model Theory. North Holland, Amsterdam,
1973.

[6]

[18]

[19]

48

A. Demers and J. Donahue. Making variables abstract: An equational theory
for Russell. In 10th ACM Symposium on Principles of Programming Languages,
1983.

M. Felleisen. The Calcului of Lambda-v-cs Conversion: A Syntactic Theory of
Control and State in Imperative Higher-Order Programming Languages. PhD
thesis, Indiana University, 1987.

M. Felleisen. A-v-cs: An extended A-calculus for Scheme,. In 1988 ACM con-
ference on Lisp and functional programming, volume 52, pages 72-85, 1988.

M. Felleisen and R. Hieb. The revised report on the syntactic theories of
sequential control and state. Technical Report COMP TR&89-100, Rice Uni-
versity, 1989.

R. Harper, H. Honsell, and G. Plotkin. A framework for defining logics. In
Second Annual Symposium on Logic in Computer Science. IEEE, 1987.

J. M. Lucassen. Types and Effects, Towards the Integration of Functional and
Imperative Programming. PhD thesis, MIT, 1987. Also available as L.LCS TR-
408.

J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In Conference
Record of the 16th Annual ACM Symposium on Principles of Programming
Languages, pages 47-57, 1988.

I. A. Mason. Equivalence of first order Lisp programs: Proving properties of
destructive programs via transformation. In First Annual Symposium on Logic
i Computer Science. TEEE, 1986.

I. A. Mason. The Semantics of Destructive Lisp. PhD thesis, Stanford Univer-
sity, 1986. Also available as CSLI Lecture Notes No. 5, Center for the Study
of Language and Information, Stanford University.

I. A. Mason. Verification of programs that destructively manipulate data.
Science of Computer Programming, 10, 1988.

I. A. Mason and C. L. Talcott. Memories of S-expressions: Proving properties of
Lisp-like programs that destructively alter memory. Technical Report STAN-
(CS-85-1057, Department of Computer Science, Stanford University, 1985.

I. A. Mason and C. L. Talcott. Programming, transforming, and proving with
function abstractions and memories. In Proceedings of the 16th FATCS Col-
loquzum on Automata, Languages, and Programming, Stresa, volume 372 of
Lecture Notes in Computer Science. Springer-Verlag, 1989.

I. A. Mason and C. L. Talcott. Reasoning about programs with effects. In
Programming Language Implementation and Logic Programming, PLILP’90),
volume 456 of Lecture Notes in Computer Science. Springer-Verlag, 1990.

I. A. Mason and C. L. Talcott. Equivalence in functional languages with effects.
Journal of Functional Programming, 1:287-327, 1991.

[20]

[26]

[27]

49

I. A. Mason and C. L. Talcott. Program transformation for configuring compo-
nents. In ACM/IFIP Symposium on Partial Evaluation and Semantics based
Program Manipulation, 1991.

I. A. Mason and C. L. Talcott. Program transformation via constraint propa-
gation, 1991. to appear.

E. Moggi. Computational lambda-calculus and monads. In Fourth Annual
Sympositum on Logic in Computer Science. IEEE, 1989.

J. H. Morris. Lambda calculus models of programming languages. PhD thesis,
Massachusetts Institute of Technology, 1968.

P. Mosses. A basic abstract semantic algebra. In Semantics of data types, in-
ternational symposium, Sophia-Antipolis, June 1984, proceedings, volume 173
of Lecture Notes in Computer Science. Springer, Berlin, 1984.

C. G. Nelson and D. C. Oppen. Fast decision procedures based on congruence
closure. Technical Report STAN-CS-77-647, Department of Computer Science,
Stanford University, 1977.

D. C. Oppen. Reasoning about recursively defined data structures. Technical
Report STAN-CS-78-678, Department of Computer Science, Stanford Univer-
sity, 1978.

G. Plotkin. Call-by-name, call-by-value and the lambda-v-calculus. Theoretical
Computer Science, 1, 1975.

