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Abstract

In this paper we investigate the simple logical properties of contexts. We
describe both the syntax and semantics of a general propositional language of
context, and we give a Hilbert style proof system for this language. A proposi-
tional logic of context extends classical propositional logic in two ways. Firstly,
a new modality, ist(x, ¢), is introduced. It is used to express that the sentence,
¢, holds in the context, k. Secondly, each context has its own vocabulary, i.e. a
set of propositional atoms which are defined or meaningful in that context. The
main results of this paper are the soundness and completeness of this Hilbert
style proof system. We also provide soundness and completeness results (i.e.,
correspondence theory) for various extensions of the general system. Finally, we
prove that our logic is decidable, and give a brief comparison of our semantics to
Kripke semantics.

1 Introduction

In this paper we investigate the simple logical properties of contexts. Contexts were
first introduced into AI by John McCarthy in his Turing Award Lecture, [16], as an
approach that might lead to the solution of the problem of generality in AI. This
problem is simply that existing Al systems lack generality.

Since then, contexts have found many uses in various areas of AI. R. V. Guha’s
doctoral dissertation, [12] , under McCarthy’s supervision was the first in-depth study
of context. Guha’s context research was primarily motivated by the Cyc system, [13],



a large common-sense knowledge-base currently being developed at MCC. Without
contexts it would have been virtually impossible to create and successfully manage a
knowledge base of the size of Cyc.

The knowledge sharing community has also accepted the need for explicating con-
text. Their concern with transferring information from one agent to another can be
declaratively expressed using the context formalism. Currently, proposals for introduc-
ing contexts into the Knowledge Interchange Format (KIF), [9], are being considered.
Furthermore, it seems that the context formalism can provide semantics for the process
of translating facts into KIF and from KIF, which is one of the key tasks that the
knowledge sharing effort is facing.

Furthermore, computational linguists use contexts to account for the phenomena
that the meaning of an English sentence depends on the context in which it is uttered.
They have identified various properties and characterizations of such contexts. For
example, Barbara Grosz in her Ph.D. thesis, [11], implicitly captures the context of
a discourse by “focusing” on the objects and actions which are most relevant to the
discourse. This notion is similar to an ATMS context, [8], which is simply a list of
propositions that are “assumed” by the reasoning system.

However, until now no formal logical explication of contexts has been given. The
aim of this paper is to rectify this deficiency. We describe both the syntax and semantics
of a general propositional language of context, and give a Hilbert style proof system
for this language. The main results of this paper are the soundness and completeness
of this Hilbert style proof system. We also provide soundness and completeness results
(i.e., correspondence theory) for various extensions of the general system. Finally, we
show that our logic is decidable.

This paper is organized as follows. §1, this one, serves as an introduction to both
the paper and our notation. In §2 we describe the syntax, semantics and proof theory
of the general system. We also establish the soundness and completeness of this proof
system. In §3 we provide correspondence results for several variations on the general
system. §4 is dedicated to the completeness of a slightly more elaborate variation on
the general system, namely the propositional fragment of Guha’s logic of context, [12].
In §5 we prove that our logic is decidable. A comparison of our semantics to Kripke
semantics is given in §6. §7 describes related work, and §8 contains our conclusions.
Most of the results in §2 through §4 were first announced in [5]; the result in §5 was
first announced in [6]; most of the results in §6 were first announced in [4].

1.1 Motivation

Our main motivation for formalizing contexts is to solve the problem of generality in
Al. We want to be able to make Al systems which are never permanently stuck with
the concepts they use at a given time because they can always transcend the context
they are in. Such a capability would allow the designer of a reasoning system to include
only such phenomena as are required for the system’s immediate purpose, retaining the
assurance that if a broader system is required later, “lifting axioms” can be devised
to restate the facts from the narrow context in the broader context with qualifications
added as necessary. We provide two simple examples.

The first example is due to McCarthy [18]. It illustrates how a reasoning system



can utilize contexts to incorporate information from a general common sense knowledge
base into other specialized knowledge bases. Assume that in the context of situation
calculus on(z,y,s) is used to express the fact that object = is on top of object y in
situation s. Although no mention to the notion of above is made in the context of
situation calculus, we are interested to know which of the above relations hold in a
particular situation. The definition of above in terms of on is likely to be found in
some context of general common sense knowledge. The context formalism will allow
a reasoning system to use the theory of situation calculus and the theory of general
common sense knowledge together. Furthermore, in the logic we can write axioms
to import or lift the definition of above from the context of general common sense
knowledge into the context of situation calculus. Although above was not originally
defined in the context of situation calculus, the system, after lifting, will be able to
infer which above relations hold in a particular situation. Of course, the power of a full
quantificational logic will be needed to adequately address this example.

The second example concerns theories which were not originally intended to be
used together, and in fact might, on the surface, seem inconsistent. For example,
assume a common sense knowledge base of Stanford University contains the proposition
“kids drive BMW’s”. A common sense knowledge base of Berkeley, which was not
originally intended to be used with the above mentioned Stanford knowledge base, will
probably contain the negation of this proposition. A logic of context will enable a
reasoning system to use such seemingly inconsistent knowledge bases without deriving
a contradiction.

1.2 Notation

We use standard mathematical notation. If X and Y are sets, then X —, Y is the set
of partial functions from X to Y. P(X) is the set of subsets of X. X* is the set of all
finite sequences, and we let £ = [z,...,,] range over X*. € is the empty sequence.
We use the infix operator * for appending sequences. We make no distinction between
an element and the singleton sequence containing that element. Thus we write z * z;
instead of Z * [z;1]. As is usual in logic we treat X* as a tree (that grows downward).
T < To < €iff Z; properly extends Zo (i.e. (I € X* — {e})(Z1 = Zo * y)). We say
Y C X* is a subtree rooted at § to mean

l.geY and (Vze Y)(z <)

2. (VzeY)Voe X )z<w<yg—-weY)

2 The General System

A propositional logic of context extends classical propositional logic in two ways.
Firstly, a new modality, ist(x, ¢), is introduced. It is used to express that the sentence,
¢, holds in the context, k. Secondly, each context has its own vocabulary, i.e. a set of
propositional atoms which are defined or meaningful in that context. The vocabulary
of one context may or may not overlap with another context.



2.1 Syntax

We begin with two distinct countably infinite sets, K the set of all contexts, and P the
set of propositional atoms. The set, W, of well-formed formulas (wffs) is built up from
the propositional atoms, P, using the usual propositional connectives (negation and
implication) together with the ist modality.

Definition (W): W="PU(-W)U (W — W)U ist(K, W)

The operations A, V and <+ are defined as abbreviations in the usual way. The
term literal is used to refer to a propositional atom or the negation of a propositional
atom. We use £¢ to represent either the formula ¢, or its negation —¢. We also use
the following abbreviations:

) =9
R,¢) = ist(k1,ist(Ks,...,1ist(Kkn,9)))
ist*(R,¢) := tist(ki,List(ky,- -+ ist(kn, @) -+))

when % is the context sequence [k, kg, ...,%,]. In the definition of ist® all the ist’s
need not be of the same parity. PROP is the set of all well formed formulas which do
not contain ist’s. If ¥ is a formula containing distinct atoms ps,...,p,, then we write
¥(¢1,...,¢n) for the formula which results from 1 by simultaneously replacing all the
occurrences of p; in ¥ by ¢;. We say that ¢(¢1,...,¢,) is an instance of 3.

We have chosen to develop a modal logic rather than to reifying sentences and
treat ist as a regular predicate, because (1) it leads to a more natural semantics
(defined in the following subsection), and (2) the language does not allow self-referential
statements, thus avoiding paradoxes. Although self-referential formulas are relevant for
developing theories of truth, they are not needed for describing states of affairs which
hold in particular contexts. Therefore, the loss of expressive power due to lack of self-
referential formulas will not be missed in our logic. The latter approach, of reifying
formulas, is taken by Attardi and Simi in [1]. We further discuss their work in §7.

2.2 Semantics

We begin with a system which makes as few semantic restrictions as possible. Other
systems, defined in section §3, are obtained by placing restrictions on the models. To
explain the semantics we first introduces a naive notion of a model, which is then refined
in two stages.

Naively, a context is modelled by a set of truth assignments, that describe the
possible states of affairs of that context. Thus a model will associate a set of truth
assignments with every context. These truth assignments reflect the states of affairs
which are possible in a context. For a proposition to be true in a context it has to be
satisfied by all the truth assignments associated with that context. Therefore, the ist
modality is interpreted as validity: ist(x,p) is true iff the propositional atom p is true
in all the truth assignments associated with context k. Treatment of ist as validity
corresponds to Guha’s proposal for context semantics, which was motivated by the
Cyc knowledge base. A system which models a context by a single truth assignment,



thus interpreting ist as truth, can be obtained by placing simple restrictions on the
definition of a model and by enriching the set of axioms.

However, this naive model is not powerful enough to represent some properties
desired of contexts. Therefore, we need to refine our naive notion of a model. We do
this in two stages:

Firstly, the nature of a particular context may itself be context dependent. For
example, in the context of the 1950’s, the context of car racing is different from the
context of car racing viewed from today’s context. This naturally leads to considering
sequences of contexts rather than a context in isolation. So, a model will associate a
set of truth assignments with a context sequence, rather than an individual context (as
was the case in the naive view). We refer to this feature of the system as non-flatness.
It reflects on the intuition that what holds in a context can depend on how this context
has been reached, i.e. from which perspective it is being viewed. For example, non-
flatness will be desirable if we represent the beliefs of an agent as the sentences which
hold in a context. A system of flat contexts can easily be obtained by placing certain
restrictions on what kinds of structures are allowed as models, as well as enriching the
axiom system (cf. §3.2).

Secondly, since different contexts can have different vocabularies, some propositions
can be meaningless in some contexts, and therefore the truth assignments describing
the state of affairs in that context need to be partial.

Now we are ready to define the general model:

Definition (9): In this system a model, M, will be a function which maps a context
sequence K € K* to a set of partial truth assignments,

Mm e (K —, P(P —p 2)),

with the added conditions that

1. (VR)(Yv1,v2 € M(R))(Dom(v1) = Dom(vs))

2. Dom() is a subtree of K* rooted at some context sequence Ro.

We write &™ to denote the set of partial truth assignments 2 (%). Note that ™ can
be empty. Since all the elements of M(%) have the same domain, which is imposed by
condition 1. above, we will write Dom(9(%)) to refer to this domain. The collection of
all such models will be denoted by M.

Note that condition 1 is actually not a restriction, in the following sense. Given
a model M we construct a new model (satisfying 1.) by restricting each assignment
(associated to a context) to the atoms which all assignments (associated to that context)
have in common. The resulting model will satisfy the same sentences. Formally, assume
oM is a model which does not satisfy restriction 1. We can define a model M’ which
satisfies condition 1, in the following fashion:

Dom(m'(k)) := (] Dom(v),

veM(r)

M (k) :={v'|(FveME)(v'Cv) and Dom(r') =Dom(M'(%))}.



It will turn out that models 9 and M’ satisfy the same formulas.

We could have assumed the existence of a fized outermost context which would result
in Dom() being a tree rooted at empty sequence € (i.e. the fixed outermost context).
This would result in slightly simpler notation and proofs. However, although more
complicated, our definition is based on the intuition that there is no outermost context.
Since there is no outermost context, it should be possible to write automated reasoning
systems which are never permanently stuck with the concepts they use at a given time
because they can always transcend their current context.

2.2.1 Vocabularies

To capture the intuition that different contexts can have different vocabularies, we
make the truth assignments in our model partial. The atoms which are given a truth
value in a context sequence are defined by a relation Vocab C K* x P. Given a Vocab,
the vocabulary of a context sequence K, or the set of atoms which are meaningful in that
sequence, is {p | <&, p> € Vocab}.

Definition (Vocab of 9):  We define a function Vocab : M — P(K* x P), which given
a model returns the vocabulary of the model:

Vocab(9) := {<®, p> |k € Dom(M) and p € Dom(M(%))}

We say that a model M is classical on vocabulary Vocab iff Vocab C Vocab(9m).

The notion of vocabulary can also be applied to sentences. Intuitively, the vocabu-
lary of a sentence relates a context sequence to the atoms which occur in the scope of
that context sequence. In the definition we also need to take into account that sentences
are not given in isolation but in a context.

Definition (Vocab of ¢ in K): We define a function Vocab : K* x W — P(K* x P)
which given formula in a context, returns the vocabulary of the formula.

{<®, >} peP
_ . _ ) Vocab(, ¢o) ¢ is —¢o
Vocab(%, ¢) = Vocab(% * &, ¢o) ¢ is ist(k, ¢o)
Vocab(E, ¢o) U Vocab(K,¢1) ¢ is ¢ — ¢1

It is extended to sets of formulas as follows:

Vocab(%, T) = | | Vocab(%, ).
$€T

Note that it is only in the propositional case that we can carry out this static analysis
of the vocabulary of a sentence. This will not be possible in the quantified versions.
Also note that our definition of vocabulary of a sentence is somewhat different from
Guha’s notion of definedness. Guha proposes to treat ist(k,¢) as false if ¢ is not in
the vocabulary of the context «.



2.2.2 Satisfaction

We can think of partial truth assignments as total truth assignments in a three-valued
logic. Our satisfaction relation then corresponds to Bochvar’s three valued logic, [2],
since an implication is meaningless if either the antecedent or the consequent are mean-
ingless. We chose Bochvar’s three valued logic because we intend meaningfulness to be
interpreted as syntactic meaningfulness, rather then semantic meaningfulness which
could be ascribed to Kleene’s three valued logic.

Definition (): Ifv € ™ and Vocab(®, x) C Vocab(M), then we define satisfaction,
M, v = X, inductively on the structure of x as follows:

My g piff v(p) =1, peP
M,v == —¢ iff not M,v = ¢
Mv == ¢ — ¢ iff M,v = ¢ implies M,v = ¢

M, v =5 ist(ky, @) iff Vin € (R* k)™ M =g, ¢

If the preconditions v € ™ and Vocab(%,x) C Vocab(") do not hold, then neither
M, v Ex x nor M, v Ex —x.

In the ist clause of the satisfaction relation note that ¥ * k; € Dom(M) since
Vocab(%,ist(k1,¢)) C Vocab(9), and the Dom(M) is a rooted subtree; i.e. if & >
Fo, then not M, v 5z x. We write M =5 x iff (Vocab(%®,x) C Vocab(9) and Vv €

™ M, v == x); we also write =5 x iff for all models M classical on Vocab M =% x.

2.3 Formal System

We now present the formal system. To do this we fix a particular vocabulary, Vocab C
K* X P, and define a provability relation, l—\glocab. Since Vocab will remain fixed through-
out we omit explicitly mentioning it and write Fz ¢ instead. Similarly, to avoid con-
stantly stating lengthy side conditions we make the following convention.

Definedness Convention: In the sequel, whenever we write Fz¢ we will be as-
suming implicitly that Vocab(%, ¢) C Vocab.

Axioms and inference rules are given in table 1. Note that the rules of inference
preserve the (definedness convention).

Assuming that our system was limited to only one context, the rule (CS) would be
identical to the rule of necessitation in normal systems of modal logic, and the axiom
schema (K) would be identical to the the standard axiom schema K. So, by ignoring
axiom schema (A), in the single context case, our formal system is identical to what
is usually called the normal system of modal logic, characterized by (PL), (MP), (K),
and the rule of necessitation. The axiom schema (A) is needed in order to accommodate
the validity aspect of the ist modality; it is derivable in the system which treats ist
as truth (see §3.3) and does not allow inconsistent contexts. We will also discuss the
ramifications of this schema in §6 and §7.



(PL) Fz ¢ provided ¢ is an instance of a tautology.

(K) g ist(k1,¢ = ¢) — ist(k1,P) — ist(k1,9)

(A) kg ist(k1,ist(k2,¢) VoY) — ist(ky,ist(ks, P)) V ist(k1,?)
Fe¢ Fro— 9 P, @

CS ided % < Rg.
I—Ez)b ( ) l_Eist([{,l,¢) pI‘OVl ed K S Ko

(MP)

Table 1: Axioms and Inference Rules

2.3.1 Provability

A formula ¢ is provable in context E with vocabulary Vocab (formally tz¢) iff Fz¢
is an instance of an axiom schema or follows from provable formulas by one of the
inference rules; formally, iff there is a sequence [ 5, ¢1,..., F&, & such that &, = &,
and ¢, = ¢ and for each 1 < n either K, ¢; is an axiom, or is derivable from the earlier
elements of the sequence via one of the inference rules. In the case of assumptions,
formula ¢ is provable from assumptions T in context Ko with vocabulary Vocab (formally

T l—goocab, or again taking into account that Vocab is fixed T bz, ¢) iff there are formulas
@15+ sPn € T, such that Fz, (41 A -+ A @) — ¢. Note that due to the definedness
convention if T 5, ¢ then Vocab(T) C Vocab.

2.4 Consequences

We now prove the following useful theorems and derivable rules of this system.
(C) Fz ist(k1,¢) Aist(k1,¥) — ist(k1,d A YP)
Or) Fz ist(k1, @)V ist(k1,¥) — ist(k1, ¢V )
M) g ist(k1, ¢ AY) — ist(k1,¢) A ist(k1, )
ND) Fgx —ist(ky,ist(k2,¢)) — ist(k1, "ist(K2,¢))
A_)  Fg ist(ki,ist(ka, @) V) — ist(ky, "ist(Ke, @) V ist(k1, )
Frany @ P

(
(
(
(

CSE
( ) Feist(k1, ) <> ist(k1,9)
Fedr & @1 Fron & &
(REP) 1 & & ¢ p ¢ p provided ¥ (p1,...p,) € PROP.
l_F")b(Qélw .. 7¢n) < 1[)( 19" 7¢n)
where pi,...p, are some new distinct propositional atoms. (M) is easily derivable from

(K), (PL), and (MP). The proofs of (C), (Or), and (REP) are identical to proofs of
corresponding theorems in a normal system of modal logic [7]. Note that (M) is the
converse of (C).

We first observe that not only are (ND) and (A_) derivable in our system, but
that both (ND) and (A_) are equivalent to (A). The proof follows.



Proof (ND): We start with an instance of a propositional tautology:
Frany 1st(K2, @) V —ist(ka, @).
Now by the context switching rule (CS) we obtain
b= ist(k1,1ist(K2, @)V —ist(ka,¢)).
Using (A) and (MP):
bz ist(k1,1ist(K2, @)V ist(ky, ist(ka, ¢)).
Which by definition of disjunction is just
b= —ist(k1,ist(ks, @) — ist(k1, "ist(k2,¢)).

This completes the proof of (ND) from (A). Now we show that in our system (A) is
derivable from (ND). We start with an instance of (ND)

Fr —ist(ky,ist(ke, @) — ist(ki, "ist(ks, @)).
By propositional logic it follows that

F& (ist(k1, ist(ka, @) — ist(k1,?)) = (mist(k1, ist(k2, P)) — ist(k1,¥)).
Together with an instance of axiom schema (K):

bz ist(k1, 7ist(ks, @) = ¢¥) — (ist(k1, 7ist(k2, @) — ist(k1,¥))
using (PL) and (MP) this allows us to infer

b= ist(k1, 7ist(ks, @) = ) — (—ist(ky,ist(k2, @) — ist(k1,¥))

which is in fact (A). Onp

The proof of (ND) from (A_) is identical to the proof of (ND) from (A) with the
exception that (A_) is used in the place where (A) was used before. Now all that
remains to be shown is that (A_) is derivable from (ND) in our system.

Proof (A_): We start with an instance of (ND)
Fe —ist(k1, ist(ke, @) — ist(k1,ist(ks, @)).
By propositional logic it follows that
Fz (ist(k1,1ist(k2, @) — ist(k1,¥)) — (—ist(k1, "ist(ke2, @)) — ist(k1,9)).
Together with an instance of axiom schema (K):
Fz ist(k1,1ist(ka, @) — ¥) — (ist(k1,1ist(ka, @)) — ist(k1,7))
using (PL) and (MP) this allows us to infer

b= ist(k1,1ist(K2,¢) — ¥) — (—ist(k1, 7ist(k2, @) — ist(k1,9))



which is in fact (A_). Oa_

Proof (CSE): Assume bz, ¢ — 9. Applying the context switching rule (CS) we
get Fzist(k1,¢ — 1), and using the axiom schema (K) it follows that -z ist(k1,¢) —
ist(k1,%). The other direction is identical. Ocsg

Note that in the same way that the context switching rule is analogous to the rule
of necessitation (RIN) in modal logic, the (CSE) rule resembles the (RE) rule in modal
logic (from ¢ < 9 infer O¢ > O3).

The context principles are easily generalized to utilize the abbreviation ist(¢,¢),
resulting in theorems:

(K*) Fx ist(c,¢ — ¥) — ist(c, ¢) — ist(c,9)
(A*)  Fz ist(c,ist(k1,¢) V) — ist(T,ist(k1,¢)) V ist(T, )
(A*) k7 ist(c,~ist(ky,¢) V¢) — ist(c, ~ist(ky, ¢)) V ist(T, )

l__*? ¢

) Fisee)

Proof (K*): The proof by induction on the length of the context sequence ¢. The
base case is the schema (K). To prove the inductive step we start with the inductive
hypothesis:

Frwe i8t(C, ¢ — ) — ist(T, ¢) — ist(T, ).

Applying the context switching rule (CS) we get:
Fz ist(k,ist(c, ¢ — ¢) — ist(c,¢) — ist(c,?))
and together with schema (K) this gives:
Fz ist(k *C,¢ — ¥) — ist(k,ist(T, ¢) — ist(T,9)).

Finally applying schema (K) to the right hand side, together with the transitivity of
implication and (MP) we get

b ist(k *xC,¢ — ¢) — ist(k * €, ¢) — ist(k * ¢, 7))

thus proving the inductive step. Ok«

Proof (A*):  The proof is an induction on the length of the context sequence ¢. The
base case is simply (A). The inductive step is proved by starting from the inductive
hypothesis

Free ist(C,ist(k1,9) V) — ist(c,ist(k1,¢)) V ist(c,9)
and applying the context rule (CS) and the axiom schema (K) we get

b= ist(k * C,ist(k1,4) V ¥) — ist(k,ist(c,ist(k1,¢)) V ist(T,9)).



The right hand side can be rewritten using (A\), and applying the transitivity of impli-
cation and (MP) results in

F= ist(k * C,ist(k1,¢) V¢) — ist(k *x ¢, ist(k1,¢)) V ist(k * T, 9)

which proves the inductive step. Oax

The proof of (A*) is analogous to the above proof of (A*). The proof of (CS*)
is trivial by applying the context switching rule (CS) once for every context in the
context sequence ¢.

2.4.1 Conjunctive Normal Forms

In this section we show that any formula is provably equivalent to one in a certain
syntactic form. This equivalence plays an important role in the completeness proof.

Definition (CNF): A formula ¢ is in conjunctive normal form (CNF) iff it is of the
form Ey A E; A -+ A\ Ej, and each E; is of the form ay; Va;a V - -+ V ayy,, where each oy
is either a literal (cf. §2.1) or ist*(c, () for some disjunction of literals 3. Note that
r; and [ can be 1.

Lemma (CNF): For any formula ¢ and context sequence ¥ which satisfy the de-
finedness conditions (Vocab(®, ¢) C Vocab), there exists a formula ¢* which is in CNF,
such that Fz¢ < ¢*.

Proof (CNF): The proof is by induction on n, the maximum nesting of ist’s in
the formula ¢. The base case where n = 0 is trivial since ¢ <+ ¢* is an instance of
a tautology, and Vocab(g,¢) = Vocab(g, ¢*), and therefore Fz¢ < ¢* is an axiom.
Assume the lemma is true for formulas whose maximal nesting of ist’s is n. We
consider two cases. Let ¢ be a formula with » + 1 nestings of ist’s. First assume
that ¢ is of the form ist(k,%). Since ¥ has maximum n nested ist’s, by inductive
hypothesis we can assume that ¢ = ¢* is in CNF. The ist can be propagated through
the conjunctions in ¥* using (M) and (C) axiom schemas, and through the relevant
disjunctions by using the (A) axiom schema. More formally, assume

v =AVas
i
where each a;; is a literal, ist(<,3), or —ist(<,3), for some disjunction of literals 3.
Then ist(k,%*) is
ist(k, \ V o).
J

%

By the (M) axiom schema this is equivalent to
N ist(x,\ ai;j).
: J

This can be rewritten using the commutative and associative properties of disjunction
to
/\ iSt(l‘L, isti(Ei]_,/Bi]_) VeV isti(fﬂ,ﬂil) \% ,8i1+1)

k2



where 3;; is a disjunction of literals. If [ = 0, then the above formula is in CNF. If
[ > 1, then the (A), (A-), and (Or) axiom schemas allow us to propagate the ist
through the disjunction resulting in

/\ iSt(l‘&, isti(Eil,ﬂil)) VeV iSt(K,, isti(Eil,/Bil)) \% iSt(Kfa/Bil-l—l)-

2

The latter is of course

/\ isti(& * Eil,ﬂil) VeV isti(n * Eil,ﬂil) \% ist(ﬂ,ﬁiH_l).

In the general case we can write ¢ as p(6:,...,0,), where 6; = ist*(e;,x;) and
¢ = p(p1,...,pn) is an element of PROP, for some new distinct propositional atoms
Ply-.+,Pn. By the above and (REP) we have Fzu(6y,...,6,) < u(65,...,0;), where
6; is the CNF of §;. We may write u(0},...,6%) as x(é1,. . .,&n) where & = ist®(c;, ;)
and x(q1,-..,9m) € PROP for some new propositional atoms g,...,¢,. We now let
x*(g1,-..,9m) be the CNF of x(qi1,...,¢n). By (PL) we have Fzx(é1,...,6n) <
x*(&1,...,&n), and furthermore Fz¢ < x*(é1,...,&n). Since m; is a disjunction of
literals and thus x*(é1,...,&n) is in CNF, we conclude that x*(&1,...,&n) is ¢* OCNF

2.5 Soundness

In this section we demonstrate the soundness of the system.

Theorem (soundness): If Fz ¢, then for any model M which is classical on Vocab
we have that M =z ¢. Furthermore, if T 5 ¢, then for any model M which is classical
on Vocab we have that if for all p € T 9 =5 9, then M =5 ¢.

Proof (soundness): We need to show that instances of all the axiom schemas are
valid and that the inference rules preserve validity.

Case PROP: M =z ¢, provided ¢ is an instance of a tautology and Vocab(g, ¢) C
Vocab(9). When 9 is classical on ¢ the satisfaction relation for implication and nega-
tion is defined same as for classical propositional logic.

Case K: M =5 ist(ki,¢ — ¢) — ist(k1,¢) — ist(k1,v), provided Vocab(k x*
K1,¢ — ) C Vocab(M). Assume M =5 ist(k1,¢ — ¢) and M =5 ist(k1, ), for M
classical on Vocab(K*£k1,¢ — 9). Then from the definition of satisfaction for ist it fol-
lows that (Vi1 € (R* k1)) (M1 Fpye, @ — %) and (Vor € (R*£1)7) (M, 11 Fryr, 9)-
By the definition of satisfaction for implication it follows that (Vv; € (% * k1)™)
(M, 1 Frye, ¥), and again by the definition of satisfaction for the ist modality that
M =x ist(k1,?).

Case A: M |x ist(k,ist(k2,d)VY) — ist(ky,ist(ks, d))Vist(k1,), provided
Vocab (g, ist(k1,ist(k2,¢) V 9)) C Vocab.

For o classical on

Vocab(®,ist(k1,ist(k2,¢) V ¥))



assume that
M =x ist(ky,ist(ke, @)V P).

Now by the definition of satisfaction for ist it follows that

(Viy € (R * k1)™) (M, 11 |=EMl ist(k2, ) V).
Again by the definition of satisfaction for ist it follows that
(Vor € (R* k1) ") (Vv € (R* k1% 52) ") (M, 12 Fypyan, @) OF D1 gy, ¥)
Since v; does not occur in the first disjunct it follows that
(Vs € (Fx k1% k2)™) (M 12 Freun, @) o (Vo1 € (R*£1)™) (M, 01 Frpw, ¥)-
So by the definition of satisfaction for ist this becomes:

M Ex ist(ki,ist(ks2, @)V ist(k1,v).
Next we prove that the inference rules preserve validity.

Case MP: if M =z ¢ and M =5 ¢ — ¥ then M =5 1. Like in the case of (PROP)
we argue that (MP) must hold in a context since in a fixed context the satisfaction
relation for implication is defined same as for classical propositional logic.

Case CS: if M |=z.x, ¢ then M =5 ist(k1,¢). By definition of validity in a model
M Ere, ¢ iff for all v € (K * k1)™, M, v = ¢. By definition of satisfaction for ist
this is equivalent to M =% ist(K1,®) Csoundness

2.6 Completeness

We begin by introducing some concepts needed to state the completeness theorem.

Definition (satisfiability): A set of formulas T is satisfiable in contezt ¥ with
vocabulary Vocab iff there exists a model M classical on Vocab, such that for all ¢ € T,
m = .

Definition (consistency): A formula ¢ is consistent in K with Vocab, where
Vocab(%,$) C Vocab iff not Fz—¢. A finite set T is consistent in ¥ with Vocab iff
M T, the conjunction of all the formulas in T, is consistent in ¥ with Vocab. An infinite
set T is consistent in K with Vocab iff every finite subset of T is consistent in ¥ with
Vocab. A set T is inconsistent in £ with Vocab iff the set T is not consistent in ¥ with

Vocab.

A set T is maximally consistent in ¥ with Vocab iff T is consistent in ¥ with Vocab
and for all ¢ ¢ T such that Vocab(k,$) C Vocab, T U {¢} is inconsistent in & with
Vocab.

As is usual, an important part of the completeness proof is the Lindenbaum lemma
allowing any consistent set of wifs to be extended to a maximally consistent set.



Lemma (Lindenbaum): If T is consistent in & with Vocab, then T can be extended
to a maximally consistent set Ty in & with Vocab.

Proof (Lindenbaum): Assume T is consistent in ¥ with Vocab. Enumerate all the
sentences ¢; such that Vocab(k,¢;) C Vocab. We define an infinite chain of sets of
sentences, T1, Ty, ..., inductively. T; := T, and T;,, is either T; U {¢;} or T; U {—¢;},
whichever is consistent. Note that one has to be consistent, because if both T; U {¢;}
and T; U {—¢;} were inconsistent then T; U {¢; V =¢;} would also be inconsistent, and
since ¢; V —¢; is a tautology this would mean that T; was inconsistent. The set U®;T;
is maximally consistent. Opjndenbaum

Now we proceed to state and prove the completeness of the system.

Theorem (completeness): For any set of formulas T, if T is consistent in Ko with
Vocab, then T is satisfiable in Ky with Vocab.

Proof (completeness): Assume T is consistent in Ko with Vocab. By the (Lin-
denbaum lemma) we can extend T to a maximally consistent set Toq. From T, we
will construct the model My. For each ¥ = Ky *x ¢ € K* define

Try := {¢ | To l_ﬁo iSt(E7 ¢)7¢ € PROP}

Lemma (Tz;): Tz is closed under logical consequence: for all ¢ where Vocab(g, ¢) C
Vocab, if ¢ tautologically follows from Tz, then ¢ € Tx,.

Note that T, need not be either maximally consistent or even consistent. Now, using
only the sets Tz, of formulas from PROP, we will define a model 9, for the set of
formulas Ty. We define the domain of M,

Dom (M) := {k| & < Ko, Ik € Dom(Vocab), &' < &}
and for all K € Dom(M)
Mo(K) := {v|Dom(v) = Vocab(g), V¢ € Tz;,v(¢) = 1}.

In the above, 7 is the unique homomorphic extension of v with respect to the proposi-
tional connectives. All that remains to be shown is that My as defined is a model, i.e.
that it satisfies the two additional conditions imposed in the definition of a model. we
first note that it clearly meets condition 1, since all the truth assignments associated
with a context must have the same domain. Condition 2 is met since Dom(M) as
defined is a subtree rooted at Ko. Note that if Tz, is empty (which corresponds to
the case where Vocab(k) = (), then My(%) is a singleton set, whose only member is
the empty truth assignment. Finally, to establish completeness we need only prove the
truth lemma. The proof of the truth lemma is based on the CNF construction and is
the novel aspect of this completeness proof.

Lemma (truth): For any ¢ such that Vocab(%o, ¢) C Vocab,

peTo iff M=y, 6



Clearly, if ¢ € T, then also ¢ € Ty, and therefore by truth lemma we get Mo =5, ¢.
Note that in the case where T is a single formula, ¢, which satisfies the definedness
conditions, the contrapositive of the conclusion is: My =5, —¢ implies Fz —¢.

Ijcompleteness

2.6.1 Proof of the Truth Lemma

Before we give the proof of the truth lemma, we need to state a property of the model
Moy that is needed in the ist case of the truth lemma.

Lemma (9): Let My be a model as defined from Ty in the completeness proof.

Then for all ¢ € PROP where Vocab(®y * ¢, ¢) C Vocab,

To Fx, ist(¢T, @) iff for all v € My(Fo *T) v(d) = 1.

A frequently used instance of the My lemma is that Tq 5, ist(c, pA—¢) iff Me(Koxc) =
0, for all ¢ satisfying the (definedness condition).

Proof (truth lemma): Instead of proving ¢ € Ty iff Mo =5, ¢ we will prove the
statement

(TL) (Vo € W)y isin CNF implies (¢ € To iff Mo =5, ¥).

To see that the former follows from the latter, assume ¢ € Ty. By the (CNF lemma),
there exists formula ¢* in CNF such that Fz, ¢ <> ¢*. Using maximal consistency of
To, it follows that ¢* € To. Therefore, by (TL) it must be the case that Mo =5, ¢*.
Our logic is sound: Mo =, ¢* iff Mo =5, ¢, and thus we conclude that My =, ¢.

We can simply reverse the steps of the argument to prove the other direction of the
biconditional.

We prove (TL) by induction on the structure of the formula . In the base case v
is an atom, and thus in CNF. From the definition of My(%o) it follows that p € Ty &
Mo =%, p- In proving the inductive step we first examine ¢ = x V . The inductive
hypothesis is that the lemma is true for formulas xy and p. Assume x V p is in CNF.
Then both x and p must also be in CNF. Since Ty is maximally consistent x V p € Tg
iff either x € Ty or p € Ty. By the inductive hypothesis this will be true iff either
Mo Fx, X or Mo =5, H, and by the definition of satisfaction iff Mo =, x V . The
inductive step for conjunction and negation is similar. We make use of the fact that
if x A p is in CNF, then so are both x and p; and if —x is in CNF, then so is x. The
interesting case is when % is an ist formula. Assume that i is in CNF. Then % must
be of the form

Ko Ko

¥ = ist(c, x),
where  is a disjunction of literals. The context sequence ¢ will sometimes be written
as K1 %---*K,. We will examine two cases, depending on whether or not any of the sets
of sentences Tz, ,s')4 where ¢ < ¢, are inconsistent. The sets T (z,.e')4, where ¢ < ¢,
are all consistent iff the formula

(D7) ist(c,¢) — —ist(T, )



is in Ty, for any wif ¢ which satisfies the definedness condition. The proof of this
is identical to the soundness and completeness proofs of a context system with axiom
schema (D) w.r.t. the set of consistent models, given in §3.3. Formula (Dz) is equivalent
to

_'iSt(Ea(:Zs N _'¢’) € To,

for all ¢ satisfying the definedness condition; the proof carries over from normal systems

of modal logic. Now we state a useful consequence of (Dz)’s.

Lemma (D7):
Let ¢ be k1 * -+ * K. If D(x;sccxr,,_;) € To, then
ist*(c,¢) € Ty iff =+ist(e,4) € To

for any formula ¢ which satisfies the definedness convention. The sign on the right
hand side is positive iff there is an even number of negations in the ist* on the left

hand side.

Now we examine the two cases need to prove the inductive step for ist case of the
truth lemma.

Case D(x,v...trn,_;) € To:  In this case we assume D, v...xx,_,) € To and that 3 € Ty.
Then by the Dz lemma:

ist¥(e,x) € To iff =+ist(c,x) € To.

We first consider the positive case.
ist(c,x) € To iff To kg, ist(T,x).

Now by (9 lemma) and the definedness condition Vocab(%q * ¢) C Vocab we have
To Fg, ist(c,x) iff (Vv e Mo(R))(T(x) = 1).

By the definition of satisfaction:
(Vv e mo(R))(T(x) =1) Hf Mo =5, ist(T,x).

Now since D4, 4...er,,_,) € To, and by (9, lemma) we obtain:
Mo =, ist(c,x) iff Mo =, ist*(c, x).

The negative case where —ist(¢,x) € Ty follows since

-ist(c,x) € To iff Mo =5, —ist(T,x),

is equivalent to
ist(c,x) € To iff Mo =5, ist(T,x),

by the maximal consistency of Ty, the definition of the satisfaction relation, and the
usual definedness conditions.

Case D(x,vsr,,_;) & To: In the second case, D(x,ssx,_,) & To. Let j be the index
of the first inconsistent context; formally D TP ¢ Ty and D(xys-sr;_1) € To. Then



for all ¢ satisfying the definedness condition we have —ist(k; *--- % k;,d A =¢) & T.
Now by maximal consistency of Ty:

—ist(ky k- kK5, d A @) & Toiff ist(ky * -+ * Kk, A ) € T.
Furthermore, for all ¥ satisfying the definedness condition, by (K*) and (MP)
ist(ky * - - %k, 0 A—g) € To i ist(kyx---xk;9) € To.
Thus, T (#oxwys-4r;)+ 1S inconsistent, Mo(Ko * k1 * - -+ * k;) = (), and consequently
ist(ky *---*xkj,0) € To i Mo =

%o ist(ky %« * Kj, Q)

for all ¢ such that Vocab(RKq * k1 * - - - * k;,¢) C Vocab.

Now assume that ¥ € Ty. Since D(xys-xr;_1) € To, we may conclude using the (Dz
lemma) that:

ist*(e,x) € To iff
tist(ky %%k, £istF (ki1 % -+ % Koy X)) € To.
Now, we consider the positive case:
ist(ky * -+ % ky,EistT (k0 %o * K, X)) € To
which is equivalent to, due to the above property of the context sequence x; * - - * &3,
Mo Fr, ist(k1 * - * K5, t+istE(kjpq %0 * KnyX))-

Since D (x,s...en;_,) € To and by (Mo lemma), this is equivalent to:

Mo = ist* (T, x).

Ko

The negative case is reduced to the positive case analogously to the negative case
of the D(x,+.xx,_) € To case. Note that in the entire proof of the inductive step for
ist we did not need the inductive hypothesis, making use only of the special form of
x which is guaranteed because % is in CNF. Oyruth—lemma

2.6.2 Proof of the Minor Lemmas

Proof (Dz lemma): First note that the formula ist(k;,ist(k2,---ist(kn, @) ),
which has only positive occurrences of ist’s, can be written as ist(c,¢). Therefore
the formula ist*(e, ¢) can be written as

ist(€1, 7ist(Ty, ~ist(Ts, - - 0ist(T;,4) - ),
where € = ¢; *---*¢;. Now assume that ist*(¢, #) € To. Then using this fact we have
ist(cy, ~ist(Cy, - - —ist(Cj_1, nist(C;,P) -+ +))) € To.
This is in turn equivalent to

—ist(cy,ist(Cy, - nist(C;_1, nist(T;, ) -+))) € To



since D¢, € Ty, and applying (K*) and (MP). Repeating this procedure (using the fact
that Dg, € To,...,Dg;_, € To) we can “bubble” out the relevant negations to obtain
one direction of the desired result:

ist(cy *---x¢;,¢4) € Ty, if j is even

. R
if ist7(¢,¢) € To then {ﬁist(a*...*zj,gé)eTo, if j is odd

The other direction follows from (ND). Op_

Proof (Tz; lemma): To prove that Tz, is closed under logical consequence, assume
¢ tautologically follows from Tz;. Then by the compactness of propositional logic
there exist formulas ¢y,...,¢, in Tz, such that {¢o,...,d,} tautologically imply ¢.
By the axiom schema (C), Tz, is closed under conjunction. Therefore, we get ¢ =
¢o A ... N ¢, € Tzy, and by the definition of Tz, this means that ist(c,9) € To,
where € = Ko *¢. Therefore 1) — ¢ is a tautology, and since Vocab(%,y — ¢) C Vocab,
it is also an axiom in ®; formally Fz1 — ¢. Applying the inference rule (CS*) we get
bz, i8t(C,% — ¢), and together with ist(¢,%) € Ty and axiom schema (K) it must
be the case that ist(<,¢) € To. Or,,

Proof (9 lemma):

Case =: Trivial from the construction of M.

Case <: Suppose ¢ € PROP, Vocab(r, ¢) C Vocab, and Ty )Lgoocab ist(<, ¢). Then
by maximal consistency of Ty, —ist(c,¢) € To. By Tx; lemma, we get that ¢ does
not tautologically follow from Tz, or equivalently Tz, U{—¢} is consistent. Therefore,
there is a truth assignment which satisfies all the formulas in Tz, but does not satisfy
¢. Thus there exists a v € My(K) with v(¢p) = 0. O,

3 Correspondence Results

In this section we provide soundness and completeness results for several extensions of
the system described in §2. The extensions correspond to certain intuitive principles
concerning the nature of contexts. In each extension the syntax and semantics are the
same as in the general case described in §2, and the (definedness convention) still
holds. Only the class of models and axioms are modified.

3.1 Consistency

Sometimes it is desirable to ensure that all contexts are consistent.

In this system we examine the class of consistent models, €onsistent. A model M €
Consistent iff for any context sequence ¥ € Dom(9), such that & < Ry,

m() # 0,

where %y is the root of the subtree of the domain of M. The additional restriction that
K < Ko is needed because our language does not allow us to express facts about the



consistency of the root context ®y. The following axiom schema is sound with respect
to the class of consistent models Consistent:

(D) kg ist(k,¢) — —ist(k, )

for any ¥ € Dom(), provided the usual definedness convention is satisfied. Axiom
schema (D) is also commonly used in modal logic, and it is sound and complete for the
set of serial Kripke frames, in which for each world there is another world from which
it is accessible from. Note that axiom (D) is equivalent to

Fz —ist(k, ¢ A ).

Theorem (completeness): The general context system with the (D) axiom schema
is complete with respect to the set of models Consistent.

Proof (completeness): The proofis based on the completeness proof for the general
system. To prove completeness we need to show that given a consistent set of sentences
Ty in context Ko, the model My as defined in the completeness proof is a consistent
model; formally M € Consistent. Assume that for some context sequence Kxk  M(K *
k) = (. Then by the definition of satisfaction it follows that My FEree ¢ A —¢ for any
formula ¢ which satisfies the definedness condition. Note that due to the definition of
the domain of the model My, for any context in the domain of My there will always
exist a formula ¢ which satisfies the definedness condition. By the context switching
rule it follows that My 7 ist(k,d A —¢), and thus by axiom schema (M) it must be
the case that My =5 ist(k, ) A ist(k, ~¢), which contradicts the axiom schema (D).

Ijcompleteness

3.2 Truth

It might be more intuitive to define the ist modality to correspond to truth rather
than validity; incidently this is also where the ist predicate got its name: is true.
Truth based interpretation of the basic context modality also corresponds to the original
suggestions by McCarthy [18]. In this case a context is associated with a single truth
assignment rather than a set of truth assignments.

We examine the class of truth models, Truth. A model M is a truth model, formally
M € Truth, iff for any context sequence ¥ € Dom(M), such that ¥ < %o,

|m(r)| < 1.

The following axiom schema is sound with respect to the class of truth models Truth:

(Tr) Fz ist(k,¢)V ist(k,¢)

K € Dom(M), provided the usual definedness convention is satisfied. Note that (Tr) is

the converse of (D). Also note that a weak form of truth, namely (ND), is equivalent
to (A).



Theorem (completeness): The general context system with the (Tr) axiom schema
is complete with respect to the set of truth models Truth.

Proof (completeness): The proofis based on the completeness proof for the general
system. To prove the completeness we need to show that given a consistent set of
sentences Ty in context Ky, the model M, as defined in the completeness proof is a
truth model. Assume that 9y is not a truth model. Then for some context sequence
K € Dom(My) there are at least two truth assignments,

{v1i,v2.} CM(R), 11 # va.

Therefore, for some propositional atom p it must be the case that v1(p) # v2(p), and
by the definition of satisfaction it follows that My =5, —ist(k,p) A ~ist(x,p), which
contradicts the soundness of axiom (Tr). Ocompleteness

Previously we said that (A) is derivable in a system which contains (D) and (Tr).
In fact, a stronger formula is true of this system:

bz ist(k, ¢V 9¥) < (ist(k, ) V ist(k,)).

3.3 Flatness

For some applications all contexts will be identical regardless of where they are exam-
ined from. This type of situation will often arise when we use a number of independent
databases. For example, if I am booked on flight 921 in the context of the Northwest
airlines database, then regardless of which travel agent I choose, in the context of that
travel agent, it is true that in the context of Northwest airlines I am booked on flight

921.

In this system we examine a class of what we call flat models, Flat. A model M is
flat, formally M € Jlat, iff Dom (M) = K* and for any context sequences ®; and K», and
any context x,

M(K1 * k) = M(Ka * k).

When dealing with flat models it might be more intuitive to think of individual
contexts rather then context sequences. In that case M € 3Flat can be viewed as a
function which maps contexts to finite sets of partial truth assignments, in other words

MeKU{e} — P(P—p2)

with the side condition of general models that still applies:
(VR € KU {€})(Vv1,v2 € M(R))(Dom(r1) = Dom(r2))

The following flatness axiom schemas are sound with respect to the class of flat
models Flat:



(471 b ist(kg,ist(k1,d)) — ist(ky,d)

(57')  Fg ist(kg, ~ist(ki,¢)) — —ist(ky, )

providing the vocabulary also satisfies the flatness condition: for any context sequences
®1 and K,, and any context x,

Vocab(%; * k) = Vocab(%; * k).

The converse of the flatness axiom schema (47!), schema (4), corresponds of the
modal logic axiom schema S4 (provided that x; is the same as k3). Similarly, the
converse of (571), schema (5), corresponds to the modal logic axiom schema S5. Note
that both the schema (4) and the schema (5) are theorems in our system. We first
show the derivation of schema (5). Start with the tautology

ist(k, @) V ~ist(k, @)

and derive
ist(k1,ist(k,¢)) V ist(ky, 7ist(k, @))

by (CS), (A), and (MP). Then, by (47'), (REP), and (MP) it follows that
—ist(k,¢) — ist(k1, "ist(k,d))

which is schema (5). Now we show the derivation of schema (4). Start with the
tautology
ist(k, ) V ~ist(k, ¢).

Then by (CS), (A), and (MP) we get
ist(k1,ist(k,¢)) V ist(k1, 1ist(k, @)).
This formula, together with the instance of (57) yields
ist(k1, ist(k,¢)) — —ist(k, )

and (PL), implies
ist(k1,ist(k, 9)) V 7ist(k, @)

which is in fact schema (4).

It is interesting to observe that in every system with (47!) and (57!), (D) is also
derivable. Here is the proof. Start with a tautology

—(—ist(k, @) A ist(k,d)).

Therefore
—(ist(k1, "ist(k,d)) A ist(k1,ist(k,)))

by (471), (57') (4), (5), and (REP). Then by (C) and (REP)

—ist(k1, "ist(k, @) A ist(k, ¢)).



Now we apply (MP) to the above formula and

(_'iSt(Ela _'iSt(K’7¢’) A iSt(K'7¢))) - (_'iSt(ﬁ’h _"5[) A ¢))

(which is easily proved providing the vocabulary conditions are met) to derive

—ist(ky, P AY)

which is (D). In semantic terms, this means that any flat model is also a consistent
model. This is a reasonable property because if a context was inconsistent, then in
that context it would be true that all other contexts are also inconsistent. Due to
flatness, this would really make all the other contexts inconsistent. Another result
which is interesting is that (47') is derivable from schema (5) and (D); similarly (57')
is derivable from schema (4) and (D).

Theorem (completeness): The general context system with (47) and (57') axiom
schemas is complete with respect to the set of flat models Flat.

Proof (completeness): The proofis based on the completeness proof for the general
system. To prove the completeness we need to show that given a consistent set of
sentences Ty in context Ko, the model M, as defined in the completeness proof is a flat
model; formally My € Flat. Assume that My is not flat: for some contexts x and i,

m(ﬁo * I‘L) 7é m(ﬁo * K1 % I‘L).
Therefore there exists some wif ¢ such that
(Mo =r, —ist(k,¢) and Mgy =ryun, ist(k,¢)) or

(Mo =5, ist(k,¢) and Mo Fryun, —ist(k,d)).

Assume

Mo Ery —ist(k,¢) and Mo Frgsn, 15t(K, ).
From the definition of satisfaction for ist the second formula is equivalent to
Mo |:Eo iSt(KllaiSt(Kﬂgé))a

and due to the soundness of the (47!) axiom schema it is equivalent to My |[=x,
ist(x,¢), which is a contradiction. A contradiction is derived in a similar fashion
using (57') when we assume the other disjunct:

Mo Er, ist(k,¢) and Mo Fryun, —ist(k, ).

Ocompleteness



4 Meaninglessness as Falsity

In this section we examine a slightly more elaborate modification of the general system
introduced in §2. This modification closely models the semantics described but not
investigated, in [12]. The general idea here is that if ¢ is not in the vocabulary of
K, then ist(k,¢) is taken to be false instead of meaningless or undefined. To cater
faithfully to this interpretation, two changes must be made to the semantics of the
general system. Firstly, the ist clause in the definition of Vocab : K* x W — P(K* x P)
must be altered to reflect the fact that ist(x,¢) will always be in the vocabulary of
any context. Secondly, the ist clause in the definition of satisfaction must also be
modified. The appropriate new clause in the definition of Vocab is:

Vocab(r,$) = 0 if ¢ is ist(k, ¢o)
While the new clause in the definition of satisfaction is:
M,v == ist(k1, @) iff Vocab(p, kxk1) C Vocab(M) and (Vi € (Rkr1)™) M, 11 |:E=m1 1)

The other clauses in both definitions remain the same, modulo the fact that all occur-
rences of Vocab in the definition of satisfaction now refer to the new definition. We
maintain the (definedness convention) in stating the proof system for this version,
but again we point out that all occurrences of Vocab now refers to the new definition.
The proof system for this version consists of the axioms and rules of the general system,
together with the new axiom:

(MF) tx —ist(kg,9) if Vocab(% * k1, ¢)  Vocab

However, there are several important points to observe here. Firstly, because the (de-
finedness convention) is substantially more liberal in this version, there will be many
more legal instances of tautologies allowed by the schema (PL). Indeed in some cases,
the (definedness convention) will be vacuously true. This is the case with both the
(A), (A_) schemas, and also (modulo the explicit side condition) the (MF) schema.
Also note that in the rule (CS) the (definedness convention) holds vacuously for the
conclusion of the rule, but not for its hypothesis. Secondly, this new interpretation of
Vocab, and its resulting consequences rules out certain previously derivable schemas.
For example, (Or) schema is no longer derivable in its full generality; the provable
version is

bz ist(k1,¢) V ist(k1,%) — ist(k1, ¢ V) if Vocab (% * k1, ¢ V ) C Vocab.

The side-condition is needed to legitimize the appropriate instances of (PL) and appli-
cations of (CS).

The completeness proof for this system is structurally similar to the one given in
§2. The only new points are those that arise out of the liberal definition of Vocab.



5 Decidability

The purpose of this section is to show that the propositional logic of contexts is decid-
able (i.e. that there is an effective procedure that says whether or not a given formula
is valid, and hence also a theorem of the system). This will be done by showing that
the propositional logic of contexts has the finite model property: any formula that is
satisfiable is satisfiable in a model with finitely many finite truth assignments.

Definition (restriction of M(%)): We first define the restriction of a single truth
assignment, v, with respect to Vocab(Ro, ¢) to be a truth assignment which, on the
atoms that are in the scope of the context sequence %, corresponds to v, and is false
elsewhere.

v(p) <E,p> € Vocab(EKo, $)

_ L . ! ! _
Wocab(fe,6),® = the unique v’ such that v'(p) = {0 <k, p> ¢ Vocab(EKo, ¢)

The restriction of a set of truth assignments, V', with respect to Vocab(®o, ¢) is defined
as follows:

VVocab(Eo,(ﬁ) = {VV0cab(Eo,¢)),E v E V}

Definition (restriction of 2M):  The restriction of a model M with respect to
Vocab(Eo, ¢) is a model which maps every context sequence which appears in ¢ to
the set of restricted truth assignments.

Myocab(®.g) : S — {M(F)Vocab(m,¢) | K € Dom(Vocab(Fo, ¢)) 7,
where S is the set of all subsequences of context sequences from Dom(Vocab (o, ¢)).
S = {El |E1 S E() N HE2 S Dom(Vocab(Eg,¢)) Eg S El}

Thus the model Myqcab(z,,4) Maps a context sequence ¥ to a set of truth assignments
gﬁ(ﬁ)Vocab(Eo,(ﬁ) .
9RVOCI—Lb(Eg,(#)) 1R mt(E)VOCEb(Eo,(ﬁ)'

Theorem (finite model property): M =g ¢ iff Myocanmo,) Fro @-

Note that only the (=) direction will be needed to prove the decidability of the
propositional logic of context.

Proof (finite model property): We prove a stronger property:
if Vocab(®,a) C Vocab(®o,¢) then (M =x a iff Myscanm,e) Fr @)

by induction on the structure of the formula ¢.

Case atomic: We need to show that for any atom p such that <&, p> € Vocab(%o, ¢)
the following holds:

Vv € Sﬁ(ﬁ) m? v |:F P iff Yv € 9JtVocab(Eg,q‘)) (E) 9ﬁVocab(Eg,(#))7 v |:E P



For the (=) direction, suppose we are given some truth assignment, v € imvocab(go,(ﬁ)(ﬁ);
we need to show that Mvy,cab(ry,e)s ¥ E= p. By the construction of MYocab(ro,¢) WE know
that there is a truth assignment v’ € M (k) such that V{focab(ﬁo,p),ﬁ = v. By assumption
we know that M, v’ =% p, and consequently we know that <&, p> € Vocab(9). Because
<E,p> € Vocab(Ry, ¢), from the definition of a restriction of a model we conclude

that p € Dom(v). Then it must be the case that v(p) = v'(p), which implies that
9ﬁVocab(Eg,(#))7V |:E P-

For the other direction suppose we are given a truth assignment v € M(K); we
need to show that M,v =5 p. We know that there exists a truth assignment ' €
MVocab(Ro,g) (F) such that ' = vygcap(m,p)z- From the assumption it follows that
MVocab(Ro,4)> V' == P, and therefore we have M, v |=x p (since p € Dom(v), which in
turn follows from the fact that Dom(v') C Dom(v)).

For the inductive hypothesis in the following three cases assume that the following

holds:

if Vocab(®,a) C Vocab(%o,¢) then (M E=x a if Myocabm,e) Fre @)-

Case negation: We need to show that if Vocab(%,a) C Vocab(go, ¢) then
(VV € Sﬁ(E) m,v IZE —a iff Vve 9JtVocab(Eoﬂf’) (E) gRV0cab(EOa¢’)7y |:F _|OL).

For the (=) direction, suppose we are given some truth assignment v € mtvocab(go’(ﬁ)(ﬁ);
we need to show that Mvocab(ry,e), ¥ E% —a. By the construction of MVocab(mo,4) W€ know
that there is a truth assignment v’ € M(K) such that Wocab(o,a),x — V- BY assumption
we know that M, ' = —a, which implies that M, ' [£z, a; by the inductive hypoth-
esis we know that Mvocab(ry,4), ¥ Fr . Now because Vocab (&, a) = Vocab(g, ~a) and
because Vocab(i))tvocab(go,(ﬁ)) contains all the atoms relevant to ¢ (and hence also to a
since Vocab(®,a) C Vocab(Ro, ¢)), we know that the preconditions for the satisfaction
relation are met. From this we can conclude that Mvocan(w,,e)s ¥ Ez —a.

For the other direction suppose we are given a truth assignment v € M(K); we
need to show that M,v =5z —a. By the construction of MYocab(ro,¢) WE know that
there exists a truth assignment ' € My,can(r,,¢) () such that v/ = vyocab(ry,g)z BY
assumption we know that My,cab(my,e)s ¥’ Fr —a, which implies My,can(@,,0), V' Fr -
So, by the inductive hypothesis we know that 9, v £z, a. Now, because Vocab(k,a) C
Vocab(Myocab(ry,¢)) and because Vocab(Myocab(ry,g)) & Vocab(M), the preconditions for
the satisfaction relation are met. From this it follows that M, v % —a.

Case implication: The proof proceeds in the same way as for the case of negation.

Case ist: We need to show that if Vocab(%,a) C Vocab(%o, ¢) then

M |=r ist(ki,a) ff Myocab(my,g) Fr 15t(k1, ).

For the (=) direction we know that M =5 ist(k;,a). Therefore, Vocab(%, ist(x1,))
C Vocab(M) and M |=xsx, @. By the inductive hypothesis Mvyocab(m,p) Frrn, @ Be-
cause Vocab (% * k1,a) = Vocab(%,ist(x1,a)) and because Vocab(My,cab(ry,¢)) contains



all the contexts relevant to ¢ (and hence also to a), we know that the preconditions
for the satisfaction relation are met. Hence Myycan(ry,¢) F7 15t(K1, ).

For the other direction we know that Mvocab(ry,¢) =7 i5t(k1,a), and hence we know
that Vocab(®, ist(k1,a)) C Vocab(Myocab(ro,¢)) a0 Mvocab(ro,4) Fren, <. By inductive
hypothesis we know that M |=z.,, a. Because Vocab(R*k;,a) = Vocab(R, ist(k1,a)).
And, because Vocab(Mvocab(ry,4)) & Vocab(M), we know that the preconditions for the
satisfaction relation are satisfied. Hence M |=z ist(k1,a). Ofnite-model-property

Corollary (decidability):  There is an effective procedure which will determine
whether or not a formula given in some context is valid.

Proof (decidability): A formula, ¢, given in Ko is valid if and only if —¢ given
in Ko is not satisfiable. So, to check if ¢ is valid it is sufficient to check if —¢ is
satisfiable. This is done by first generating all the models of the form Myocab(zy,~¢)-
There are finitely many models of this form. Each one of these models has only finitely
many truth assignments, and every truth assignment is variable over finitely many
propositional atoms (determined by the recursive function Vocab). So, all such models
can be effectively generated in a finite amount of time. Once these models are generated
we can determine the validity of the formula ¢ in the following way. If —¢ is satisfied
by any of the generated models then ¢ is not valid. On the other hand, if none of the
generated models satisfy the formula —¢, then ¢ is valid because we know that:

vgﬁVocab(Eo,—'(ﬁ) mtVocab(Eo,—wﬁ) |#Eo _'¢)7
which implies (by the finite model property):

Vym M fr, 0.

807 ¢ is valid. Udecidability

6 Comparison to Kripke Semantics

In this section we study the relationship between the semantics of context (as given
in this paper) and Kripke semantics. We show that if all the aspects of partiality in
the definition of a context model are disregarded, then most context models can be
matched up to a particular class of Kripke models. Since there is always some leeway
in the match, based on how we define the Kripke model and what notion of equivalence
between context and Kripke models is taken, the models will not be matched precisely.
We will discuss the adequacy of the match in more detail later.

We proceed to define some preliminaries for our construction.

Definition (non-partial model): A non-partial context model 9 is a function
which maps every context sequence ¥ € K* to a set of total truth assignments,

me (K — P(p — 2)).

Note that the two additional side conditions in the definition of the model are no
longer needed. Also note that for the non-partial models the following property of the
satisfaction relation holds:



M,v =z ~¢ iff not M,v =x ¢.

Since in the comparison to Kripke semantics we will only be concerned with non-partial
models, henceforth in this section we will refer to a partial context model simply as
a context model. In this section we will also use the term “context logic” to refer to
the general system described in §2 with the semantics restricted to non-partial models
(since we are only doing model theory in this section, we are disregarding the formal
system).

We now give a brief sketch of a standard propositional modal logic. We will be
using a propositional modal logic with a countable number of modalities and its cor-
responding Kripke semantics. Given a context language specified by a possibly finite
set of contexts, K, and a set of propositional atoms, P, we define a modal language
consisting of the propositional atoms, P, standard propositional connectives, = and —,
and modalities, O;,0,,...; one for each context from K = {kg}lgca. We also define a
bijective translation function which to each formula of the context logic, ¢ € W, assigns
a well-formed modal formula, . The formula ¢" is obtained from ¢ by replacing each
occurrence of ist(kg,®) in ¢ with Og(¢"). A Kripke model is a tuple <S, wo, 7, Rg>g<a
where S is the set of possible worlds, wg € S is the actual world, and 7 is a mapping
from the the worlds in S to truth assignments over atomic propositions in P, for some
a < w. Every Rg is a binary relation on S. In order to distinguish Kripke models
from context models, we use M" to refer to Kripke models. Kripke models are often
called Kripke structures or possible-world structures. Satisfaction is defined to be a
relation on a Kripke model, a world from that model, and a formula; it is written as
M, w = ¢. Note that the same symbol is used for satisfaction in the context logic,
however it will be obvious from the arguments of the relation which satisfaction rela-
tion is being referred to. Atomic formulas are satisfied at a world if they are made
true by the truth assignment associated with that world. Satisfaction for propositional
connectives is defined as in classical propositional logic. The formula Og ¢ is satisfied
at a world w iff ¢ is satisfied at every world w' s.t. w Rgw'.

In order to compare a context model and a Kripke model, we need to know which
worlds are intended to describe the same state of affairs as a given context, i.e. which
worlds are associated to which context.

Definition (association relation): A relation A is an association relation from
the context model M to the Kripke model M" = <S, wq, 7, Rg>p<q iff

I.LAC K x(P—2)xS

2. (VE)(Vv e m(R))(Fw) A(E,v,w)

3. A(R,v,w) implies (Vu')(38) (wRsw' implies (Ix')(I') A(FEx+w',v',w'))
4. A(R,v,w) implies m(w)=v

5. A(e,m(wo),wo)

Given a context sequence K and a truth assignment from M(%), the association relation
expresses which world is to be associated with the truth assignment in that context,



and vice versa. Note that the same truth assignment in different context sequences
may produce different worlds.

In order to be able to compare a context model and a Kripke model, we need a
notion of what it means for the two models to be equivalent.

Definition (elementary equivalence): A context model M is elementarily equiv-
alent to a Kripke model Mm" with respect to association A (M = Mm° wr.t. A) iff

A(R,v,w) implies (M,v =z ¢ iff M°,w | ¢)

for any context sequence ¥, truth assignment v € M(%K), world w € S, and wif ¢.

We define some properties of relations which will be used to define classes of Kripke
models.

Definition (properties of relations):

1(Ri, Rj) + (VwiVwaVwiVws)  ((wiRiws & waRjws & wi Rwy) = wyRjws)
(Vw)(Fw') wRw' (seriality)
(Yw,Yw Vwsy) (wy Rwy & wi Rw)) = wy = w)y  (functionality)

®4(R;, R;) : ®2(R;) & P2(R;) & (VwiVwaVwy)(wi Riws = (waRjwhy & wiRjw)))

Let Cq,...,C4 be the classes of Kripke models in which all the accessibility relations (or
all the ordered pairs of accessibility relations) satisfy conditions ®1,..., ®,4 respectively.
Note that in the standard modal correspondence theory the relation ®; corresponds to
the axiom schema A.

We also introduce a class of context models, called the actual models. They have the
property that the empty context sequence is associated with a single truth assignment,
which is interpreted as the actual state of affairs or the state of affairs in the actual
world.

Definition (2ctual): A context model M is an actual model, M € Actual, iff |M(e)| = 1.

6.1 Representing Kripke Models with Context Models

Theorem (representationl): For every context model M € 2Actual, there exists a
Kripke model 9", and an association A from M to M” such that <M = Mm"° w.r.t. A.

Proof (representationl): Given a context model M, we construct an elementarily
equivalent Kripke model 9m". Intuitively, for every truth assignment in every context
sequence, we create a world in the Kripke model. The function 7 of a world is the same
as the truth assignment that created that world. We then define relations on these
worlds and show that the created structure, Mm", is in fact a Kripke model. Finally, we
prove that the two models are in fact elementarily equivalent.



The construction of M" proceeds in four stages. Firstly, we define a set of objects
S, one associated with every v from every context sequence K. These objects will
constitute the set of worlds of what will be the Kripke model ™"; formally

S:={<K,v>|F €K, veMR)}.

Similarly, an association A from M to M" is defined

A = {<E,v,<R,v>> | K € K, v € M(R)}.

Secondly, we associate a truth assignment with every element of S. We define the truth
assignment associated with the world <g,v> € S to be v. Thirdly, the accessibility
relation is defined to capture the structure of the groupings of truth assignments into
contexts, and the relations among contexts. A world created by some context sequence
K will be in relation R; to all the worlds created by the context sequence Kxk;. Formally,

wRw' ff IrIvIV (w =<K, v> and ' = <K x*k;,v>).

Finally, in the fourth stage, we define the actual world to be <e,v> € S, the world asso-
ciated with the empty sequence. Note that this world is unique, since M € Actual.
Putting together all of the above components we define the Kripke model m" :=
<S,wo, T, Rg>g<||- It is clear that M" is in fact a Kripke model.

Furthermore, note following properties of m":

1. The world associated with €, the root of the tree (defined by the domain of the
context model M), has no predecessors:

w=<e,v>€S implies Vw' €s —(w R; w)
for every relation R; in the Kripke model m".

2. If ¥ * k; is an inconsistent context then the worlds associated with ¥ will not be
related to any worlds via R;. Formally, if (% * ;) = () then

w=<k,v>ES implies Vw' €s —(w R;w).
All that remains to be shown is that M = Mm° w.r.t. A, i.e. that
A(R,v,w) implies (M,v=x ¢ iff M ,w [ 47).

This is proved by induction on the complexity of the formula ¢.

Case atomic: ¢ = p. Since the truth assignment m(w) is the same as v when
A(R,v,w), and since p” is the same atom as p, it clearly follows that M, v =z p iff
m, w = p"

Case negation: ¢ = —7. We begin by assuming A(%,v,w) and

E)JI,I/ |:F _‘¢



By definition of satisfaction for the context logic, this holds iff
not (M,v =z ¥).
Which by inductive hypothesis holds iff
not (M~,w | ¥°),
and by the satisfaction relation for modal logic, this is true iff
m,w | ",
Finally, since negation translates into negation, the above is true iff

m,w ()"

Case implication: ¢ =1 — x. We begin by assuming A(%,v,w) and
Mmv == ¥ — x.
By definition of satisfaction for the context logic this holds iff
M,v Ex ¢ implies M,v Ex X,

which by inductive hypothesis holds iff

m~,w = ¢ implies M7, w = x".
By the satisfaction relation for modal logic, this is true iff

m,w = P — x".

Finally, since implication translates into implication, the above is true iff

m,w = (P — x)".

Case ist =: We begin by assuming A(R,v,w) and

not M°,w = (ist(ks,?))".

By definition of translation function, it is the case that

not M7, wkE O;9°.

Therefore, there exists w' such that wR;w' and

not M7, w' = ¥°.
Furthermore, there exists ; and there exists v’ € M(K * ;) such that w' = <K * k;, ">
and A(E * k;,v',w'). By inductive hypothesis,



not M, FErw,; ¥.

Therefore, by definition of satisfaction,

not M,v =5 ist(k;, ).

Case ist «<: We begin by assuming A(E,v,w) and

not M,v =z ist(k;, ).

Therefore, by definition of satisfaction for the context logic, for some v' € M(E * ;)

not M, FErw,; ¥.

Now put w' = <& * k;,v'>. Therefore, by construction, A(% * k;,v',w') and wR;w'. By
inductive hypothesis,

not M7, w' = ¥°.

Now, by definition of satisfaction for modal logic,

not M, w = O;%°.

By the definition of the translation function this holds iff
not M, w = (ist(ks,%))".

Urepresentationl

6.2 Representing Context Models with Kripke Models

We will not be able to represent all Kripke models using context models. Thus we
identify the class of Kripke models which can be represented using context models.
This turns out to be C;, which is also the class of Kripke models which satisfy the A
axiom schema.

Theorem (representation2): For every Kripke model Mm"” € C; there exists a
context model M such that M = M w.r.t. A.

Proof (representation2): Given a Kripke model M" we construct an elementarily
equivalent context model M. Intuitively, we will identify context sequences with paths
through the Kripke model 9". Then, the truth assignments of the worlds in 9"~ which
can be reached via a path ¥ will be placed in M(R).

Assume M" = <S,wq, 7, Rg>5<4 is the Kripke model we are transforming. First we
define the set of contexts K. This set is identified with the set of all the relations from
the Kripke model



K := {Rs}p<a-

Now we define the association relation A. The empty sequence € will be associated
with the actual world wg. For other context sequences, the association is defined
inductively. If w; is some world associated with %, then all the worlds w' related to w
via R; are associated with x* R;. For example, if in M" some world ws is associated with
[wy, Rs, Rs, R1], and ws R4wy in the Kripke model, then the world wg will be associated
with [w,, Rs, Rs, R1, R4]. Thus the context sequence [w3, Rs, Rs, R;, R4 is associated
with all the worlds which can be reached in M" by starting at w; and then making an
Rs transition (in the Kripke model), followed by an Rs transition, followed by R; and
R, transitions. Formally:

A(e, m(wo), wo)
AR * R;,w(w),w) iff Jw' €s A(R,n(w'),w') and w'Rw.
It is not difficult to verify that the relation A, as defined above, is indeed an association

relation. Once we have the association relation, the context model is defined in the
obvious way:

M(k) = {m(w) | A(F, 7 (w), w)}.
Now we state a property of the construction.

Lemma (association):

Vw Vw' (A(R,m(w),w) and A(r* R;,m(w'),w')) implies wR;w'.

The lemma expresses that all the worlds associated with K are related via R; (in
M) to all the worlds associated with % * R;. The lemma is a consequence of (1) the
construction of A, in which a world is added to % * R; if it is connected via R; to some
world from %, and (2) the fact that the Kripke model m" € C,, i.e. satisfies the relation
®,. We postpone the proof till later.

All that remains to be shown is that Mt = M" w.r.t. A. We do this by proving the
stronger claim

A(R,v,w) implies (M,vEx ¢ iff M7, wE ¢°).

The proof is by induction on the structure of the formula ¢. We skip all the easy cases
and we show the ist case.

Case ist =: We begin by assuming

A(R,v,w) and not M",w = O;%°.

Therefore, by definition of satisfaction for modal logic, Jw' € S s.t.



wR;w'  and not M°,w = ",

Now A(% * R;,m(w'),w') by construction of A. So by inductive hypothesis

not M, w(w') Frer; ¥

Therefore, by definition of satisfaction for context logic

not M,v =5 ist(R;, ).

Case ist «<: We begin by assuming

A(R,v,w) and not M,v & ist(R;, ).
Thus by definition of satisfaction for the context logic, I’ € M(K * R;) s.t.

not M,v' Erg, ¥.
Now M(% * R;) = {m(w)| A(F * R;,m(w'),w’)}. Thus v’ = n(w') and A(R * R;, v, w’)

for some w' € S. Now by (association lemma) wR;w’ and by inductive hypothesis

not M7, w' = ¥°.

Therefore, by satisfaction relation for modal logic,

not M, w = O;0°.

Orepresentation2

Now we prove the (association lemma).

Proof (association lemma): The proof is by induction on the length of the se-
quence K.

Case base: K is the empty sequence, €. Then the actual world, wy, is the only world
associated with k. The representation function is defined so that all the worlds related
to we via R; will be associated to & * R;. Since wg is the only world associated with ¥
then it trivially follows that all the worlds associated with ¥ (namely wg) are related
via R; to all the worlds associated to & x R;.

Case inductive step:  Assume A(R,, m(w2),w,) and A(Rs, m(ws),ws). Since Ry < €,
we let Ky := K1 * R;. Now A(Rs,7(w2),ws) implies that there exists w; € S such that
A(Ry,m(w1),w;) and w; R;ws. By induction hypothesis, it follows that for any wj € S
such that A(R,, m(w}),w}), w1 R;w). By definition of A it follows that for some w) € S
such that A(R,, w(w}),w}), wyR;ws. Now by the restriction on the accessibility relation
dictated by the fact that m™ € C;, we get that wyR;ws. Oagsociation



6.3 Discussion

The representation results in this section depend on our definition of the Kripke model
and the definition of elementary equivalence. Variations in either of these definitions
would slightly change the theorems. For example, sometimes the actual world is ex-
cluded from the definition of the Kripke model. In this case we could generalize the
(representationl theorem) to hold for any context model, rather than only those
in Actual. For (representation2 theorem) to hold we would need a way of including
multiple subtrees in a single context model. One solution would be to connect all the
subtrees to € and associate the empty vocabulary with the empty sequence. To take
another example, stronger results could be obtained by insisting that the association
relation matches every world to some truth assignment in some context sequence. But
here again, to prove (representation2 theorem) we would need vocabularies or a
stronger notion of a context model which would allow multiple rooted subtrees as the
domain of M. To conclude, there is always some leeway in representation results, based
on the basic definitions. The main purpose of this section is to give the general flavor
of the relations in expressiveness of the two kinds of models and a methodology which
can be used for comparing context models and Kripke models.

6.4 Correspondence Results

In this subsection we use the previously established general relations between context
models and Kripke models to relate some interesting classes of context models to classes
of Kripke models. Essentially, this amounts to matching some intuitive notions of
context to accessibility relations between worlds.

Proposition (correspondences): If M = M" w.r.t. A, then the following hold

1. m” € C, implies M € Consistent
2. m” € C3 implies M € Truth

3. m” € C, implies M € Flat

Proof (correspondence (1)): Assume M ¢ Consistent. Since M = M° w.r.t. A,
there exists w s.t. A(e,7(w),w). Thus M(e) # B. Since M ¢ Consistent, there exists
K * k; s.b. M(K * ;) = 0. Choose such a % * k; so that M(K') # 0 for K *x x; < &' < e
Therefore,

not M,v =5 —ist(k,,L).

Now since M = M” w.r.t. A, there exists w € S s.t. A(R,v,w) and
not M, w = (—ist(k;, L))",
Therefore, by definition of language translation we get
not M°,w = -0; L.

Therefore, as we know from modal logic, Mm" ¢ C,, a contradiction. Ceorrespondence(1)



The proofs of the remaining two propositions are identical, with the exception that
a different formula is used to reach a contradiction. In case 2, we use the fact that a
Kripke model Mm" s.t.

not M7, wkE O;¢V —0;¢

is not in C;. This can easily be proved using standard methods for deriving correspon-
dence results in modal logic. The formula for the third proposition is somewhat more
complex:

not M7, w = (50,4 — 0;¢) A (3,706 — —0,¢)

which corresponds to axiom schemas (47') and (57'). That the above model Mm" is
not in C4 can again be showed using standard methods for correspondence results in
modal logic or using some equivalences we have proved earlier. As we know from
§3.3, any context system containing axioms schemas (47') and (57') is equivalent to a
system containing schemas (4), (5), and (D). Since the correspondence results for these
schemas are well known in modal logic, it is again simple to verify that they exactly
characterize the class of Kripke models C,.

7 Related Work

Our work is largely based on McCarthy’s ideas on context. McCarthy’s research [16, 18]
in formalizing common sense has led him to believe that in order to achieve human-like
generality in reasoning we need to develop a formal theory of context. The key idea in
McCarthy’s proposal was to treat contexts as formal objects, enabling us to state that
a proposition is true in a context: ist(k, ) where ¢ is a proposition and  is a context.
This permits axiomatizations in a limited context to be expanded so as to transcend
their original limitations.

There has been other research done in this area; most notable is the work of Lifschitz,
Shoham, Guha, Giunchiglia, and Attardi and Simi. We briefly treat each in turn.

Two contexts can differ in, at least, three ways: they may have different vocabu-
laries; or they may have the same vocabulary but describe different states of affairs, or
(in the first order case) they may have the same vocabulary (i.e. language) but treat it
differently (i.e the arities may not be the same). The first two differences were studied
in [3], and led to two different views on the use of context. Lifschitz’s early note on
formalizing context [15] concentrates on the third difference. Shoham, in his work on
contexts, concentrates on the second difference [19]. Every proposition is meaningful
in every context, but the same proposition can have different truth values in different
contexts. Shoham approached the task of formalizing context from the perspective of
modal and non-classical logics. He defines a propositional language with an analogue
to the ist modality, and a relation x; ® D k3, expressing that context x; is as gen-
eral as context k;. Drawing on the intuitive analogy between a context x and the
proposition current-contezt-is(x), Shoham identifies the set of contexts with the set of
propositions. This enables him to define truth in a context ist(k,p), in terms of the
the conditional current-context-is(x) — p, where — is interpreted as as some form of



intuitionistic or relevance implication. His paper gives a list of 14 benchmark sentences
which characterize this implication.

Guha’s dissertation contains a number of examples of context use. These demon-
strate how reasoning with contexts should behave, and which properties a formalization
of context should exhibit. The Cyc knowledge base [13], which is the main motivation
for Guha’s context research, is made up of many theories, called micro-theories, de-
scribing different aspects of the world. Guha has tailored the design of micro-theories
after contexts. The examples of context use given in his dissertation are especially
interesting because they: 1) are motivated by a real system, and portray situations
that arise in practice. 2) are implemented and work in Cyec.

Following up on Weyhrauch’s ideas [20], Giunchiglia proposes a context framework
called multilanguage systems [10]. Although different contexts are allowed different
vocabularies, Giunchiglia’s framework is significantly weaker than the systems described
above because his language does not include an ist modality. Instead he introduces
bridge rules, special kind of inference rules which allow formulas in one context to be
inferred based on facts derived in another context. Giunchiglia’s research emphasizes
a proof theoretic approach. Although never made precise, his semantics seems to have
a strong procedural flavor.

Attardi and Simi’s motivation for the theory of viewpoints, [1], is similar to those
of contexts. However, their formalization differs from ours in a number of ways.

They have a syntactic approach to modality. This means that rather then intro-
ducing a modal operator, they extend the ontology by introducing names of sentences
as first-class objects. Thus their equivalent of the ist modality becomes a regular
predicate. The difficulty with this approach is that it allows the possibility of self-
reference and thus opens the doors to paradoxes. A significant portion of Attardi and
Simi’s work is focused at avoiding paradoxes. They accomplish this by weakening the
rule corresponding to the context switching rule (CS). Thus the fact that ist(k,p)
holds in some context sequence K does not always imply that p will hold in the context
sequence K *x Ki.

The main divergence from McCarthy’s, Guha’s and our notions of context, is that
their viewpoint is not a primitive formal object, but a set of names of sentences. Intu-
itively, this set corresponds to the assumptions made in that viewpoint. Consequently
the logic of viewpoints contains axioms like ist(k,p) — (k — p). This approach is
similar to formalization proposed by Shoham.

Also, they assume that all viewpoints have the same language, thus avoiding par-
tiality in their logic.

7.1 Comparison to Logic of Belief

There is also a clear parallel between the logic of context and the modal logic of be-
lief [14]. The modality ist(k,¢) may be interpreted as expressing that the agent x
knows or believes the sentence ¢. However, there are fundamental semantic distinc-
tions between the two logics. The ist modality is meant to capture what is actually
true or valid in a context rather than what is believed to be true in a context. This is



manifested by the (A) axiom schema, which can be written as
ist(k1,ist(ka, @)) V ist(k1, "ist(k2,¢))

if we disregard the vocabulary restrictions. Intuitively, it tells us that a context is
committed on what is valid in another context. The corresponding schema is not true
of belief. There is no reason why one agent should be committed on the beliefs of other
agents. The justification for our view might best be understood when thinking about
contexts as knowledge bases. Then ist(k, ¢) holds iff the formula ¢ is actually valid in
the xk knowledge base. Thus the (A) schema expresses that it is true in x; knowledge
base that ¢ is valid in the the x; knowledge base or that it is true in the x; knowledge
base that ¢ is not valid in the x, knowledge base. In other words, the x; knowledge
base behaves as if though it can see into the x, knowledge base and thus decide for any
formula ¢ whether or not it is valid in x,.

Another distinction between the logic of context and the logic of belief is in the for-
mal semantics commonly ascribed them. Logics of belief is commonly ascribed Kripke
semantics. Modeling truth or validity in a context by a Kripke model, i.e. by relation
between worlds would not be intuitive because we want contexts to be reified as first
class objects in the semantics. This will allow us (in the predicate case) to state rela-
tions between contexts, define operations on contexts, and specify how sentences from
one context can be lifted into another context.

Finally, vocabulary considerations are not commonly addressed in logics of belief.

8 Conclusions and Future Work

Our goal is to extend the system to a full quantification logic. One advantage of quan-
tificational system is that it enables us to express relations between context, operations
on contexts, and state lifting rules which describe how a fact from one context can be
used in another context. However, in the presence of context variables it might not be
possible to define the vocabulary of a sentence without knowing which object a variable
is bound to. Therefore the first step in this direction is to to examine propositional
systems with dynamic definitions of meaningfulness.

We also plan to define non-Hilbert style formal systems for context. Probably the
most relevant is a natural deduction system, which would be in line with McCarthy’s
original proposal of treating contextual reasoning as a strong version of natural deduc-
tion. In such a system, entering a context would correspond to making an assumption
in natural deduction, while exiting a context corresponds to discharging an assumption.
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