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Abstract
In this paper we describe our progress towards an
operational implementation of a modern programming
logic. The logic is inspired by the variable type
systems of Feferman, and is designed for reasoning
about imperative functional programs. The logic goes
well beyond traditional programming logics, such as
Hoare’s logic and Dynamic logic in its expressibility,
yet is less problematic to encode into higher-order
logics. The main focus of the paper is too present
an axiomatization of the base first-order theory, and
an implementation of the logic into the generic proof
assistant Isabelle. We also indicate the directions of
our current research to blend these two advances into
an operational whole.

Keywords semantics, logic, derivation, verification,
specification, theorem proving.

1 Introduction
In this paper we continue the investigations into a Vari-
able Typed Logic of Effects that began in [20, 11, 21,
23, 12]. In particular we present an axiomatization of
the base first-order theory, and an encoding of the logic
into the generic proof assistant Isabelle [26]. We also
indicate the directions of our current research to blend
these two advances into an operational whole. In the
remainder of this section we give a brief overview of
both the object logic, VTLoE, and Isabelle.

1.1 An Introduction to VTLoE
VTLoE is a logic for reasoning about imperative func-
tional programs, inspired by the variable type systems
of Feferman [5, 6]. VTLoE builds upon recent advances
in the semantics of languages with effects [7, 9, 15, 18,
19] and goes well beyond traditional programming log-
ics, such as Hoare’s logic [2] and Dynamic logic [10]
by treating a richer programming language and more ex-
pressive logical language. It is close in spirit to Specifi-
cation Logic [29] and to Evaluation Logic [27].
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The underlying programming language of VTLoE,�����
, is based on the call-by-value lambda calculus

extended by the reference primitives ��� , ��	�
 , �	�
 . It
can thus be thought of as a fragment of untyped ML or
a variant of Scheme. In our language atoms, cells and
lambda abstractions are all first class values and as such
are storable. This has several consequences. Firstly,
mutation and variable binding are separate and so we
avoid the problems that typically arise (e.g. in Hoare’s
and Dynamic logic) from the conflation of program
variables and logical variables. Secondly, the equality
and sharing of cells (aliasing) is easily expressed and
reasoned about. Thirdly, the combination of mutable
cells and lambda abstractions allows us to study object
based programming within our framework. The logic
combines the features and benefits of equational calculi
as well as program and specification logics. There
are three layers. The foundation is the syntax and
semantics of

�����
, the underlying term/programming

language. The second layer is a first-order theory
built on assertions of program equivalence and
program modalities called ��	�
 -formulas. The third
layer extends the logic to include class terms, class
membership, and quantification over class variables.

1.2 An Introduction to Isabelle
Isabelle is a generic proof assistant. It can be instanti-
ated to support reasoning in a variety of object-logics.
At present these object-logics include: first- and higher-
order logic, sequent calculus, Zermelo-Fraenkel set the-
ory, a version of Constructive Type Theory and several
modal logics. A number of experimental logics, includ-
ing the one described in this paper, are also being devel-
oped.

An object-logic is encoded by extending the meta-
logic of the Pure Isabelle system. This section intro-
duces the Pure system and describes how it can be ex-
tended to support new object-logics.

1.2.1 Syntax

The language of Isabelle is typed lambda calculus.
New syntax is declared by extending the basic language
with new classes, types, constants etc. This section
introduces the basic language and describes how



it is extended with the meta-level syntax for the
Pure Isabelle system. Although Isabelle’s syntax
is purely ASCII, mathematical symbols are used to
improve readability. Isabelle’s type classes control
polymorphism and permit forms of overloading. They
closely resemble Haskell’s type classes [13] and are
essentially sets of types. The Pure system has a build-in
class � ������� of all logical types. It is possible to declare
new types and type constructors with associated arities.
Arities are constructed from classes and can be seen
“types” of type constructors. The Pure system declares
a type of meta-formulas ( �
	���� ) and a function type
constructor (  ) with the following arities:

�
	���������� ������� �������� �������
��� ����������� �������
The type �
	���� is typically used as the type of
judgements in object-logics. Curried function types
are abbreviated �������! ! � �����"�#$%� . Terms are the usual
ones. Abstraction is written

�'&)(  * and application
* � �+*-,.� . The curried forms are abbreviated

� & ( �  � ! ( "  *
and *.�+* � �! � ! ��/* " � . New constants are declared by
giving their type. The Pure system declares constants
for meta-implication ( 0) ), meta-quantification ( 1 )
and meta-equality ( 2 ):

0)3���4�5�
	������.�
	�����#63�
	����
1 ���7�98:����� �������;3�
	������<=�
	����
2 ���4� 8>����?�@���8)#A3�
	����

In the above, type variables ( 8 ) range over the universal
sort ?�@ (containing all types) or � ������� , thus restricting
polymorphism. Nested meta-implication is abbreviated
� � BC�
�! � ! ��-B;"�# #D0) B and nested meta-quantification
1 ( �E ! ! ( ") �B .

Isabelle has many features to extend the basic
lambda calculus syntax with more readable notation.
Among these features are mixfix declarations which
can express any context-free priority grammar, and
translations on both ASTs (abstract syntax trees) and
lambda terms. Translations are applied automatically
during parsing and printing. The symbol FG is used for
macros. These are a particular kind of AST translations
which are especially easy to read and write. Macros
apply to ASTs and can therefore express syntactic
translations which meta-equalities cannot.

1.2.2 Rules

The rules of Isabelle’s intuitionistic higher-order meta-
logic are represented in LCF style. They are essentially
functions between terms of type �
	���� . A central rule
is the resolution rule described in figure 1. Here H
is a higher-order unifier of I and J6K . A substantial
amount of machinery is connected with resolution
and higher-order unification. This machinery includes
schematic variables, lifting over both formulas and
variables etc. Rules at the object-level are simply meta-
formulas. A meta-formula such as � � J ��L  ! ! L J " # #M0)NJ
can be read as an object-level natural deduction rule

with premises JO���! ! � ���JP" and conclusion J . Natural
deduction notation is used accordingly.

1.2.3 Proofs

Proofs at the meta-level are carried out by applying
functions representing valid meta-inferences. Proving
a meta-theorem corresponds to deriving an object-
rule. In particular, resolution can be used to build
object-proofs by joining object-rules. This supports
both forward and backward proof of theorems at the
object-level.

Isabelle’s tactics support backwards proofs at the
object-level. A meta-formula � � J<� L  ! � L JP"�# #Q0) J
represents the state of a backward proof with subgoals
J � �! � ! ��-J " and goal J . Tactics are valid meta-
inferences, working on proof states by refining the
subgoals. Isabelle contains simple tactics for refining
a proof state by resolution, for proving subgoals by
assumption etc. There are also a number of generic
packages which, upon instantiation to a particular
object-logic, provide tactics for simplification and
proof construction using classical proof procedures.

Isabelle’s tacticals combine tactics into new tactics.
They can be used to encode powerful proof procedures
as tactics. Isabelle has a number of build-in tacticals, for
sequencing, alteration, searching etc.

1.3 Overview & Notation.
The paper is organized as follows. In section 2 we de-
scribe the syntax, semantics and Isabelle encoding of the
of the terms of VTLoE. In section 3 we describe the syn-
tax, semantics and encoding of the formulas of VTLoE.
In section 4 we present the proof theory of VTLoE and
its encoding. In section 5 we discuss our current work,
conjectures, future research and present our concluding
remarks. We conclude this introductionwith a note con-
cerning notation. Let RMS��TRE� be sets. We use the usual
notation for set membership and function application.
R6SVUW RE� is the set of finite maps from RMS to RO� . � R6SX
RE�T# is the set of total functions Y with domain RMS and
range contained in R<� . We write ZC[�\]�9YP� for the domain
of a function and ^$_�`��/YA� for its range. For any function
Y , YM?�ab��0ca
de@ is the function Y�d such that ZC[�\f�/Y�dg�X0
Zh[�\f�/YA�4ij?
a�@ , Y�de�9a��j0%a
d , and Y�dg�/k��l0%YM�9k�� for
knm0oa��-kqprZC[�\]�9YP� .

2 The Terms of VTLoE
2.1 The Syntax of Terms
The syntax of the terms of

� ���
is a simple extension

of the lambda calculus to include basic atomic datas
, (such as the Lisp booleans 
 and t)u � as well as

the natural numbers v ), together with a collection of
primitive operations, wQ0yx "�z
{ w " , where w " is the
(possibly empty) set of | -ary operations.

? 
)�/t)u ��@~} s



� � I � L  ! ! L I � # #A0)3I � � JO� L  � ! L JP"�# #60) J �9I H 2 JPKgH�� ������� |�-� � JO� L  � ! L J K	� � L I � L  � ! /I � L J K�
 � L  ! � L JP"�# #�0)3J)��H

Figure 1: The Resolution Rule

w � 0 ? ���6� � 	�
P����
A� �!t���@ i
?�� 
�� ���
����	 ������������u���� � ��� ���������!@

wM,C0 ?������)� 	 ��� ��	�
A�!����@
w#" 0 ?�����@

The primitive operations include: the memory
operations ( ��� , �	�
 , � 	�
 ) for allocating, dereferencing,
and updating unary cells; the immutable pairing
operations (��� , � ��
 , ��t�� ); the usual operations for
strict branching ( ��� ), equality on atoms ( 	�� ), and
arithmetic; the recognizing operations ( � 
������ , ��	 ����� ,
����u$��� , ��� ��������� ) (or characteristic functions using the
booleans 
 and t6u � ) of their respective domains. We
also treat application, ����� , as a binary operation for the
sake of uniformity.

Together with the atoms,
s

, we assume an infinite
set of variables, % and use these to define, by mutual
induction, the set of

�
-abstractions, & , the set of value

expressions, ' , the set of value substitutions, ( , the set
of expressions, ) , and the set of contexts, * , as the least
sets satisfying the following equations:

s +
ranges over ,

% -�./0.1 range over 2
&>0 � %  ) 3�-5476 ranges over 8
' 09%;: s :<&=:;�����>'n��' � ? ranges over @
(�09% UW ' A ranges over B
)>09'C:bw)"E�D) " � E ranges over F
*D0V?$G'@H:;%C: s : � %  I*J:>w)"E��* " �

K
ranges over L

Note that the structured data (pairs) are taken to be
values.

�
is a binding operator and free and bound vari-

ables of expressions are defined as usual. MON �QP!� is the
set of free variables of P . A value substitution is a fi-
nite map R from variables to value expressions, we let R
range over value substitutions. P$S is the result of simul-
taneous substitutionof free occurrences of

( prZC[�\f��R)�
in P by RO� ( � . We represent the function which maps

(
toT by ? ( ��0 T @ . Thus P$UV0W X�Y[Z is the result of replacing

free occurrences of
(

in P by T (avoiding the capture
of free variables in T ). Contexts are expressions with
holes. We use G to denote a hole. \��I] # denotes the result
of replacing any holes in \ by P . Free variables of P
may become bound in this process. In order to make
programs easier to read, we introduce some abbrevia-
tions. ��� is a strict conditional, and the usual conditional

construct u�� can be considered an abbreviation follow-
ing Landin [14]. ��	�
 and ��	 � are the usual syntactic
sugar, ��	�� being a sequencing primitive.

2.2 The Semantics of Terms
The operational semantics of expressions is given by a
reduction relation ^_W on a syntactic representation of the
state of an abstract machine, called descriptions. A state
has three components: the current state of memory, the
current continuation, and the current instruction. Their
syntactic counterparts are memory contexts, reduction
contexts and redexes respectively. Redexes describe the
primitive computation steps ( ` -reduction or the appli-
cation of a primitive operation to a sequence of value
expressions). Reduction contexts, a , (called evaluation
contexts in [8]) identify the subexpression of an expres-
sion that is to be evaluated next.

aj0 ?�G�@b: w � 
 " 
 � �>' � ��af�!) " �
c

ranges over d .

The key property is that an arbitrary expression is
either a value expression, or decomposes uniquely into
a redex placed in a reduction context. We represent the
state of memory using memory contexts. A memory
context e is a context of the form

��	�
�?
k
� ��0 ���A�+t)u ����@
. . .

. . .
. . .

��	�
P?�k�" ��0 ���)�+t)u ��� @
��	��'� ��	�
P�9k � � T � �.�

...
...

...

��	�
P�9k " � T " �.�
G��

where k K m0 kf when
� m0hg (and if | 0ji , then eb0kG ).

We have divided the context into allocation, followed
by assignment to allow for the construction of cycles.
Thus, any state of memory is constructible by such
an expression. We let e range over memory contexts.
We can view memory contexts as finite maps from
variables to value expressions. Thus we refer to their
domain, ZC[�\f��eE� ; modify them, e ?�k � 0 ���P� T � @ , when
knpDZC[�\]�leE� ; and extend them, e ?�kn��0 ���A� T ��@ , when
knmprZC[�\f��eE� .

A description is a pair, e L ] , with first component
a memory context and second component an arbitrary
expression. Value descriptions are descriptions whose



expression is a value expression, e L T . The reduction re-
lation ^_W is the reflexive transitive closure of _W (defined
in [12]). The interesting clauses are:

(beta) e L�� �I�����P� �P(  >P�� T � # _W e L�� �>P U�V0W XOYQZ #
(mk) e L�� � � �P� T � # _W e ?�k ��0 ���)� T � @ L�� � k�#

if 1�����	��
������������ c�� ?�� �
(get) e L�� � � 	�
��9k��9# _W e L�� � T #

if 1 ���	��
����� and
��� 1 ��� ?

(set) e L�� � � 	�
��9k�� T �9# _W e ?
k � 0 ���A� T ��@ L�� � t)u ��#
if 1 ���	��
�����

A closed description, e L ] is defined (written � e L ] )
if it reduces to a value description. A description is
undefined (written � e L ] ) if it is not defined. Two
descriptions, e L ] S and e L ] � are equivalued (written
e L ]!S�� e L ] � ) if they are both undefined or have a
common reduct (i.e. they both reduce to a particular
description). Note that reduction is functional modulo
8 -conversion.

Two expressions are operationally equivalent, writ-
ten P S �0 P � , if for any closing context \ , \��>P S # is de-
fined iff \��>P � # is defined. In general it is very difficult
to establish the operational equivalence of expressions.
Thus it is desirable to have a simpler characterization of�0 , one that limits the class of contexts (or observations)
that must be considered. A generalization of Milner’s
context lemma [24] provides the desired characteriza-
tion. This theorem is the key to giving a semantics to
VTLoE formulas.

Theorem (Generalized Context Lemma [18, 12]):
PTS �0 P�� iff ��e � � ��P SS #�#! � e � � �>P S� #�# for all e � R)� �
satisfying MON �le � � �>P SK #�# � 0#" for

�%$'&
.

2.3 The Encoding of Terms in Isabelle
VTLoE is a partial term logic with variables ranging over
values and the central syntactic categories are those of
terms ) and values ' . The syntax has been simplified
accordingly for the purpose of the encoding.

Values ' can be viewed as a subset of terms ) but
Isabelle’s type system does not support subtyping. The
solution used in the current encoding is to declare a type
of terms � corresponding to ) and a subtype judgement(*) � expressing that a term is a value:

������� ������� (*) ��������3�
	����
Alternatively a separate type corresponding to ' could
be declared together with an injection function from val-
ues to terms. This would get rid of the extra judgement
at the expense of a slightly more complicated syntax and
an extra reduction axiom for pairs.

A new constant is declared for each term constructor
of VTLoE. They have the following types:

+ � �5�-, ��� �
./ ���102,.�4365-, ��� �� �
5 +87 � ) ,/� . ������0!��� ����� ) .9 ���.� ) � 	 � ��� �� �) �����-5202,.�.�
	 ��� �����-� #A �
9 	 ��� �����-����� #A �
� ) . d ��� �9�� ���  �

The variable binding term constructor � ) . d is handled
using higher-order syntax, identifying object-level
variables with meta-level variables. This eliminates the
need for a separate type corresponding to % .

The rules for
(:) � formalize which terms belong to

the subtype of values. There are four rules, one for each
of the four kinds of values:

(*) � � + � � � (:) � ��,�� (*) � ��� ) . d �/YA�T�(*) � �<;�� (*) � �<=.�
(*) �����
	/�4;P�>=.�T�
A number of term constructors, such as lets and ifs,

are defined in terms of the basic ones. Having declared
the necessary constants, � 02, d and � 3 , these are defined us-
ing Isabelle’s meta-equality, for example:

� 0?, d ��]���YP� 2 ) ������� ) . d �9YP�.� ]!�
Finally Isabelle’s translation mechanism is used to

introduce external syntax. Only the translations for � ) .
and � 02, are shown below:

� ) . (  I] FG � ) . d+� ��&6(  I]��
� 0?,�? ( ��0 ]!S @$] � FG � 02,/de��]�S�� �'&6(  I]
�-�

3 The Formulas of VTLoE
3.1 The Syntax of Formulas
The first-order fragment of our logic is a minor gener-
alization of classical first-order logic. The atomic for-
mulas assert the equivaluedness and operational equiv-
alence of expressions. In addition to the usual first-order
formula constructions, we add a ��	�
 -formula (called a
contextual assertion in [12]): if B is a formula,

(
a vari-

able, and P an expression then ��	 
�? ( ��0 ]
@�� � B # # is a
formula.

Definition (@ ):

@N0 �>)A� )E�b: �>) �0 )<� :j�B@ C@ � :
� ��	�
�?[% ��0 ) @6� � @ # # � : �ED�% ���E@j�

3.2 The Semantics of Formulas
The meaning of formulas is given by a Tarskian satis-
faction relation eAF 0 B � R�# defined below.

Definition ( e'F 0 B �IR�# ): Assume e � R)��B ��PDf are such
that MON �9B S��;i<M N ��] Sf � }QZC[�\f��eE� for g $�&

. Then



we define the satisfaction relation e#F 0 B �IR�# by induc-
tion on the structure of B . As is usual in logic we also
define the subsidiary notions of validity and logical con-
sequence.

e F 0 �l]!S�� ]
�.�.�IR�# iff e L ] SS � e L ] S �
e F 0 �l]!S �0 ]
�.�.�IR�# iff
�ED � MON � � �;}lZh[�\n�leO������e � � �I] SS #5# � e � � �I] S � #�#g�
e F 0 �9B S  B � �.�IR�# iff
�le F 0 BXS
�IR�# ����\������
	�� �le F 0 BC���IR�# �
e F 0 ��	 
P? ( � 0h]
@�� � B # #��IR�# iff
�le L ] Sk^_W eMd L T ���\����
��	�� e)d F 0 B �IRO? ( � 0 T @�#
e F 0 �ED ( ��B �IR�# iff
�ED T p ' M N4� T �$}jZh[�\f��eE�T���le F 0jB �IRO? ( ��0 T @�# �

F 0jB iff
�ED#e � R M N �/B S�� } ZC[�\]�leO��� �leAF 0jB �IR�#g�
BXS�F 0jBC� iff F 0jBXSn BC�

Negation is definable, � B is just BN ��������	 , where
��������	 is any unsatisfiable assertion, such as 
 �0 t)u � .
Similarly conjunction, � , and disjunction, � and the
biconditional,  , are all definable in the usual manner,
as are termination and non-termination of terms. Note
that the ��	�
 -formula is a binding operator akin to D . We
use the symbol � to denote either of the binary relations
in our logic, �0 and � .

3.3 The Encoding of Formulas in Isabelle
Formalizing the syntax of formulas in Isabelle is similar
to formalizing the term syntax. A new type correspond-
ing to the single syntactic category of formulas @ is de-
clared:

� ����� �������
A new constant is declared for falsity and for each

kind of formula in the original syntax. The six necessary
constants are:

� ) � 5>0$���$� 0���0��h���~������� #A �
� W ���4� �P��� #' � �80?,/d ���~�������� � #A �� ��� d ���7�9�� ���  �

The symbol 0 corresponds to � and 0 � corresponds
to �0 . The variable binding constructs �80?, d and

� ��� d are
again handled using higher-order syntax.

As before, a number of extra constants are declared
and then defined in terms of the basic ones. These in-
clude constants representing the usual logical constants,
connectives and quantifiers:

��� 2 ��� � W � ) � 5>0��
� F � 2 �!��� � W �~�
�#"$� 2 �;�!��� F �%�~�&(' d �)� � 2 � � ��� d+� � & (  *���~� ( �T�

Finally, macro translations introduce a suitable
external syntax. The translations below are those for
the two variable binding constructs

� ��� and � 02, , and the
usual shorthand m0 :

� ��� (  � FG � ��� d � � & (  � �
� 02,�? ( ��0 ] @�� � �X# #=FG � 02,/de�l]�� ��&6(  � �
]!S m0 ]
� FG �;��]�SX0 ] � �

4 The Proof Theory of VTLoE
4.1 The Hilbert System
We give a Hilbert style presentation, although a natu-
ral deduction style system in the style of Prawitz [28]
may in the long run be more desirable. We adopt Baren-
dregt’s convention [3] that in any particular mathemati-
cal situation the bound and free variables in expressions
are distinct. However we do (and must) allow free vari-
ables of expressions to coincide with bound variables in
contexts.

Definition ( +nB ): The consequence relation, + , is the
smallest relation on @ that is closed under the rules al-
luded to below. For reasons of brevity we only explicitly
include those that are either novel or important for the
presentation.

For lack of space we only present, in figure 2,
the salient features of the system, a full list may be
found in [16]. The first, most basic axiom concerning
operational equivalence and equivaluedness is that
the booleans 
 and t)u � are not equivalent. Both
� and �0 are equivalence relations, satisfy a certain
restricted form of substitutivity, and are preserved
under simple forms of evaluation. These last evaluation
principles are (equivalent to) the let-rules of the
lambda-c calculus [25]. The remaining axioms and
rules concerning operational equivalence (other
than that it is an equivalence relation) are: that
equivaluedness implies operational equivalence;
operational equivalence is preserved under the
collection of garbage; equivaluedness is syntactic
identity on abstractions, in contrast operational
equivalence is non-trivial on abstractions (the , rule
holds: abstractions are operationally equivalent if it
is valid that their bodies are equivalent); and the two
equivalence relations agree with one another on atoms
and cells.

��	�
 -formulas are a modality and as such possess
a rule akin to necessitation, (C.i). Note that this
is a rule of proof and not an implication. The
remaining axioms concerning ��	�
 -formulas are:
(C.ii), ��	�
 -formulas distribute across the equivalences;
(C.iii), a form of ��	�
 -formula introduction involving
equivaluedness (the corresponding principle for
operational equivalence is false); (C.iv), a principle
akin to ` conversion; and (C.v), a principle allowing
for the manipulation of contexts. The propositional
rules are, in addition to the usual Hilbert style



���  �+� + B
+ ��	�
A? ( ��0kP @�� ��B # # (Context Introduction)

���  �
�+� + ��	�
P? ( ��0kP @�� �I] S � ] � # #  ��	�
�? ( ��0 P @��I] S # � ��	�
�? ( ��0 P @��I] � #
���  �
�
� � + ]!S � ] �  � ��	�
A? ( ��0 ]�S @�� ��B # #  ��	�
P? ( ��0 ] ��@�� ��B # # �
���  ����� + ��	�
�? ( ��0 T @�� ��B # #  B U V W X�Y[Z
���  ��� + ��	 
P? ( � 0h]�S @�� � ��	�
�?�a ��0 ]
�!@�� ��B # #5# #  ��	�
�?�a ��0 ��	�
�? ( ��0 ]!S
@�]
�!@�� ��B # #
���X �
�+� + ��	 
�? ( ��0kP @�� ��BXS] BC��# #� � ��	�
P? ( ��0kP @�� ��BXST# #h ��	 
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Figure 2: A Selection of Axioms and Rules

presentation of modus ponens and a generating set
of tautologies, a modal axiom corresponding to K and
its converse, (P.ii). Similarly the quantifier axioms are
all standard [4] except for (Q.iv) which asserts that
operations other than ��� and ����� have no allocation
effect. (��� .i) describes the allocation effect of a call
to ��� . The only other fact concerning � � is a pair
of axioms stating that the time of allocation has no
discernable effect on the resulting call. The first two
��	�
 -formulas regarding ��	 
 are analogous to those of
( � � .i). They describe what is returned, what is altered,
and what is not altered. The remaining four principles
involve the commuting, cancellation, absorption,
and idempotence of calls to ��	�
 . For example the
��	�
 absorption principle, ( ��	�
 .v), expresses that
under certain simple conditions allocation followed
by assignment may be replaced by a suitably altered
allocation. An important class of axioms are those
which allow assertions to propagated into and out of
��	�
 -formulas. Two typical examples are (S.iii) and
(S.iv).

One important reason for introducing � is that
important principles fail for �0 . In particular (C.iii)
above fails as indicated in [23]. It also allows for
an adaptation of the proof of completeness theorem
found in [19] to the current system. We say that an
expression is first-order iff it contains neither unapplied�

-expressions, nor non-
�

applications. A formula is
first-order iff it is bulit up from first-order expressions.
Then we have the following:

Theorem (Completeness [16]): If B p!@ is first-
order and is quantifier free, then

+nB iff F 0 B  
This logic extends and improves the complete

first-order system presented in [17, 19]. The system
presented there had several defects. In particular
the rules concerning the effects of ��� and ��	�
 had
complicated side-conditions. Using ��	�
 -formulas
we can express them simply and elegantly. Some
principles concerning the memory operations not
mentioned in [12] were discovered in the process
of constructing the completeness proof. The Hilbert
system presented above is minimal by design in order to
simplify the proof of soundness and completeness. The
choice of rules is not necessarily the best if we want a
basis that extends nicely or is useful in an encoding.

The axiom system presented here contains axioms
and rules for quantifiers and structured data (in this case
immutable pairs), however the question of whether
these axioms and rules are complete remains open. We
conjecture that the techniques presented in [32] can be
modified and adapted to this framework to obtain an
affirmative answer to this conjecture.

4.2 Proof Theory in Isabelle
Unlike the original Hilbert style formulation of the
proof theory, the encoding is based on a sequent
calculus style formulation. Just as in Gentzen’s system
LK the central judgement is that of a sequent:



+�� ����� 5>0����80 + ��0��-520���� 0 + ��0�#)3�
	����
Associative sequences of formulas are handled as in the
implementation of LK in Isabelle. The type 520���� 0 + ��0
corresponds to an external syntax for associative lists
where comma is the associative operator. Internally
a higher-order representation handles associative
unification.
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Figure 3: Basic Sequent Rules

The system consists of some basic rules as well as
axioms and rules translated directly from the Hilbert
system. The basic rules are an assumption rule,
structural rules, a cut rule and logical rules for falsity
and implication (

� ) � 5>0�+ , � W + and � W-, ). They
are displayed in figure 3). It is essentially the usual
rules although modified to be directly applicable in
more cases. Some rules have also been generalized
to work on sequences instead of single formulas. The
result is that more rules are derivable as opposed to
only admissible. The remaining axioms and rules of
the axiomatic Hilbert system, not accounted by the
basic rules, are translated directly into corresponding
axioms and rules in the encoding. Some care must be
exercised to ensure that this translation is correct. It is,
for example, often necessary to restrict term variables
to range over values. The rules in figure 4 correspond
to (C.i), (C.ii), (C.v) and (mk.i). The subscript

(

expresses meta-quantification and the first rule is just
�91 (  (*) � � ( �<0) + � �~� ( �T� 0) + � � 02,/de�l]�� � � .

� .  !" � - � �0/111
����� � - �

� �32 %54	6 � E .	� �
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" %54 6 � E .E $ � � " %54 6 � E .E ' �
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Figure 4: Translated Rules and Axioms

The encoding is flexible. It is possible to derive
Hilbert, natural deduction, and sequent calculus style
rules and axioms. The different reasoning styles can be
mixed as desired.

Sequent calculus and natural deduction style rules
for the ��	�
 -formula should describe the logical aspects
of the ��	�
 -formula. Here the necessitation like rule
(C.i) and the axiom (P.ii) are seen as describing the
logical properties. With this classification in mind the
rule � 02,5+ , in figure 5 describes the logical aspects
of the ��	�
 -formula. Using this rule it is possible to
derive theorems corresponding to (C.i) and (P.ii). The
ability to have several formulas on the right of + �
appear to be essential and the rule feels inherently
classical. It is hard to classify as either a left or right
rule because it introduces ��	�
 -formulas on both sides
of +�� and because it affects all the formulas in the
sequent. The rule does not seem to compare directly
with any common rule of modal logic. The fact that it
is based on an atypical property in modal logic similar
to the converse of (K), might help to explain this.

Introduction rules usually follow from right rules by
restricting the right side of + � to just one formula. Sim-
ilar elimination rules follow from left rules by cut and
restriction of the right hand side. Applying these ideas
to � 02, + , results in the rule � 02, &�H in figure 5. An unfor-
tunate consequence of restricting the right hand side to
just one formula is that a theorem corresponding to the
converse of (K) can no longer be derived. One solution
is to add an extra rule corresponding to the converse of
(K). Other solutions are to allow multiple formulas on
the right of +I� or to incorporate the problematic prop-
erty into � 02, &*H in some other way.
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Figure 5: Logical ��	 
 -Rules

Rules such as � 02,5+ , and � 02, &�H cannot be
represented directly in the encoding at present.
There are no direct way of representing sequences such
as � 02,/de�l]�� � � �.�! � ! �� � 02,/de�l]�� �hK/� or having rules with
a variable number of premises such as � 02, &*H . At a
later stage it might be possible to express such rules
using extra judgements. Even if they were expressible
they would not be derivable but only admissible in the
current formulation. The reason is that they are proved
by induction on the length of sequences of a sequent.
Everything is however not lost: it is possible to derive
each concrete instance.

5 Conclusions, Current and Future Work
Thus far we have described the current state of the im-
plementation and axiomatization of VTLoE, it is not the
final product. We now spend some time describing the
future development of the implementation into a hope-
fully practical system.

5.1 Elaborating on the Encoding
Encoding the syntax and proof theory of the logic
was a relatively painless procedure. Especially when
compared with the contortions required for logics of
the Hoare and Dynamic ilk [22, 1]. Since the semantics
of the underlying

� ���
-calculus is operational, and the

semantics of the logic is defined strictly in terms of
syntactic entities, it seems not unreasonable to expect
an implementation to be capable of encoding it. This
would allow for both proof theoretical and semantic
reasoning to be carried out at the same time in the
same context [33]. It will also allow the system to
semantically verify its own proof system, an extremely
attractive idea. It would also allow for the dynamic
enrichment of the proof theory by introducing new,
semantically verified, principles. Thus the logic
implemented would be truly dynamic. The only
obstacle to successfully encoding the semantics is the
problem of encoding lambda calculus style contexts and
hole filling (i.e the corresponding notion of substitution

with variable binding capture). To achieve this it may
be necessary to adopt the binding structure approach
developed in [30, 31].

5.2 Tactics, Strategies and Rewriting in
VTLoE

VTLoE is a computational logic and one obvious area
of application is formal development of

����
programs.

This section describes one particular unsolved problem
encountered when trying to develop

� ���
programs for-

mally using the encoding. The problem is illustrated us-
ing a very simple program development example. Al-
though the goal is to use the encoding to derive

� ���
pro-

grams only the simpler verification problem will be con-
sidered here.

The ��	�
 -formula of VTLoE can be viewed as a
generalisation of Hoare triples and can be used to
express program correctness in a similar way. The
following correctness theorem specify that the program
5�� ) ��� ( �-a�� swaps the contents of two cells

(
and a :

+ � � ��� ( a�; =
 � 02,T� ( � 0#; "j�102,��9a�� 0#=
� W

	 0�����5
� ) ��� ( ��a������ � �102,�� ( � 0 = "j�102,��9a�� 0#;
# #g�
where

5
� ) ��� ( ��a�� 2V� 02,�?�� ��0l�102,�� ( ��@
5>0����65>02,�� ( ���102,T�9a��T�.� 5>02,��9a���.�T�

The term 5>0�� and the formula
	 0�� are just the

corresponding ��	�
 -term and ��	 
 -formula where
the bound variable does not occur in the body. The
formula to the left of � W is referred to as the pre-
condition and the body of the ��	�
 -formula as the
post-condition. The correctness theorem does not
specify the program completely. A typical correctness
theorem will also be concerned with termination, the
value returned by the program and exclude certain
effects on the store.

The post-condition generally contains much more
information about what the program should do than



the pre-condition. A program is therefore typically
developed by working backwards from the post-
condition towards the pre-condition. In other words,
the problem is to eliminate the outermost ��	�
 -formula
on the right hand side of � W and prove the result from
the pre-condition.

The problem of eliminating a complex ��	�
 -formula
can usually be simplified to a problem of eliminating
simple ��	�
 -formulas. A ��	�
 -formula is classified
depending on the program it takes as its first argument.
A simple expression is a value or an operation applied
to values. All other expressions are complex. It is
possible to derive decomposition rules for complex
��	�
 -formulas such as:

� (*) � �<;��e#�����
�~�4;���+�� � 02, d �l] �
�<;��.� �~� � +�� �80?, d ��]�S�� � �

� +�� � 02, d �T� 02, d �l]!S�� ] � ��� �~�
This rule is similar to the rule for sequential composi-
tion in Hoare logic, except that ��	�
 -formulas also bind
values.

Having applied such decomposition rules repeatedly
in the swap case the first subproblem to be solved is to
find a suitable � �~� ( ��a��2;A�2=
� �.� such that:

C5� � -�./0. + . � .�� � � ��� %�� � $	%�4 � -�.	� � .� � E#%�4 � - ��� � >AEG%54 � / � � + � � �
In Isabelle a question mark is used to indicate that a

variable is a schematic variable, that is a free variable
which can be instantiated during unification. The effect
of the ��	�
 -operation on the �	�
 -operation of the first
conjunct is obvious. In the second case it is necessary
to consider two cases depending on whether

(
and a are

aliases or not. A suitable � �~� ( ��a��2;P�>= ��.� is:

� � � > � - � / �)( � � + � > � - �� / �*( E#%54 � / ��� + �

Although it is relatively simple to handle the problem
of eliminating simple ��	 
 -formulas in the swap
example it is much harder in general. It is particular
hard for expressions which might interact with the
store such as ��	�
 , �	�
 , � � , ����� . Imagine what happens
when the programs in the post-condition are complex
expressions with read, write or allocation effects. The
possibility of recursion add further complications.

As indicated above, an unsolved problem is to find a
systematic method for eliminating simple ��	 
 -formulas
which is also sufficient general. In the 5202, case such
a method should work as a generalized Hoare style
assignment rule and should be encoded in Isabelle as
a tactic. This would allow proof steps of the same
granularity as in Hoare logic. This is a minimum
requirement if the system is to be used for practical
program development.

Our investigations so far suggest that the problem
of eliminating ��	�
 -formulas are closely connected with
equational reasoning in VTLoE. Facts such as (C.ii) and
the following point in that direction:

+ ��	 
�?8; ��0 �O� �=���@�]�S � ��	�
A? ; ��0
�O� �=���@$] �


��	 
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for � �/�� � ��� .��������
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�? ( ��0 ���)�<;���@
���P�l]!S�� ( � � ��	 
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�����l] ��� ( �


��	 
�? ( ��0 ���)�<;���@�� � ] S � ] � # #
Rewriting is a very useful technique in theorem

proving. It is usually based on transitivity and
congruence properties of the relation in question. Both
� and �0 is transitive, but neither is a congruence in the
strong sense:

+ ] S � ] � �
 �l] S � ��
q�l] � �
Vp *
This is easy to see by considering the example:

+ �	 
�� ( �*� t)u �


��	��'� ��	�
P� ( � 
��.� �	�
�� ( ���%� ��	 ��� ��	�
�� ( � 
��.� t6u �
�
which is clearly false. It is however possible to derive

rules as the following:

� + � ] S 0 ] d S � + � 	 0����l] d S �!� �I] � 0 ] d � # #g�
� +�� 5202,��l]!S�� ] �-� 0 5>02,���] d S � ] d � �

Rewriting based on such rules once again illustrates
how important it is to be able to reason systematically
about ��	�
 -formulas. The sequence � will typically
consists of equations which should be used for
rewriting. To rewrite the second argument ]�� of the
5>02, operation it is necessary to push the equations
in � though ] d S , ie. finding a suitable � � such that
� +�� 	 0����l]�dS � � � � . One obvious application of
rewriting in VTLoE is symbolic evaluation of programs.
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